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Abstract

We prove the existence of certain rationally rigid triples in E8(p) for good primes p
(i.e. p > 5) thereby showing that these groups occur as Galois groups over the field of
rational numbers. We show that these triples arise from rigid triples in the algebraic
group and prove that they generate an interesting subgroup in characteristic 0. As a
byproduct of the proof, we derive a remarkable symmetry between the character table
of a finite reductive group and that of its dual group. We also give a short list of possible
overgroups of regular unipotent elements in simple exceptional groups.

1. Introduction

The question of whether all finite groups occur as Galois groups over the field of rational numbers
is still wide open. Even if one restricts to the case of finite non-abelian simple groups, only rather
few types have been realized as Galois groups over Q. These include the alternating groups, the
sporadic groups apart from M23, and some families of groups of Lie type, but even over fields
of prime order mostly with additional congruence conditions on the characteristic (see [MM99]).
Zywina [Z13] has recently shown that L2(p) is a Galois group over Q for all primes p.

In the present paper we show that the infinite series of simple groups E8(p) occur as Galois
groups over Q for all good primes p.

Our paper was inspired by the recent result of Zhiwei Yun [Yu13] who showed the Galois
realizability of E8(p) for all sufficiently large primes p, but without giving a bound. In fact, Yun
proved much more — he showed that E8 is a motivic Galois group, answering a conjecture of
Serre.

Our proof relies on the well-known rigidity criterion of Belyi, Fried, Matzat and Thompson,
but in addition uses deep results mainly of Liebeck and Seitz on maximal subgroups of algebraic
groups and from Lusztig on the parametrization of irreducible characters of finite reductive
groups, the Springer correspondence and computations of Green functions. We also require results
of Lawther on fusion of unipotent elements in reductive subgroups.

Table 1 contains a description of the class triples in the algebraic groups G(k) over an al-
gebraically closed field k of good characteristic (the classes actually make sense as long as the
characteristic is not 2). Note that the centralizers of elements in these classes (in good charac-
teristic) are connected and that they are defined over the prime field. Thus, we can view these
classes over G(q) as well. Here, the involution classes are identified by the structure of their
centralizer in G, while the unipotent classes are denoted as in [Ca93, §13.1].

2010 Mathematics Subject Classification Primary 12F12,20C33; Secondary 20E28
Keywords: Inverse Galois problem, rigidity, Lie primitive subgroups, regular unipotent elements

The first author was partially supported by the NSF grant DMS-1001962 and the Simons Foundation Fellowship
224965. He also thanks the Institute for Advanced Study for its support. The second author gratefully acknowledges
financial support by ERC Advanced Grant 291512.



Robert Guralnick and Gunter Malle

Table 1. Candidate classes

G2(k) E8(k)
C1 A1 + Ã1 D8 involution
C2 Ã1 4A1 unipotent
C3 G2 E8 regular unipotent

Our first main result is:

Theorem 1.1. Let k be an algebraic closure of Fp with p prime. Let G be either G2(k) or E8(k).
Assume that p is good for G (i.e., p > 3 and if G = E8, p > 5). Let Ci, 1 6 i 6 3, be the
conjugacy classes described in Table 1. Let X denote the variety of triples in C1 ×C2 ×C3 with
product 1. Then X is a single regular G-orbit and if (x1, x2, x3) ∈ X, then 〈x1, x2〉 ∼= G(Fp).

In particular, this gives an affirmative answer to [Yu13, Conj. 5.16].
We also consider fields of characteristic 0. See Section 6 for the details. Since G(k) has a single

regular orbit on X for k algebraically closed of good positive characteristic, it follows easily that
the same is true if k is an algebraically closed field of characteristic 0 and that X is also a single
regular orbit. We also show that some (and so any) such triple generates a Zariski dense subgroup
of G(k) when k is algebraically closed of characteristic 0.

Let Zp denote the ring of p-adic integers. We can also produce such triples over G(Zp) and
so show:

Theorem 1.2. Let k be an algebraically closed field of characteristic 0. Let G be G2(k) or E8(k).
Let Ci, 1 6 i 6 3, be the conjugacy classes described in Table 1. Let X be the set of elements in
C1 × C2 × C3 with product 1. For x ∈ X, let Γ(x) denote the group generated by x.

