Multivariate Public Key Cryptography

or

Why is there a rainbow hidden behind fields full of oil and vinegar?

Christian Eder, Jean-Charles Faugère and Ludovic Perret

Seminar on Fundamental Algorithms, University of Kaiserslautern

June 25, 2015
Introduction to public key cryptography

Construction of MPKC

Examples of MPKC schemes: Hidden fields

Examples of MPKC schemes: Oil & Vinegar
General idea of public key cryptography

- **complete key** (set of data)
- Public key P
- Private key Q
- Message M
- Ciphertext C
- Original message M
General idea of public key cryptography

- Public key P: subset of complete key
- Private key Q: complete key \ public key
- Complete key: set of data
- Message M: original message
- Ciphertext C: encrypted message
General idea of public key cryptography

- **message M**
- **public key P** (subset of complete key)
- **private key Q** (complete key \ public key)
- **ciphertext C**

complete key (set of data)
General idea of public key cryptography

- **Message** M
- **Ciphertext** C
- **Public key** P
- **Private key** Q
- **Complete key** (set of data)
- **Original message** M
General idea of signature schemes

original message M

hash function h:

$H = h(M)$

signature $S = Q(H)$ with private key Q

send tuple (M, S)

compute $H' = P(S)$ with public key P

compute hash $H = h(M)$ of message M

verify sender via testing $H = H'$
General idea of signature schemes

Original message M

Hash function h:

$H = h(M)$

Signature $S = Q(H)$ with private key Q

Send tuple (M, S)

Compute $H' = P(S)$ with public key P

Compute hash $H = h(M)$ of message M

Verify sender by testing $H = H'$
General idea of signature schemes

- Original message M
- Hash function h: $H = h(M)$
- Signature $S = Q(H)$ with private key Q
- Send tuple (M, S)

Compute $H' = P(S)$ with public key P.

Verify sender by testing $H = H'$.
General idea of signature schemes

- **original message** M
- **hash function** h:

 $H = h(M)$
- **signature** $S = Q(H)$ with private key Q
- **send tuple** (M, S)

- Compute hash $H = h(M)$ of message M
- Compute $H' = P(S)$ with public key P
General idea of signature schemes

- **Original message**: M
- **Hash function**: $H = h(M)$
- **Signature**: $S = Q(H)$ with private key Q
- **Send tuple**: (M, S)
- **Compute hash**: $H = h(M)$ of message M
- **Verify sender via testing**: $H = H'$
- **Compute $H' = P(S)$ with public key P**
Introduction to public key cryptography

Construction of MPKC

Examples of MPKC schemes: Hidden fields

Examples of MPKC schemes: Oil & Vinegar
Trapdoors of MPKC

PKC depends on the existence of a class of trapdoor one-way functions.
PKC depends on the existence of a class of trapdoor one-way functions.

Example

- Elliptic curve crypto depends on the elliptic curve group.
- NTRU depends on the structure of an integral lattice.
PKC depends on the existence of a class of trapdoor one-way functions

Example
- Elliptic curve crypto depends on the elliptic curve group.
- NTRU depends on the structure of an integral lattice.

In MPKC the trapdoor one-way function is of the form of a multivariate non-linear polynomial map over a finite field.
PKC depends on the existence of a class of **trapdoor one-way functions**

Example

- Elliptic curve crypto depends on the elliptic curve group.
- NTRU depends on the structure of an integral lattice.

In **MPKC** the trapdoor one-way function is of the form of a **multivariate non-linear polynomial map over a finite field**.

Note

Usually *non-linear* means *quadratic*. Thus people often speak about **MQ systems** referring to *multivariate quadratic*.
MQ Problem
Given \(m \) quadratic polynomials

\[p_1(x_1, \ldots, x_n), \ldots, p_m(x_1, \ldots, x_n) \]

in \(n \) variables \(\mathbf{x} = x_1, \ldots, x_n \) over a finite field \(\mathbb{F}_q \), find a vector \(\mathbf{x}' \) such that

\[p_1(\mathbf{x}') = \ldots = p_m(\mathbf{x}') = 0. \]
Basis of security of MPKC

MQ Problem

Given m quadratic polynomials

\[p_1(x_1, \ldots, x_n), \ldots, p_m(x_1, \ldots, x_n) \]

in n variables $\mathbf{x} = x_1, \ldots, x_n$ over a finite field \mathbb{F}_q, find a vector \mathbf{x}' such that

\[p_1(\mathbf{x}') = \ldots = p_m(\mathbf{x}') = 0. \]

Solving MQ polynomial systems is worst case NP-hard and in general doubly exponential over any finite field.
Construction of the MPKC

1. Get a trapdoor, e.g. non-linear function $\mathcal{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$, easily invertible.
2. Represent \mathcal{F} as multivariate polynomials \mathcal{F} over \mathbb{F}_q.
Construction of the MPKC

1. Get a trapdoor, e.g. non-linear function $\mathcal{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$, easily invertible.
2. Represent \mathcal{F} as multivariate polynomials \mathcal{P} over \mathbb{F}_q.
3. Take invertible secret matrices S and T.
Construction of the MPKC

1. Get a trapdoor, e.g. non-linear function $\mathcal{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$, easily invertible.
2. Represent \mathcal{F} as multivariate polynomials \mathcal{F} over \mathbb{F}_q.
3. Take invertible secret matrices S and T.
4. Distribute your public key $\mathcal{P} = T \circ \mathcal{F} \circ S$ as polynomials \mathcal{P}.
Public keys of MPKC

We use a MQ polynomial map over \mathbb{F}_q: $\mathcal{P}: \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$

$$\mathcal{P} = (p_1(x), \ldots, p_m(x))$$

with

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j + \sum_i \beta_{ik} x_i + \gamma_k,$$

for $x = (x_1, \ldots, x_n)$, $\alpha_{ijk}, \beta_{ik}, \gamma_k \in \mathbb{F}_q$.
Public keys of MPKC

We use a MQ polynomial map over \mathbb{F}_q: $\mathcal{P} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$

$$\mathcal{P} = (p_1(x), \ldots, p_m(x))$$

with

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j + \sum_i \beta_{ik} x_i + \gamma_k,$$

for $x = (x_1, \ldots, x_n)$, $\alpha_{ijk}, \beta_{ik}, \gamma_k \in \mathbb{F}_q$.

Note

The constant and linear terms of the p_k do not provide any further security, so we can neglect them in our discussion:
Public keys of MPKC

We use a MQ polynomial map over \mathbb{F}_q: $\mathcal{P}: \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$

$$\mathcal{P} = (p_1(x), \ldots, p_m(x))$$

with

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j + \sum_i \beta_{ik} x_i + \gamma_k,$$

for $x = (x_1, \ldots, x_n)$, $\alpha_{ijk}, \beta_{ik}, \gamma_k \in \mathbb{F}_q$.

Note

The constant and linear terms of the p_k do not provide any further security, so we can neglect them in our discussion:

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j,$$
Public keys of MPKC

In other words: $p_k \longleftrightarrow (n \times n)$ matrix P_k

$\left(x_1, \ldots, x_n \right) \cdot P_k \cdot \left(x_1, \ldots, x_n \right)^T$
Public keys of MPKC

In other words: $p_k \leftrightarrow (n \times n)$ matrix \mathbb{P}_k

$$(x_1, \ldots, x_n) \cdot \mathbb{P}_k \cdot (x_1, \ldots, x_n)^T$$

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j = x \mathbb{P}_k x^T$$

Clearly, \mathbb{P} should be a random (mostly dense) system of MQ polynomial equations. But is it really?
Public keys of MPKC

In other words: $p_k \leftrightarrow (n \times n)$ matrix Ψ_k

$$\begin{align*}
(x_1, \ldots, x_n) \cdot \Psi_k \cdot (x_1, \ldots, x_n)^T
\end{align*}$$

$$p_k(x) = \sum_{1 \leq i \leq j \leq n} \alpha_{ijk} x_i x_j = x \Psi_k x^T$$

Clearly, Ψ should be a random (mostly dense) system of MQ polynomial equations. But is it really?
Main ideas for attacking MPKC

▶ Try to retrieve secret S and T in order to get \mathcal{F}.

▶ The used **MPKC** variant is known, thus try to exploit knowledge of general trapdoor / shape of private map.
Main ideas for attacking MPKC

► Try to retrieve secret S and T in order to get Φ.

► The used **MPKC** variant is known, thus try to exploit knowledge of general trapdoor / shape of private map.

What are possible instantiations of **MPKC**?

or

What settings for Φ, S and T are used?
Introduction to public key cryptography

Construction of MPKC

Examples of MPKC schemes: Hidden fields

Examples of MPKC schemes: Oil & Vinegar
Matsumoto-Imai scheme (MI or C^*) – 1988

In general:

- Utilize vector space and hidden field structure of $(\mathbb{F}_q)^n$.

- Instead of searching for invertible maps over the vector space $(\mathbb{F}_q)^n$
 - Look for invertible maps on the extension field \mathbb{F}_{q^n} (\mathcal{F}).
 - Transform to an invertible map over $(\mathbb{F}_q)^n$ applying secret S and T (\mathcal{P}).

- A single univariate polynomial \mathcal{F} over \mathbb{F}_{q^n} is represented by n multivariate polynomials $\mathcal{P} = (p_i(x_1, \ldots, x_n))_{1 \leq i \leq n}$ over \mathbb{F}_q.

Note

For C^* let us assume $q = 2$ or $q = 2^k$ for some k. Makes the following discussion easier, generalization is rather trivial.
Matsumoto-Imai scheme (MI or C^*) – 1988

In general:

▶ Utilize vector space and hidden field structure of $(\mathbb{F}_q)^n$.

▶ Instead of searching for invertible maps over the vector space $(\mathbb{F}_q)^n$
 ▷ Look for invertible maps on the extension field \mathbb{F}_{q^n} (\mathcal{F}).
 ▷ Transform to an invertible map over $(\mathbb{F}_q)^n$ applying secret S and T (\mathcal{P}).

▶ A single univariate polynomial \mathcal{F} over \mathbb{F}_{q^n} is represented by n
 multivariate polynomials $\mathcal{P} = (p_i(x_1, \ldots, x_n))_{1 \leq i \leq n}$ over \mathbb{F}_q.

Note

For C^* let us assume $q = 2$ or $q = 2^k$ for some k. Makes the following discussion easier, generalization is rather trivial.
Matsumoto-Imai scheme (MI or C^*) – 1988

In particular:

$\mathbb{E} = \mathbb{F}_q[x]/g(x)$ for an irreducible polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n.
Matsumoto-Imai scheme (MI or C^*) – 1988

In particular:

- $E = \mathbb{F}_q[x]/g(x)$ for an irreducible polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n.
- $\phi : E \to (\mathbb{F}_q)^n$ an \mathbb{F}_q-linear isomorphism given by

 \[
 \phi(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}) = (a_0, \ldots, a_{n-1}).
 \]
Matsumoto-Imai scheme (MI or C^*) – 1988

In particular:

- $\mathbb{E} = \mathbb{F}_q[x]/g(x)$ for an irreducible polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n.
- $\phi : \mathbb{E} \to (\mathbb{F}_q)^n$ an \mathbb{F}_q-linear isomorphism given by
 $$\phi(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}) = (a_0, \ldots, a_{n-1}).$$

- Choose $0 < \theta < n$ such that $\gcd(q^\theta + 1, q^n - 1) = 1$. Define map \mathcal{F} in $\mathbb{E}[X]$ via
 $$\mathcal{F}(X) = X^{1+q^\theta}.$$
Matsumoto-Imai scheme (MI or C^*) – 1988

In particular:

- $\mathbb{E} = \mathbb{F}_q[x]/g(x)$ for an irreducible polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n.
- $\phi : \mathbb{E} \to (\mathbb{F}_q)^n$ an \mathbb{F}_q-linear isomorphism given by
 \[
 \phi(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}) = (a_0, \ldots, a_{n-1}).
 \]

- Choose $0 < \theta < n$ such that $\gcd(q^\theta + 1, q^n - 1) = 1$. Define map \mathcal{F} in $\mathbb{E}[X]$ via
 \[
 \mathcal{F}(X) = X^{1+q^\theta}.
 \]

- Choice of θ ensures \mathcal{F} being invertible:
 \[
 \xi(1 + q^\theta) \equiv 1 \mod (q^n - 1) \implies \mathcal{F}^{-1}(X) = X^\xi.
 \]
Matsumoto-Imai scheme (MI or C^*) – 1988

In particular:

- $\mathbb{E} = \mathbb{F}_q[x]/g(x)$ for an irreducible polynomial $g(x) \in \mathbb{F}_q[x]$ of degree n.
- $\phi : \mathbb{E} \to (\mathbb{F}_q)^n$ an \mathbb{F}_q-linear isomorphism given by
 \[\phi(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}) = (a_0, \ldots, a_{n-1}). \]

- Choose $0 < \theta < n$ such that $\gcd(q^\theta + 1, q^n - 1) = 1$. Define map \mathcal{F} in
 $\mathbb{E}[X]$ via
 \[\mathcal{F}(X) = X^{1+q^\theta}. \]

- Choice of θ ensures \mathcal{F} being invertible:
 \[\xi(1+q^\theta) \equiv 1 \mod (q^n - 1) \implies \mathcal{F}^{-1}(X) = X^{\xi}. \]

- Go back to $(\mathbb{F}_q)^n$: $\mathcal{P}' = \phi \circ \mathcal{F} \circ \phi^{-1}(x_1, \ldots, x_n) = (p'_1(x), \ldots, p'_n(x))$.
- Apply secret transformations S and T:
 \[\mathcal{P} = T \circ \mathcal{P}' \circ S = T \circ \phi \circ \mathcal{F} \circ \phi^{-1} \circ S. \]
Note 1

Raising X to a power of the form q^i is linear in E.