(a) For any x ∈ X, Γ(x) is Zariski dense in G(k).
(b) If k0 is a subfield of k, then X(k0) is a single G(k0)-orbit (where G(k0) is the split group

over k0).

(c) Let m be the product of the bad primes for G (i.e., m = 6 in the first case and m = 30 for
E8) and set R = Z[1/m]. There exists x ∈ X(R) such that Γ(x) 6 G(R) and surjects onto
G(R/pR) for any good prime p. In particular, Γ(x) is dense in G(Zp) for any good prime p.

Theorem 1.1 implies the following result (answering the question of Yun for E8).

Theorem 1.3. Let C1, C2, C3 be the conjugacy classes described in Table 1. The following hold:

(a) (C1, C2, C3) is rationally rigid for G2(p), p > 5, and for E8(p), p > 7.

(b) The finite simple groups G2(p) (p > 5 prime) and E8(p) (p > 7 prime), occur as (regular)
Galois groups over Q(t).

(c) For each p, there are infinitely many linearly disjoint Galois extensions of Q with Galois
group E8(p), p > 7, and G2(p), p > 5.

Remarks 1.4. (a) The case of G2(p) (p > 5) had already been shown by Feit–Fong [FF85] (for
p > 5) and Thompson [Th85] (for p = 5). See also [DR10].

(b) The second author had shown in 1986 that F4(p) is a Galois group over Q(t) whenever
p > 5 has multiplicative order 12 modulo 13, and that E8(p) is a Galois group over Q(t) whenever
p > 7 has multiplicative order 15 or 30 modulo 31 (see [MM99, Thm. II.8.5 and II.8.10]).
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(c) There are several possible choices of triples for F4 including one suggested by Yun. Gural-
nick, Lübeck and Yu [GLY13] have recently shown that for Yun’s triple, F4(p) is a regular Galois
group over Q(t) for all p > 3 using the methods of this paper. On the other hand, in the final
section, we do exhibit a rigid triple of conjugacy classes in F4(k) but any such triple generates a
subgroup H of F4(p) with H/Op(H) ∼= G2(p) and |Op(H)| = p14.

(d) See [LLM11] for an interesting rigid triple in G2.
(e) We do not know if E8(p) is a Galois group over Q for p = 2, 3 or 5. There are several

issues that arise for bad primes. The first is that the character theory is much more difficult. The
second is that the centralizer of a regular unipotent element in the algebraic group is no longer
connected. For p = 2, the conjugacy class of involutions needs to be changed.

It is directly clear from the known classification of unipotent conjugacy classes (see e.g. [Ca93,
13.1]) that the classes C2, C3 are rational, and for class C1 this is obvious. As usual, the proof of
rigidity breaks up into two quite different parts: showing that all triples (x1, x2, x3) ∈ C1×C2×C3

with product x1x2x3 = 1 do generate G, and showing that there is exactly one such triple modulo
G-conjugation. The first statement will be shown in Section 5, the second in Section 2.

On the way we prove two results which may be of independent interest: in Theorem 2.5 we
note a remarkable symmetry property between the character table of a finite reductive group
and that of its dual, and in Theorem 3.4 we give a short list of possible Lie primitive subgroups
of simple exceptional groups containing a regular unipotent element (in particular there are
none in characteristic larger than 113). Combining this with the result of Saxl and Seitz [SS97],
we essentially know all proper closed subgroups of exceptional groups which contain regular
unipotent elements.

The application of our approach to the other large exceptional groups of Lie type over prime
fields fails due to the fact that for E6 and E7 the finite simple groups are not always the group
of fixed points of a corresponding algebraic group. In particular, the class of regular unipotent
elements in E7 splits into two classes in the finite simple group, which are never rational over
the prime field, when p > 2. In type E6, again the class of regular unipotent elements splits, and
our approach for controlling the structure constant does not yield the necessary estimates. Note
that by a result of the second author the groups E6(p) and 2E6(p) are known to occur as Galois
groups for all primes p > 5 which are primitive roots modulo 19 (see [MM99, Cor. II.8.8 and
Thm. II.8.9]).