\Rightarrow \mathcal{P} is a system of MQ polynomials over \mathbb{F}_q.
Matsumoto-Imai scheme (MI or C^*) – 1988

Note 1
Raising X to a power of the form q^i is linear in E.
\[\Rightarrow \mathcal{P} \text{ is a system of MQ polynomials over } \mathbb{F}_q. \]

Note 2
There are not so many choices for θ thus we can assume θ to be publicly known.
Matsumoto-Imai scheme (MI or C^*) – 1988

Broken by Patarin (1995):

\[
Y = X^{q\theta} + 1 \Rightarrow XY^{q\theta} = X^{q\theta^2}Y.
\]

▶ From this one receives a system of equations of type

\[
\sum \alpha_{ij} x_i y_j + \sum \beta_i x_i + \sum \gamma_i y_i + \delta = 0.
\]

▶ Taking enough cipher texts from the original system one can determine the coefficients.

▶ For a given y (cipher text) we can then solve the linear equations to get x (plain text).
Matsumoto-Imai scheme (MI or C^*) – 1988

Broken by Patarin (1995):

\[
\text{If } Y = X^{q^\theta + 1} \implies XY^{q^\theta} = X^{q^{2\theta}} Y.
\]
Matsumoto-Imai scheme (MI or C^*) – 1988

Broken by Patarin (1995):

If $Y = X^{q^\theta + 1} \Rightarrow XY^{q^\theta} = X^{q^{2\theta}} Y$.

▶ From this one receives a system of equations of type

$$
\sum \alpha_{ij} x_i y_j + \sum \beta_i x_i + \sum \gamma_i y_i + \delta = 0.
$$
Matsumoto-Imai scheme (MI or C^*) – 1988

Broken by Patarin (1995):

If $Y = X^{q^\theta} + 1 \Rightarrow XY^{q^\theta} = X^{q^{2\theta}} Y$.

▶ From this one receives a system of equations of type

$$\sum \alpha_{ij} x_i y_j + \sum \beta_i x_i + \sum \gamma_i y_i + \delta = 0.$$

▶ Taking enough cipher texts from the original system one can determine the coefficients.
Matsumoto-Imai scheme (MI or C^*) – 1988

Broken by Patarin (1995):

\[
\text{If } Y = X^{q^\theta + 1} \Rightarrow XY^{q^\theta} = X^{q^{2\theta}} Y.
\]

- From this one receives a system of equations of type

\[
\sum \alpha_{ij} x_i y_j + \sum \beta_i x_i + \sum \gamma_i y_i + \delta = 0.
\]

- Taking enough cipher texts from the original system one can determine the coefficients.

- For a given y (cipher text) we can then solve the linear equations to get x (plain text).
\((C^*)^{-}\) or SFLASH

Construction

Remove \(r\) public polys:
\[\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S. \]
(C*) or SFLASH

Construction
Remove r public polys: $\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S$.

How to attack this? (Dubious, Fouque, Shamir, Stern; 2007)

- T randomly samples linear space V spanned by the n quadratic equations generated via $\mathcal{P}' \circ S$.

- Only $n - r$ of the n samples \Rightarrow Recover the missing ones?
Construction
Remove r public polys: $\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S$.

How to attack this? (Dubious, Fouque, Shamir, Stern; 2007)

- T randomly samples linear space V spanned by the n quadratic equations generated via $\mathcal{P}' \circ S$.

- Only $n - r$ of the n samples \Rightarrow Recover the missing ones?

- Transform T: $T' = T \circ A$ applying matrices A.
 \Rightarrow Several samples of V, several different linearly independent equations!
(C∗)- or SFLASH

Construction
Remove \(r \) public polys: \(\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S. \)

How to attack this? (Dubious, Fouque, Shamir, Stern; 2007)

- \(T \) randomly samples linear space \(V \) spanned by the \(n \) quadratic equations generated via \(\mathcal{P}' \circ S. \)

- Only \(n - r \) of the \(n \) samples \(\Rightarrow \) Recover the missing ones?

- Transform \(T: T' = T \circ A \) applying matrices \(A. \)
 \(\Rightarrow \) Several samples of \(V, \text{several different linearly independent equations!} \)

- Only have the public polynomials \(\Rightarrow \) How to compute \(T \circ A? \)
Construction
Remove r public polys: $\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S$.

How to attack this? (Dubious, Fouque, Shamir, Stern; 2007)

- T randomly samples linear space V spanned by the n quadratic equations generated via $\mathcal{P}' \circ S$.

- Only $n - r$ of the n samples \Rightarrow Recover the missing ones?

- Transform T: $T' = T \circ A$ applying matrices A.
 \Rightarrow Several samples of V, several different linearly independent equations!

- Only have the public polynomials \Rightarrow How to compute $T \circ A$?

- Multiply input of \mathcal{F} by $\alpha \Rightarrow$ multiply output by $\beta := \mathcal{F}(\alpha) = \alpha^{q^\theta} + 1$.

$(C^*)^-$ or SFLASH
Construction
Remove r public polys: $\mathcal{P} = (p_1(x), \ldots, p_{n-r}(x)) = R \circ T \circ \mathcal{P}' \circ S$.

How to attack this? (Dubious, Fouque, Shamir, Stern; 2007)

- T randomly samples linear space V spanned by the n quadratic equations generated via $\mathcal{P}' \circ S$.

- Only $n - r$ of the n samples \Rightarrow Recover the missing ones?

- Transform T: $T' = T \circ A$ applying matrices A.
 \Rightarrow Several samples of V, several different linearly independent equations!

- Only have the public polynomials \Rightarrow How to compute $T \circ A$?