Note that, on the other hand almost all families of finite simple groups are known to occur
as Galois groups over suitable (finite) abelian extensions of Q, a notable exception being given
by the series of Suzuki and Ree groups in characteristic 2. An overview on most results in this
area can be found in the monograph [MM99, Sect. II.10].

We thank Zhiwei Yun for asking the question and for helpful remarks. We thank Burt Totaro
for some suggestions which helped simplify the proof of Theorem 1.2. We thank Stefan Reiter for
observing that the original triple we considered for F4 could not work by considering the action
on the 26-dimensional module. Finally, we thank Frank Lübeck and the referees for their careful
reading and helpful comments.

2. Structure Constants

In this section we derive estimates for certain structure constants. For this we need to collect
various results on characters of finite groups of Lie type. We introduce the following setup, where,
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in this section only, algebraic groups are denoted by boldface letters, in order to better distinguish
them from their finite analogues. Let G be a connected reductive linear algebraic group over the
algebraic closure of a finite field of characteristic p, and F : G → G a Steinberg endomorphism
with (finite) group of fixed points G := GF . We write q for the common absolute value of all
eigenvalues of F on the character group of an F -stable maximal torus of G.

Fix an F -stable maximal torus T0 of G. Then the G-conjugacy classes of F -stable maximal
tori of G are naturally parametrized by F -conjugacy classes in the Weyl group W = NG(T0)/T0

of G, that is, by W -classes in the coset Wϕ, where ϕ denotes the automorphism of W induced
by F . If T is parametrized by the class of wϕ, then T is said to be in relative position wϕ (with
respect to T0). Note that in this case NG(T)/TF ∼= CW (wϕ) (see [MT11, Prop. 25.3]).

For T 6 G an F -stable maximal torus and θ ∈ Irr(TF ), Deligne and Lusztig defined a
generalized complex character RG

T,θ of G. This character RG
T,θ only depends on the G-conjugacy

class of (T, θ).
Its values on unipotent elements have the following property (see [Ca93, Cor. 7.2.9]):

Proposition 2.1. Let u ∈ G be unipotent. Then RG
T,θ(u) is independent of θ.

Assume that T is in relative position wϕ. Then we write Qwϕ(u) := RG
T,θ(u) for this common

value. In this way each unipotent element u ∈ G defines an F -class function W → C, w 7→
Qwϕ(u), on W , the so-called Green function. By Lusztig’s algorithm (see [Lu86, §24]), the values
Qwϕ(u) are expressible by polynomials in q, at least for good primes p, with q in fixed congruence
classes modulo an integer NG only depending on the root system of G and on ϕ. For q in a fixed
congruence class modulo NG, we can thus write

Qwϕ(u) =
∑
i>0

ψu
i (wϕ) qi

for suitable class functions ψu
i on Wϕ, depending on u. (In fact, these ψu

i are known to be
characters of Wϕ when CG(u) is connected.) We also need to understand the values of Deligne–
Lusztig characters on semisimple elements. First observe the following vanishing result:

Lemma 2.2. Let H 6 Irr(TF ) be a subgroup, and s ∈ TF semisimple such that no GF -conjugate
lies in the kernel of all θ ∈ H. Then ∑

θ∈H

RG
T,θ(s) = 0.

Proof. According to [DM91, Lemma 12.16] we have

RG
T,θ(s) · St(s) = ±IndGF

TF (θ)(s),

where St denotes the Steinberg character of GF , and the sign only depends on T, G and ϕ, not
on θ. Thus

St(s)
∑
θ∈H

RG
T,θ(s) = ±

∑
θ∈H

IndGF

TF (θ)(s) = ±IndGF

TF

( ∑
θ∈H

θ
)
(s) = ±IndGF

TF

(
γH)(s),

where γH takes value |H| on {t ∈ TF | θ(t) = 1 for all θ ∈ H} and zero else. The claim follows
since St does not vanish on semisimple elements by [DM91, Cor. 9.3].

Now let G∗ be a group in duality with G, with corresponding Steinberg endomorphism
also denoted by F , and T∗

0 6 G∗ an F -stable maximal torus in duality with T0. There is a
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bijection between G-classes of pairs (T, θ) as above, and G∗ := G∗F -classes of pairs (T∗, t),
where T∗ 6 G∗ denotes an F -stable maximal torus and t ∈ T∗F . Two pairs (T1, θ1), (T2, θ2) are
called geometrically conjugate if under this bijection they correspond to pairs (T∗

1, t1), (T∗
2, t2)

with G∗-conjugate elements t1 and t2 (see [Ca93, Chap. 4]).

Proposition 2.3. Let s ∈ G be semisimple. Let (T, θ) be in the geometric conjugacy class of
t ∈ G∗, where T 6 G is in relative position wϕ with respect to a reference torus T0 inside
C := C◦

G(s). Let W (s) denote the Weyl group of C, W (t) the Weyl group of C◦
G∗(t) and

W1 := CW (t)(wϕ). Then

RG
T,θ(s) = |CF : TF |p′ ·

r∑
i=1

|W1 : W1 ∩W (s)ui | · θ(sui),

where u1, . . . , ur ∈ W (s)\W/W1 are representatives for those double cosets such that ui(wϕ) ∈
W (s)ϕ.

Proof. By [DM91, Cor. 12.4] we have

RT,θ(s) =
1

|CF |
∑
g∈G

s∈gTF

RC
gT,gθ(s).

Now s ∈ (gT)F if and only if gT ⊆ C. Let (T1, θ1), . . . , (Tr, θr) be a system of representatives
of the C := CF -classes of G-conjugates of (T, θ) with first component contained in C. Let
NG(T, θ) := {g ∈ NG(T) | gθ = θ} denote the stabilizer of (T, θ) in G, and similarly define
NC(Ti, θi), the stabilizer of (Ti, θi) in C. Then using |NG(Ti, θi)| = |NG(T, θ)| the above formula
can be rewritten as

RT,θ(s) =
r∑

i=1

|NG(T, θ)|
|NC(Ti, θi)|

RC
Ti,θi

(s).

Let (T∗
1, t1), . . . , (T

∗
r , tr) be a system of representatives of the C∗F -classes of G∗-conjugates

of (T∗, t) with first component in C∗. Write wiϕ ∈W (s)ϕ for the relative position of T∗
i , and let

ui ∈ W (s)\W/W1 such that ui(wϕ,W (t)) = (wiϕ,W (ti)). Now NG(T, θ) is an extension of TF

by the subgroup of NG(T)/TF fixing θ, which under the above duality bijection is isomorphic to
CW (wϕ)∩W (t) = W1. Similarly NC(Ti, θi) is an extension of TF

i by the subgroup of NC(Ti)/TF
i

fixing θi, which is isomorphic to

CW (ti)(wiϕ) ∩W (s) = ui(W1) ∩W (s) ∼= W1 ∩W (s)ui .

Since s lies in the centre of C we have

RC
Ti,θi

(s) = RC
Ti,1(1) θi(s) = |CF : TF

i |p′ · θi(s),

where the first equality holds by [Ca93, Prop. 7.5.3]. The claim follows as |TF
i | = |TF |.

We next compute some values of semisimple characters. For any semisimple element t ∈ G∗ =
G∗F there is an associated semisimple character χt of G, depending only on the G∗-class of t,
defined as follows: Let W (t) denote the Weyl group of the centralizer C◦

G∗(t). Let vϕ ∈ Wϕ
denote the automorphism of W (t) induced by F . As explained above, to any pair (T∗, t) with
T∗ 6 C◦

G∗(t) an F -stable maximal torus there corresponds by duality a pair (T, θ) consisting of
an F -stable maximal torus T 6 G (in duality with T∗) and θ ∈ Irr(TF ), up to G-conjugation. We
then write RG

T∗,t := RG
T,θ. Then by [DM91, Def. 14.40] the semisimple character corresponding
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to t is given by

χt = ± 1
|W (t)|

∑
w∈W (t)

RG
T∗

wvϕ,t ,

where T∗
wvϕ denotes an F -stable maximal torus in relative position wvϕ to T∗

0, and where the
sign only depends on CG∗(t). This semisimple character is irreducible if CG∗(t) is connected (see
[DM91, Prop. 14.43]), so in particular if G has connected center.