- Multiply input of \mathcal{P} by α \Rightarrow multiply output by $\beta := \mathcal{F}(\alpha) = \alpha^{q^\theta} + 1$.

- Find matrix B such that $R \circ T \circ A \circ \mathcal{P}' \circ S = R \circ T \circ \mathcal{P}' \circ S \circ B$.

(C^*) or SFLASH
How to get B?

\[W = \text{linear space spanned by all possible quadratic expressions} \]
\[V = \text{linear space spanned by quadratic expressions of } T \circ \mathcal{P}^I \circ S \]
\[V_R = \text{linear space spanned by quadratic expressions of } R \circ T \circ \mathcal{P}^I \circ S \]
How to get \(B \)?

\[
\begin{align*}
W &= \text{linear space spanned by all possible quadratic expressions} \\
V &= \text{linear space spanned by quadratic expressions of } T \circ \mathcal{D}' \circ S \\
V_R &= \text{linear space spanned by quadratic expressions of } R \circ T \circ \mathcal{D}' \circ S
\end{align*}
\]

Example: SFLASHv3

\[
n = 67, \ r = 11 \Rightarrow \dim(V_R) = 56, \ dim(V) = 67, \ dim(W) = 2278.
\]
How to get B?

$W = \text{linear space spanned by all possible quadratic expressions}$

$V = \text{linear space spanned by quadratic expressions of } T \circ \mathcal{D}' \circ S$

$V_R = \text{linear space spanned by quadratic expressions of } R \circ T \circ \mathcal{D}' \circ S$

Example: SFLASHv3

$n = 67, r = 11 \Rightarrow \dim(V_R) = 56, \dim(V) = 67, \dim(W) = 2278.$

$\Rightarrow \text{Not so many good choices for } B.$
How to get B?

$W =$ linear space spanned by all possible quadratic expressions

$V =$ linear space spanned by quadratic expressions of $T \circ P' \circ S$

$V_R =$ linear space spanned by quadratic expressions of $R \circ T \circ P' \circ S$

Example: SFLASHv3

$n = 67, r = 11 \Rightarrow \dim(V_R) = 56, \dim(V) = 67, \dim(W) = 2278.$

\Rightarrow Not so many good choices for B.

In particular

$\exists q^{n^2}$ possible matrices over \mathbb{F}_q but only q^n elements in \mathbb{F}.

\Rightarrow “good matrices” corresponding to extension field multiplication form tiny linear subspace.
(C*)− or SFLASH

Last step
Find “good matrices” using the fact that they preserve the membership of the output quadratic equations in V. (“Bad matrices” are extremely unlikely to have this property as V is very sparse in W."

Either solve quadratic equations in n^2 variables, not so efficient.

Or use the differential operator to get bivariate bilinear equations from univariate quadratic ones (working since $F(X) = X^{q^θ} + 1$):

$$DF(a, X) = F(a + X) - F(a) - F(X) + F(0) = aX^{q^θ} + a^{q^θ}X.$$
Last step
Find “good matrices” using the fact that they preserve the membership of the output quadratic equations in \(V \). (“Bad matrices” are extremely unlikely to have this property as \(V \) is very sparse in \(W \).)

- Either solve quadratic equations in \(n^2 \) variables, not so efficient.
- Or use the differential operator to get bivariate bilinear equations from univariate quadratic ones (working since \(\mathcal{F}(X) = X^{q\theta + 1} \)):

\[
D\mathcal{F}(a, X) = \mathcal{F}(a + X) - \mathcal{F}(a) - \mathcal{F}(X) + \mathcal{F}(0)
= aX^{q\theta} + a^{q\theta} X.
\]
Other generalizations of C^*

- Generalize F to a univariate polynomial of a given degree d (HFE).

$$
F(X) = \sum \alpha_i X^{q^{\theta_i} + q^{\eta_i}}
$$

\[i, q^{\theta_i} + q^{\eta_i} \leq d\]

\Rightarrow Broken by Faugère and Joux in 2002.

- HFE with removing equations (HFE-).

- Use more than one polynomial for F (multi-C^*, multi-HFE).

- Use intermediate field equations (IFS).

- Perturb polynomials or add some auxiliary variable Y (vinegar variable).

- ...
Other generalizations of C^*

- Generalize F to a univariate polynomial of a given degree d (HFE).

$$F(X) = \sum_{i, q^{\theta_i} + q^{\eta_i} \leq d} \alpha_i X^{q^{\theta_i} + q^{\eta_i}}$$

\Rightarrow Broken by Faugère and Joux in 2002.

- HFE with removing equations (HFE-).

- Use more than one polynomial for F (multi-C^*, multi-HFE).

- Use intermediate field equations (IFS).

- Perturb polynomials or add some auxiliary variable Y (vinegar variable).

- ...
Introduction to public key cryptography

Construction of MPKC

Examples of MPKC schemes: Hidden fields

Examples of MPKC schemes: Oil & Vinegar
Oil and Vinegar scheme (OV)

In general:

- Trapdoor achieved by special structure of private polynomials, not by field extensions.

- Structure given by distinguishing set of variables: \(n = v + o \) variables, \(V := \{u_1, \ldots, u_v\} \) (vinegar) and \(O := \{u_{v+1}, \ldots, u_n\} \) (oil)

- \(V \) and \(O \) are balanced: \(v = o \), \(n = 2v = 2o \).

- There are \(v = o \) private polynomials in \(F \).

- Structure of private polynomials
 \[
 f_k(u) = \sum_{i \in V, j \in V, i \leq j} \alpha_{ijk} u_i u_j + \sum_{i \in V, j \in O} \beta_{ijk} u_i u_j.
 \]

- There are no quadratic terms in two oil variables.
Oil and Vinegar scheme (OV)

In general:

- Trapdoor achieved by special structure of private polynomials, not by field extensions.

- Structure given by distinguishing set of variables: $n = v + o$ variables, $\mathcal{V} := \{u_1, \ldots, u_v\}$ (vinegar) and $\mathcal{O} := \{u_{v+1}, \ldots, u_n\}$ (oil)

- \mathcal{V} and \mathcal{O} are balanced: $v = o$, $n = 2v = 2o$.

- There are $v = o$ private polynomials in \mathbb{F}.
Oil and Vinegar scheme (OV)

In general:

▶ Trapdoor achieved by special structure of private polynomials, not by field extensions.

▶ Structure given by distinguishing set of variables: \(n = v + o \) variables, \(\mathcal{V} := \{u_1, \ldots, u_v\} \) (vinegar) and \(\mathcal{O} := \{u_{v+1}, \ldots, u_n\} \) (oil)

▶ \(\mathcal{V} \) and \(\mathcal{O} \) are balanced: \(v = o \), \(n = 2v = 2o \).

▶ There are \(v = o \) private polynomials in \(\mathbb{F} \).

Structure of private polynomials

\[
f_k(u) = \sum_{i \in \mathcal{V}, j \in \mathcal{V}, i \leq j} \alpha_{ijk} u_i u_j + \sum_{i \in \mathcal{V}, j \in \mathcal{O}} \beta_{ijk} u_i u_j.
\]

There are no quadratic terms in two oil variables.
Oil and Vinegar scheme (OV)

In matrix representation the private polynomials look like the following:

\[\tilde{f}_k = \begin{bmatrix} \mathcal{V} \times \mathcal{V} & \mathcal{V} \times \mathcal{O} \\ \mathcal{O} \times \mathcal{V} & O_{m \times m} \end{bmatrix} \quad \text{for } 1 \leq k \leq o \]
Oil and Vinegar scheme (OV)

In matrix representation the private polynomials look like the following:

\[\tilde{\delta}_k = \begin{pmatrix} V \times V & V \times O \\ O \times V & O_{m \times m} \end{pmatrix} \text{ for } 1 \leq k \leq o \]

Having a message of length \(v \) we fix variables \(u_1, \ldots, u_v \) in \(\mathbb{F} \) and receive linear equations in the remaining \(o \) variables.
Oil and Vinegar scheme (OV)

In matrix representation the private polynomials look like the following:

\[
\begin{array}{c}
\mathcal{V} \times \mathcal{V} \\
\mathcal{O} \times \mathcal{V} \\
\mathcal{V} \times \mathcal{O} \\
\mathcal{O} \times \mathcal{O}
\end{array}
\]

\[\mathcal{F}_k = \begin{array}{c}
\mathcal{V} \times \mathcal{V} \\
\mathcal{O} \times \mathcal{V} \\
\mathcal{V} \times \mathcal{O} \\
\mathcal{O} \times \mathcal{O}
\end{array} \quad \text{for } 1 \leq k \leq o\]

Having a message of length \(v \) we fix variables \(u_1, \ldots, u_v \) in \(\mathcal{F} \) and receive linear equations in the remaining \(o \) variables.

Those linear equations are invertible with high probability.
Oil and Vinegar scheme (OV)

In matrix representation the private polynomials look like the following:

\[
\begin{array}{ccc}
\mathcal{V} \times \mathcal{V} & \mathcal{V} \times \mathcal{O} \\
\mathcal{O} \times \mathcal{V} & O_{m \times m}
\end{array}
\]

\[\mathbb{3}_k = \text{ for } 1 \leq k \leq o\]

Having a message of length \(v\) we fix variables \(u_1, \ldots, u_v\) in \(\mathcal{F}\) and receive linear equations in the remaining \(o\) variables.

Those linear equations are invertible with high probability.

Public polynomials

Apply secret transformations \(S\) and \(T\) to receive \(\mathcal{P}\) as “random” MQ polynomials. In this setting \(T\) does not add any further security, so we can assume the identity.
Attacking OV (Kipnis, Shamir; 1998)

- Try to separate vinegar and oil variables in the public polynomials.
- Search for an equivalent representation $\mathcal{F}' \circ S' = \mathcal{P} = \mathcal{F} \circ S$.

Efficient algorithms for computing eigenspaces by Kipnis and Shamir
Attacking OV (Kipnis, Shamir; 1998)

- Try to separate vinegar and oil variables in the public polynomials.
- Search for an equivalent representation $F' \circ S' = P = F \circ S$.
- Exploit balance between v and o: $v = o$.
- Due to this each F_i maps the oil subspace $u_1 = \ldots = u_v = 0$ to the vinegar subspace $u_{v+1} = \ldots = u_n = 0$.
Attacking OV (Kipnis, Shamir; 1998)

- Try to separate vinegar and oil variables in the public polynomials.
- Search for an equivalent representation $F' \circ S' = P = F \circ S$.
- Exploit balance between v and o: $v = o$.
- Due to this each F_i maps the oil subspace $u_1 = \ldots = u_v = 0$ to the vinegar subspace $u_{v+1} = \ldots = u_n = 0$.
- If F_j is invertible (high probability) then $F_i F_j^{-1}$ maps the vinegar space on itself.
Attacking OV (Kipnis, Shamir; 1998)

- Try to separate vinegar and oil variables in the public polynomials.

- Search for an equivalent representation $F' \circ S' = P = F \circ S$.

- Exploit balance between v and o: $v = o$.

- Due to this each \mathcal{F}_i maps the oil subspace $u_1 = \ldots = u_v = 0$ to the vinegar subspace $u_{v+1} = \ldots = u_n = 0$.

- If \mathcal{F}_j is invertible (high probability) then $\mathcal{F}_i \mathcal{F}_j^{-1}$ maps the vinegar space on itself.

- Thus the image V of the vinegar subspace under S is a common eigenspace for each $P_i P_j^{-1}$, $1 \leq i < j \leq o$.
Attacking OV (Kipnis, Shamir; 1998)

- Try to separate vinegar and oil variables in the public polynomials.
- Search for an equivalent representation $F' \circ S' = P = F \circ S$.
- Exploit balance between v and o: $v = o$.
- Due to this each F_i maps the oil subspace $u_1 = \ldots = u_v = 0$ to the vinegar subspace $u_{v+1} = \ldots = u_n = 0$.
- If F_j is invertible (high probability) then $F_i F_j^{-1}$ maps the vinegar space on itself.
- Thus the image V of the vinegar subspace under S is a common eigenspace for each $P_i P_j^{-1}$, $1 \leq i < j \leq o$.
- Efficient algorithms for computing eigenspaces by Kipnis and Shamir
 \Rightarrow Get V, find O such that $O + V = \mathbb{F}_q^n$ (separating vinegar and oil).
 \Rightarrow Get (F', S') isomorphic to (F, S).
► This attack works due to $v = o \Rightarrow \text{“unbalance” } v \text{ and } o: v > o$.
► In general: $n = v + o$, $m = n - v$, $v > m$, m polynomials.
Unbalancing OV – UOV

- This attack works due to \(v = o \) \(\Rightarrow \) “unbalance” \(v \) and \(o \): \(v > o \).

- In general: \(n = v + o, m = n - v, v > m, m \) polynomials.

Be careful

The previous attack works in a probabilistic fashion also for \(v > o \).