Thus, χt(g) is nothing else but the multiplicity of the trivial F -class function on W (t) in the
F -class function on W (t) which maps an element w ∈ W (t) to RG

T∗,t(g), where T∗ 6 C◦
G∗(t) is

an F -stable maximal torus in relative position wvϕ. For unipotent elements this gives:

Corollary 2.4. Let u ∈ G be unipotent, and Qwϕ(u) =
∑

i>0 ψ
u
i (wϕ) qi for w ∈W and q in a

fixed congruence class modulo NG. Then

χt(u) = ±
∑
i>0

〈
ψu

i |W (t)vϕ, 1
〉
W (t)vϕ

qi,

where 〈 , 〉W (t)vϕ denotes the scalar product of class functions on the coset W (t)vϕ.

Proof. The above formula for χt and Proposition 2.1 give

χt(u) = ± 1
|W (t)|

∑
w∈W (t)

Qwvϕ(u) = ±
∑
i>0

1
|W (t)|

∑
w∈W (t)

ψu
i (wvϕ) qi.

As pointed out above the inner term is just the scalar product of the trivial character with ψu
i

restricted to the coset W (t)vϕ.

For example, if u ∈ G is regular unipotent, then Qwϕ(u) = 1 for all wϕ by [Ca93, Prop. 8.4.1],
and thus χt(u) = ±〈1, 1〉W (t)vϕ = ±1.

We now derive a remarkable symmetry between the ’semisimple parts’ of character tables of
dual groups. For this, we embed G into a connected reductive group Ĝ with connected center
and having the same derived subgroup as G, and with an extension F : Ĝ → Ĝ of F to Ĝ, which
is always possible. Then an irreducible character of G is called semisimple, if it is a constituent
of the restriction to G of a semisimple character of Ĝ := ĜF . By a result of Lusztig, restriction
of irreducible characters from Ĝ to G is multiplicity free. Note that all G-constituents of a given
semisimple character of Ĝ take the same value on all semisimple elements of G since they have
the same scalar product with all Deligne–Lusztig characters, and the characteristic functions of
semisimple conjugacy classes are uniform.

Theorem 2.5. Let s ∈ G, t ∈ G∗ both be semisimple. Then

|CG∗(t)F |p′ χt(s) = |CG(s)F |p′ χs(t).

Proof. Write C := CG(s) and C′ := CG∗(t). By [Ca93, Prop. 7.5.5] the characteristic function
of the G-conjugacy class of s is given by

ψs = ε
1

|CF |p |CF |
∑
(T,θ)
s∈T

εT θ(s)−1RT,θ,

where the sum ranges over pairs (T, θ) consisting of an F -stable maximal torus T of G containing
s and some θ ∈ Irr(TF ), and where ε, εT are signs depending on C, T respectively. (Note that
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|C◦F |p = |CF |p always.) Now for any character ρ of G we have ρ(s) = |CF | 〈ψs, ρ〉, so that

χt(s) = ε
1

|CF |p

∑
(T,θ)
s∈T

εT θ(s)−1〈RT,θ, χt〉.

But 〈RT,θ, χt〉 is non-zero if and only if (T, θ) lies in the geometric conjugacy class parametrized
by t, and in this case it equals ε′ (a sign depending on C′ only). Indeed, this equality is true for
the group Ĝ with connected center, and then remains true for χt since the restriction to G is
multiplicity free (see [Lu88, Prop. 5.1]). So

χt(s) = εε′
1

|CF |p

∑
(T,θ)∼t

s∈T

εT θ(s)−1.

Summing over the whole G-conjugacy class of s we get

|G|χt(s) = εε′ |CF |p′
∑
s′∼s

∑
(T,θ)∼t

s′∈T

εT θ(s′)−1,

whence

|C′F |p′ χt(s) = εε′
|CF |p′ |C′F |p′

|G|
∑
s′∼s

∑
(T,θ)∼t

s′∈T

εT θ(s′)−1.