It has complexity \(O(q^{v-m-1}m^4) = O(q^{n-2m-1}m^4) \). Thus one should take at least \(v \geq 3m \).
Unbalancing OV – UOV

- This attack works due to \(v = o \Rightarrow \text{“unbalance” } v \) and \(o: v > o \).
- In general: \(n = v + o, m = n - v, v > m, m \) polynomials.

Be careful
The previous attack works in a probabilistic fashion also for \(v > o \).
It has complexity \(O(q^{v-m-1}m^4) = O(q^{n-2m-1}m^4) \).
Thus one should take at least \(v \geq 3m \).

Size problem
Enlarging \(v \) and \(o \) the key sizes get, at some point, too big for practical applications.
Why do we need big values for v and o?

Due to another attack by Kipnis and Shamir that we can interpret as a Minrank problem (NP-complete).

Minrank (n, k, r) problem

Given $M_0, \ldots, M_k \in \mathcal{M}_{n \times n}(\mathbb{F}_q)$, find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$ such that

$$\text{rank} \left(\sum_{i=1}^{k} \lambda_i M_i - M_0 \right) \leq r.$$
Why do we need big values for v and o?

Due to another attack by Kipnis and Shamir that we can interpret as a Minrank problem (NP-complete).

Minrank (n, k, r) problem

Given $M_0, \ldots, M_k \in \mathcal{M}_{n \times n}(\mathbb{F}_q)$, find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$ such that

$$\text{rank} \left(\sum_{i=1}^{k} \lambda_i M_i - M_0 \right) \leq r.$$

Often the rank of the matrices corresponding to \mathcal{F} is restricted (e.g. in HFE via degree, in UOV by the choice of v and o.)
Why do we need big values for v and o?

Due to another attack by Kipnis and Shamir that we can interpret as a **Minrank problem** (NP-complete).

Minrank (n, k, r) problem

Given $M_0, \ldots, M_k \in \mathcal{M}_{n \times n}(\mathbb{F}_q)$, find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$ such that

$$\text{rank} \left(\sum_{i=1}^{k} \lambda_i M_i - M_0 \right) \leq r.$$

Often the rank of the matrices corresponding to \mathcal{F} is restricted (e.g. in HFE via degree, in UOV by the choice of v and o.)

$$\Rightarrow \text{rank} \left(\sum_{i=1}^{m} \lambda_i \mathcal{P}_i \right) \leq r.$$
Somewhere over the Rainbow . . .

Try to improve security by using several layers of UOV
Somewhere over the Rainbow . . .

Try to improve security by using several layers of UOV

Rainbow scheme with L layers

- Defined by a tuple $(q, v_1, \ldots, v_{L+1})$

- Preset $0 < v_1 < v_2 < \ldots < v_{L+1} = n$, # vinegar variables of the different layers.

- # oil variables $o_\ell = v_{\ell+1} - v_\ell$ for $1 \leq \ell \leq L$.

- Each layer ℓ consists of o_ℓ polynomials $f_{v_\ell - v_1 + 1}, \ldots, f_{v_{\ell+1} - v_1}$ where we set $m := \sum_{\ell=1}^{L} o_\ell$.

- For each such level we have vinegar variables $V_\ell = \{u_1, \ldots, u_{v_\ell}\}$ and oil variables $O_\ell = \{u_{v_\ell+1}, \ldots, u_{v_{\ell+1}}\}$.
Rainbow \((q, 6, 12, 17, 22, 33)\)

4-layered Rainbow with
\[
m = (12 - 6) + (17 - 12) + (22 - 17) + (33 - 22) = 27 \text{ polynomials.}
\]

Classical Minrank attack

6 polynomials in first layer of rank \(r = 12\).

- \(\text{Prob} (\text{random vector in } \ker (\sum_{i=1}^{m} \lambda_i \mathcal{P}_i)) = \frac{1}{q^r}.\)
- For such a vector \(w\) we have \((\sum_{i=1}^{m} \lambda_i \mathcal{P}_i) w = 0.\) Linear in \(\lambda_1, \ldots, \lambda_m.\) Since \(n > m\) we can just use linear algebra.
- Complexity \(O(q^{r} m^3) = O(q^{12} 27^3).\)
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6\):

\[
F_k = w = 6 \implies w_1 = F_1 w_T, \ldots, w_6 = F_6 w_T^\hat{=} = 6
\]

▶ \(\text{Prob}(\text{linearly independent}) = \prod_{i=0}^{5} (1 - q^i q^6) < 1 - q^6\).

▶ \(\text{Prob}(\sum_{i=1}^{6} \lambda_i F_i w = 0) > 1 q^6\).

▶ \(\text{Prob}(\text{random vector of type} w) = 1 q^6\).

Afterwards linear algebra as in standard Minrank attack:

\[O(27^{3^6})\]

\[O(q^{727^{3^6}})\]
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6\):

\[
\mathcal{F}_k =
\]

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 \\
6 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 \\
5 & \quad 6 & \quad 1 & \quad 2 & \quad 3 & \quad 4 \\
4 & \quad 5 & \quad 6 & \quad 1 & \quad 2 & \quad 3 \\
3 & \quad 4 & \quad 5 & \quad 6 & \quad 1 & \quad 2 \\
2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 1 \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6
\end{align*}
\]

\[w = \begin{bmatrix} 6 \quad 27 \end{bmatrix}\]

- Probability \((w_i\) linearly independent\) = \(\prod_{i=0}^{5} (1 - q_i q_{6}) < 1 - q\)
- Probability \((\sum_{i=1}^{6} \lambda_i F_i w = 0)\) > \(1 - q\)
- Probability \(\) (random vector of type \(w\)) = \(1 - q\)

Afterwards linear algebra as in standard Minrank attack:

\(O(27^3)\)
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6\) :
\[
\mathcal{F}_k = \begin{pmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{pmatrix}
\]

\[
w_1 = \mathcal{F}_1 w^T, \ldots, w_6 = \mathcal{F}_6 w^T
\]

\[
w = \begin{pmatrix}
6 \\
27 \\
\end{pmatrix}
\]

\[
\text{Prob}(\text{random vector of type } w) = \frac{1}{q^6}
\]

\[
\text{Prob}(\sum_{i=1}^{6} \lambda_i F_i w = 0) < 1 - \frac{1}{q^6}
\]

\[
\text{Prob}(w \text{ linearly independent}) = \prod_{i=0}^{5} \left(1 - q^i q^6\right) < 1 - \frac{1}{q^6}
\]