But this last expression on the right hand side is symmetric in s, t: Let (T, θ) be in the geometric
conjugacy class of t and s′ ∈ TF . Let (T∗, t′) be dual to (T, θ) in the sense of [DM91, Prop. 13.13],
so t′ ∈ T∗F which is conjugate to t. Furthermore s′ defines an element σ ∈ Irr(T∗F ), and s′ ∈ TF

is equivalent to the fact that (T∗, t′) lies in the geometric conjugacy class of s′, hence of s. By
construction NG(T, θ)/TF is isomorphic to NG∗(T∗, t′)/T∗F , so since T∗F has the same order
as TF , the number of G-conjugates of (T, θ) and of G∗-conjugates of (T∗, t′) agree. Thus instead
of summing over triples (s′,T, θ) we may sum over the dual triples (t′,T∗, σ), with t′ ∼ t, and
σ ∈ Irr(T∗F ), so that θ(s′) = σ(t′). The claim follows.

Remark 2.6. For every semisimple element t ∈ G∗ there is also a regular character

χreg
t = ± 1

|W (t)|
∑

w∈W (t)

εT∗
wvϕ

RG
T∗

wvϕ,t

of G (see [DM91, Def. 14.40]), where T∗
wvϕ denotes an F -stable maximal torus in relative position

wvϕ to T∗
0, εT∗

wvϕ
is a sign, and where the global sign only depends on CG∗(t). This regular

character is irreducible if CG∗(t) is connected (see [DM91, Prop. 14.43]), so in particular if
G has connected center (and then it is the Curtis–Alvis dual of the corresponding semisimple
character). Entirely analogously to Theorem 2.5 one can show that

|CG∗(t)F |p′ χreg
t (s) = |CG(s)F |p′ χreg

s (t)

for all semisimple s ∈ G, t ∈ G∗.

We now come to the main result of this section:

Theorem 2.7. Let G = G(q) be one of the finite simple groups of Lie type in Table 1, with
q = pf a power of a good prime p for G. Let x ∈ G be an involution, y ∈ G a unipotent element
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as indicated in the table, and z a regular unipotent element. Set

f(q) :=
∑

1 6=χ∈Irr(G)

χ(x)χ(y)χ(z)
χ(1)

.

Then f(q) is a rational function in q of degree less than 0, for all q in a fixed residue class modulo
a sufficiently large integer only depending on the type of G.

Proof. Let G denote a simple algebraic group of exceptional type G2 or E8 defined over Fq and
F : G → G a Steinberg endomorphism so that G = GF .

In order to investigate the sum, we make use of Lusztig’s theory of characters. We argue for
all q in a fixed congruence class modulo NG (see above). First of all, since we assume that p is
a good prime for G, it follows that only the semisimple characters of G do not vanish on the
class [z] of regular unipotent elements, and the semisimple characters take value ±1 on that class
(see [Ca93, Cor. 8.3.6], or the remark after Corollary 2.4). Since G has connected center, the
dual group G∗ is of simply connected type, hence all semisimple elements of G∗ have connected
centralizer. Thus, the semisimple characters of G are in one-to-one correspondence with the F -
stable semisimple conjugacy classes of G∗, and we write χt for the semisimple character indexed
by (the class of) a semisimple element t ∈ G∗

ss.
Let’s say that two semisimple elements of G∗F are equivalent if their centralizers in G∗F are

conjugate. Then it is known that the number of equivalence classes is bounded independently
of q, and can be computed purely combinatorially from the root datum of G (see e.g. [MT11,
Cor. 14.3]). Now note that if t1, t2 ∈ G∗

ss are equivalent, then χt1 and χt2 agree on all unipotent
elements, since by the formula in Corollary 2.4 the value of χt only depends on CG∗(t). Thus in
order to prove the claim it suffices to show that for each of the finitely many equivalence classes
A of semisimple elements in G∗

ss up to conjugation we have∣∣∣χ(y)χ(z)
χ(1)

∑
t∈A

χt(x)
∣∣∣ = O(q−1),

where χ(u) := χt(u) denotes the common values of all χt, t ∈ A, on a unipotent element u. For
this, we compute the degree du(A) in q of the rational function χ(y)χ(z)

χ(1) explicitly from the known
values of the Green functions (see Lusztig [Lu86] and Spaltenstein [Sp85]) using Corollary 2.4.
This is a purely mechanical computation with reflection cosets inside the Weyl group of G and
can be done in Chevie [Mi] for example.

It remains to control the sums
∑

t∈A χt(x), for A an equivalence class of semisimple elements
(up to conjugation). Let’s fix t0 ∈ A and set CA := C◦

G∗(t0) = CG∗(t0). By duality, we may
interpret x as a linear character (of order 2) on all maximal tori of CA. First of all, since
CA has only finitely many G-classes of F -stable maximal tori, and each torus only contains
finitely many involutions (conjugate to x), there are only finitely many possibilities for the
values {χt(x) | t ∈ A}, as a polynomial in q. Using Chevie again, we can calculate the maximal
degree ds(A) in q of any such polynomial, as follows: By Theorem 2.5, in order to determine these
degrees we may instead compute χx(t), for t ∈ A. Now by the remarks following the definition
of semisimple characters, this value can be interpreted as the multiplicity of the trivial character
of the Weyl group W (x) of CG(x) in the F -class function given by w 7→ RG∗

Tw,x(t), where Tw is a
maximal torus of type wϕ. In turn this F -class function is described in Proposition 2.3 in terms
of data only involving the Weyl group W (x), and which thus can be computed in Chevie.

Secondly, the number of elements in A is a polynomial in q of degree d(A) := dimZ(CA)
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since the set
{t ∈ Z(CA) | C◦

G∗(t) = CA}
is dense in Z(CA) (see [MT11, Ex. 20.11]). But whenever there is some t ∈ A no conjugate
of which lies in the kernel of x, then

∑
t∈Z(CA)F χt(x) = 0 by Lemma 2.2. So

∑
t∈A χt(x) =

−
∑

t∈Z(CA)F \A χt(x), and the number of elements in Z(CA)F \A is given by a polynomial in q
of degree strictly smaller than d(A).

Explicit computation now shows that for all equivalence classes A of semisimple elements in
G∗, the sum of the degrees du(A) + ds(A) + d(A), respectively du(A) + ds(A) + d(A)− 1 in the
case that there is some t ∈ A not in the kernel of x, is smaller than 0, whence the claim.

We give some precisions on the computations needed to derive the values of du, ds, needed
in the proof of the theorem. The possible centralizer types in the algebraic group are among the
maximal rank subgroups generated by A1-subgroups corresponding to arbitrary subsets of the
set of simple roots union the negative of the highest root. The center of such a maximal rank
subgroup is then computed with the Chevie-command AlgebraicCentre. The possible rational
types of these maximal rank subgroups and of their centers are obtained through the command
Twistings.

In Table 2 we list the data needed in the proof of Theorem 2.7 for the case of G2. Note that
the semisimple character corresponding to the identity element is the principal character, which
does not occur in the sum for f(q), so the centralizer type G2 does not contribute. Algebraic
groups of type E8 have 65 different centralizer types, and the total number of twistings is 872
(for example the type corresponding to a maximal torus splits into 120 rational types), so we do
not print the analogous table for type E8.

Table 2. Data for G2

A (centr. type) du(A) ds(A) d(A) corr. term
(q − 1)2 −4 2 2 −1
(q + 1)2 −4 2 2 −1

(q − 1)A1 −3 2 1 −1
(q + 1)A1 −3 2 1 −1
(q − 1)Ã1 −3 2 1 −1
(q + 1)Ã1 −3 2 1 −1

A2 −2 1 0
2A2 −2 1 0
Ã1A1 −2 1 0

Remark 2.8. In fact, using information on subgroups containing regular unipotent elements, we
will conclude from Theorem 2.7 that f(q) = 0 for all q = pa with p good, see Theorem 5.3.

Remark 2.9. A computation with the generic character table gives that for G = 3D4(pf ), p > 3,
the normalized structure constant of (C1, C2, C3) with C1 the class of involutions, C2 the class
of unipotent elements of type 3A1, and C3 the class of regular unipotent elements equals 1. But
since all three classes intersect G2(p) non-trivially, and the structure constant there equals 1 as
well, these triples only generate G2(p).

9
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3. Lie Primitive Subgroups Containing Regular Unipotent Elements

Let G be a simple algebraic group over an algebraically closed field of characteristic p > 0.
We want to consider the closed subgroups of G containing a regular unipotent element of G.
The maximal closed subgroups of positive dimension containing a regular unipotent element
are classified in [SS97, Thm. A]. Of course, subfield subgroups and parabolic subgroups contain
regular unipotent elements. Thus, we focus on the Lie primitive subgroups (those finite groups
which do not contain a subgroup of the form Op′(GF ) where F is some Steinberg endomorphism
of G and are not contained in any proper closed positive dimensional subgroup). Note that if
p = 0, unipotent elements have infinite order and so any closed subgroup containing a regular
unipotent element has positive dimension. So we assume that p > 0.