Afterwards linear algebra as in standard Minrank attack:

\[
O \left(27^{3} \right)
\]

\[
O \left(q^{7/27} \right)
\]
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6\):

\[
\mathcal{F}_k = w = \begin{bmatrix}
6 \\
27
\end{bmatrix}
\]

\[
\Rightarrow w_1 = \mathcal{F}_1 w^T, \ldots, w_6 = \mathcal{F}_6 w^T \Rightarrow \begin{bmatrix}
6 \\
27
\end{bmatrix}^T
\]

\[
\text{Prob}(w_i \text{ linearly independent}) = \prod_{i=0}^{5} \left(1 - \frac{q^i}{q^6} \right) < 1 - \frac{1}{q}.
\]
Improved attack (Billet, Gilbert; 2006)

For $1 \leq k \leq 6$:

$$F_k = w = 6^{27} \Rightarrow w_1 = F_1 w^T, \ldots, w_6 = F_6 w^T \iff T^{6^{27}}$$

- $\text{Prob}(w_i \text{ linearly independent}) = \prod_{i=0}^{5} \left(1 - \frac{q^i}{q^6} \right) < 1 - \frac{1}{q}$.
- $\text{Prob}(\left(\sum_{i=1}^{6} \lambda_i \mathcal{F}_i \right) w = 0) > \frac{1}{q}$.

Rainbow $(q, 6, 12, 17, 22, 33)$
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6\) : \(\mathcal{F}_k = \)

\[\Rightarrow w_1 = \mathcal{F}_1 w^T, \ldots, w_6 = \mathcal{F}_6 w^T \Rightarrow w = 6 \quad 27\]

- \(\text{Prob}(w_i \text{ linearly independent}) = \prod_{i=0}^{5} \left(1 - \frac{q^i}{q^6}\right) < 1 - \frac{1}{q}\).
- \(\text{Prob}\left((\sum_{i=1}^{6} \lambda_i \mathcal{F}_i) w = 0\right) > \frac{1}{q}\).
- \(\text{Prob}(\text{random vector of type } w) = \frac{1}{q^6}\).
- Afterwards linear algebra as in standard Minrank attack: \(O\left(27^3\right)\)
Rainbow \((q, 6, 12, 17, 22, 33)\)

Improved attack (Billet, Gilbert; 2006)

For \(1 \leq k \leq 6 : \mathcal{F}_k = \)

\[w_1 = \mathcal{F}_1 w^T, \ldots, w_6 = \mathcal{F}_6 w^T \]

\[w = \begin{bmatrix} 6 \\ 27 \end{bmatrix} \]

\(\Rightarrow\)

\[\operatorname{Prob}(w_i \text{ linearly independent}) = \prod_{i=0}^{5} \left(1 - \frac{q^i}{q^6} \right) < 1 - \frac{1}{q}. \]

\[\operatorname{Prob}\left(\left(\sum_{i=1}^{6} \lambda_i \mathcal{F}_i \right) w = 0 \right) > \frac{1}{q}. \]

\[\operatorname{Prob}(\text{random vector of type } w) = \frac{1}{q^6} \]

\[\text{Afterwards linear algebra as in standard Minrank attack: } O\left(27^3\right) \]

\[O\left(q^7 27^3\right) \]
Rainbow (2^8, 18, 30, 42)

\[\tilde{\delta}_k = \begin{cases} \mathbb{O}_{18 \times 12} & \text{for } 1 \leq k \leq 12 \\ \mathbb{O}_{12 \times 12} & \text{for } 13 \leq k \leq 24 \end{cases}\]

(First layer)

\[\tilde{\delta}_k = \begin{cases} \mathbb{O}_{12 \times 12} & \text{for } 1 \leq k \leq 12 \\ \mathbb{O}_{12 \times 12} & \text{for } 13 \leq k \leq 24 \end{cases}\]

(Second layer)
Direct key recovery attack

- 24 “random” public polynomials, need to find $S \in \text{Mat}(42 \times 42, \mathbb{F}_q)$ and $T \in \text{Mat}(24 \times 24, \mathbb{F}_q)$.

- Structure of $\mathcal{F} \implies$ System of polynomial equations in entries of S and T for corresponding zero coefficients.

- $(v_1 + o_1 + o_2)^2 + (o_1 + o_2)^2 = 42^2 + 24^2 = 2340$ variables.

- $(o_1 + o_2) \cdot |\mathcal{O}_2 \times \mathcal{O}_2| + o_1 \cdot (|\mathcal{V}_1 \cup \mathcal{O}_1 \times \mathcal{O}_2|) + o_1 \cdot (|\mathcal{O}_1 \times \mathcal{O}_1|) = 7128$ (non-linear) equations.

- Complexity: $O(2^{3608})$ (or: forget it!)
Rainbow $(2^8, 18, 30, 42)$

Again idea of equivalent keys
Rainbow \((2^8, 18, 30, 42)\)

Again idea of **equivalent keys**

\[
S' = \begin{pmatrix}
1_{18 \times 18} & O_{12 \times 12} & O_{12 \times 18} & O_{12 \times 12} \\
O_{12 \times 12} & 1_{12 \times 12} & O_{12 \times 12} & O_{12 \times 12} \\
O_{12 \times 18} & O_{12 \times 12} & 1_{12 \times 12} & O_{12 \times 12} \\
O_{12 \times 12} & O_{12 \times 12} & O_{12 \times 12} & 1_{12 \times 12}
\end{pmatrix}
\]
Rainbow \((2^8, 18, 30, 42)\)

Again idea of equivalent keys

\[
S' =
\begin{array}{ccc}
1_{18 \times 18} & & \\
O_{12 \times 12} & 1_{12 \times 12} & \\
O_{12 \times 18} & O_{12 \times 12} & 1_{12 \times 12}
\end{array}
\]

\[
T' =
\begin{array}{ccc}
1_{12 \times 12} & & \\
O_{12 \times 12} & 1_{12 \times 12} & \\
O_{12 \times 12} & O_{12 \times 12} & 1_{12 \times 12}
\end{array}
\]

Equivalent key attack \((T \circ F \circ S = P = T' \circ F' \circ S')\)

- 24 “random” public polynomials, need to find \(S' \in \text{Mat}(42 \times 42, \mathbb{F}_q)\) and \(T' \in \text{Mat}(24 \times 24, \mathbb{F}_q)\).

- \(v_1 \cdot o_1 + v_1 \cdot o_2 + o_1 \cdot o_2 + o_1 \cdot o_2 = 720\) variables.

- # equations stays the same, but \(o_1 \times |V_1 \times O_2|\) are no longer cubic, but quadratic (first \(v_1\) variables in \(S'\) are set!)

- 2592 quadratic (bihomogeneous in \(s_{ij}\) and \(t_{kl}\)) and 4536 cubic equations.

- Complexity: \(O(2^{374})\) (or: still, forget it!)
Rainbow \((2^8, 18, 30, 42)\)

Remove information: good keys resp. \textbf{Rainbow} band separation attack
Rainbow \((2^8, 18, 30, 42)\)

Remove information: good keys resp. Rainbow band separation attack

\[S_n'' = \]

\[T_1'' = \]

\[S_n'' = \]

\[T_1'' = \]
Rainbow $(2^8, 18, 30, 42)$

Remove information: good keys resp. **Rainbow band separation attack**

We can only recover zero coefficients for x_n^2 terms (for all private polynomials) and for $x_k x_n$ terms (for $1 \leq k \leq n - 1$ and only for first private polynomial).
Rainbow \((2^8, 18, 30, 42)\)

Remove information: good keys resp. Rainbow band separation attack

![Diagram]

We can only recover zero coefficients for \(x_n^2\) terms (for all private polynomials) and for \(x_kx_n\) terms (for \(1 \leq k \leq n - 1\) and only for first private polynomial).

- \((v_1 + o_1) + o_2 = 42\) variables
- \((n, n, 1)\) 1 cubic equation.
- \((n, n, k)\) \(o_1 + o_2 - 1\) quadratic equations for \(2 \leq k \leq o_1 + o_2\)
- \((k, n, 1)\) \(v_1 + o_1 + o_2 - 1\) quadratic equations for \(1 \leq k \leq n - 1\)
Rainbow \((2^8, 18, 30, 42)\)

Remove information: **good keys resp. Rainbow band separation attack**

\[
S''_n = \begin{array}{ccc}
1_{18\times18} & O_{18\times12} & O_{18\times11} \\
O_{12\times18} & 1_{12\times12} & O_{12\times11} \\
O_{12\times12} & O_{12\times12} & 1_{12\times12}
\end{array}
\quad T''_1 = \begin{array}{c}
1_{12\times12} \\
O_{12\times12} \\
O_{12\times12} \\
1_{12\times12}
\end{array}
\]

We can only recover zero coefficients for \(x_n^2\) terms (for all private polynomials) and for \(x_k x_n\) terms (for \(1 \leq k \leq n - 1\) and only for first private polynomial).

- \((v_1 + o_1) + o_2 = 42\) variables
- \((n, n, 1)\) 1 cubic equation.
- \((n, n, k)\) \(o_1 + o_2 - 1\) quadratic equations for \(2 \leq k \leq o_1 + o_2\)
- \((k, n, 1)\) \(v_1 + o_1 + o_2 - 1\) quadratic equations for \(1 \leq k \leq n - 1\)

\[\implies 42\] variables in \(65\) equations ?
Rainbow \((2^8, 18, 30, 42)\)

Metacryptography
Not breaking a system, but breaking an attack :)
Rainbow \((2^8, 18, 30, 42)\)

Metacryptography

Not breaking a system, but breaking an attack :)

We can recover zero coefficients for \(x_n^2\) terms only for the last \(o_2\) private polynomials

and for \(x_k x_n\) terms only for \(1 \leq k \leq v_1\) and only for the first private polynomial.
Rainbow \((2^8, 18, 30, 42)\)

Metacryptography
Not breaking a system, but breaking an attack :)

We can recover zero coefficients for \(x_n^2\) terms only for the last \(o_2\) private polynomials and for \(x_k x_n\) terms only for \(1 \leq k \leq v_1\) and only for the first private polynomial.

- \((v_1 + o_1) + o_2 = 42\) variables
- \((n, n, 1)\) 1 cubic equation.
- \((n, n, k)\) \(o_2\) quadratic equations for \(o_1 + 1 \leq k \leq o_1 + o_2\)
- \((k, n, 1)\) \(v_1\) quadratic equations for \(1 \leq k \leq v_1\)

\[\Rightarrow\] 42 variables in 31 equations.
Rainbow \((2^8, 18, 30, 42)\)

Fix attack by adding more rows to \(T''\):
Fix attack by adding more rows to T'':

- Minimal system received with 3 rows in T'' and S''_n.
- $v_1 + o_1 + 3 \cdot o_2 = 66$ variables.
- 3 cubic equations, 66 quadratic equations.
- **Complexity**: Still $O(2^{231})$ (or: well, you know)
Rainbow \((2^8, 18, 30, 42)\)

Metametacryptography
Not breaking a system, but breaking the attack on an attack :)

\[v_1 + o_1 = 42 \text{ variables}\]

\[(n, n, 1) \text{ cubic equation.}\]

\[(n, n, k) o_1 + o_2 - 1 \text{ quadratic equations for } 2 \leq k \leq o_1 + o_2\]

\[(k, n, 1) v_1 + o_1 + o_2 - 1 \text{ quadratic equations for } 1 \leq k \leq n - 1\]

\[65 \text{ equations in } 42 \text{ variables}\]

Complexity: \(O(2^{95})\)

Still not feasible, but now we have new ideas.
Rainbow \((2^8, 18, 30, 42)\)

Metametacryptography

Not breaking a system, but breaking the attack on an attack :)

The Rainbow band separation attack is really working out!
Rainbow \((2^8, 18, 30, 42)\)

Metametacryptography
Not breaking a system, but breaking the attack on an attack :)

The **Rainbow** band separation attack is really working out!

- \((v_1 + o_1) + o_2 = 42\) variables
- \((n, n, 1)\) 1 cubic equation.
- \((n, n, k)\) \(o_1 + o_2 - 1\) quadratic equations for \(2 \leq k \leq o_1 + o_2\)
- \((k, n, 1)\) \(v_1 + o_1 + o_2 - 1\) quadratic equations for \(1 \leq k \leq n - 1\)
- 65 equations in 42 variables
- Complexity: \(O(2^{95})\)
Rainbow \((2^8, 18, 30, 42)\)

Metametacryptography
Not breaking a system, but breaking the attack on an attack :)

The **Rainbow** band separation attack is really working out!

- \((v_1 + o_1) + o_2 = 42\) variables
- \((n, n, 1)\) \(1\) cubic equation.
- \((n, n, k)\) \(o_1 + o_2 - 1\) quadratic equations for \(2 \leq k \leq o_1 + o_2\)
- \((k, n, 1)\) \(v_1 + o_1 + o_2 - 1\) quadratic equations for \(1 \leq k \leq n - 1\)
- 65 equations in 42 variables
- **Complexity:** \(O(2^{95})\)

Still not feasible, but now we have new ideas.
References