We use the results of Liebeck and Seitz [LS03] about maximal Lie primitive subgroups of
exceptional groups. In particular, all conjugacy classes of such subgroups are known aside from
the almost simple groups. In the latter case, at least we know the possibilities up to isomorphism
(rather than conjugacy).

We record the following well known lemma.

Lemma 3.1. Let G be a simple algebraic group of rank r over an algebraically closed field. Let
W = Lie(G) denote the adjoint module for G. If w ∈ W , then the stabilizer of w in G has
dimension at least r.

Proof. Let V be an irreducible variety that G acts on. Let φ : G × V → V × V be the map
sending (g, v) to (g · v, v). Let M denote the image of φ. So M is irreducible. If (g · v, v) ∈ M ,
then φ−1(g · v, v) ∼= Gv as varieties (here Gv is the stabilizer of v in G).

By semicontinuity of the dimension of a fiber, we know that the minimum dimension of a
fiber is attained on an open subvariety of M . In particular, taking V = W , then the set of regular
semisimple elements of W is an open subvariety. If w ∈ W is regular semisimple, then Gw is a
maximal torus of dimension r, whence the result.

We only consider exceptional groups here. One could prove a similar result for the classical
groups using [GPPS99] and [Di12]. The following well-known result on the orders of regular
unipotent elements in the exceptional groups will be used throughout the subsequent proof. This
can be read off from the tables in [La95]. Note that the exponent of the regular unipotent element
is precisely the smallest power of p that is at least the Coxeter number h.

Lemma 3.2. Let G be a simple algebraic group of exceptional type in characteristic p > 0 with
Coxeter number h. Then the order of regular unipotent elements of G is as given in Table 3.

Table 3. Orders of regular unipotent elements

G p = 2 p = 3 p = 5 5 < p < h h 6 p

G2 8 9 25 p2 p
F4, E6 16 27 25 p2 p

E7 32 27 25 p2 p
E8 32 81 125 p2 p

We will give all possibilities for maximal Lie primitive subgroups of simple exceptional groups
containing a regular unipotent element (we are certainly not classifying all cases up to conjugacy
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nor are we claiming that all cases actually do occur — although one can show that several of the
cases do occur).

We deal with G2 first. In this case, all maximal subgroups of the associated finite groups are
known [Co81, Kl88] and so it is a simple matter to deduce:

Theorem 3.3. Let G = G2(k) with k algebraically closed of characteristic p > 0. Suppose that
M is a maximal Lie primitive subgroup of G containing a regular unipotent element. Then one
of the following holds:

(1) p = 2 and M = J2;

(2) p = 7 and M = 23.L3(2), G2(2) or L2(13); or

(3) p = 11 and M = J1.

Note that in the previous theorem, each of the possibilities does contain a regular unipotent
element. In (1), this follows by observing that since G2(k) < Sp6(k), any element of order 8
has a single Jordan block and so is regular unipotent in G. In all possibilities in (2), M acts
irreducibly on the 7 dimensional module V for G and has a Sylow 7-subgroup of order 7. Thus,
V is a projective M -module, whence an element of order 7 has a single Jordan block of size 7.
The only unipotent elements of G having a single Jordan block on V are the regular unipotent
elements [La95]. In (3), we note that M contains L2(11) which acts irreducibly and so elements
of order 11 have a single Jordan block.

We now consider G of type F4, E6, E7 or E8; here we let t(G) be defined as in [LS03].
The values of t(G) are given by t(G) = (2, p − 1)u(G) where u(G2) = 12, u(F4) = 68, u(E6) =
124, u(E7) = 388 and u(E8) = 1312. See Lawther [La12] or [MT11, Prop. 29.13].

Theorem 3.4. Let G be a simple algebraic group over an algebraically closed field k of charac-
teristic p > 0. Assume moreover that G is exceptional of rank at least 4. Suppose that M is a
maximal Lie primitive subgroup of G containing a regular unipotent element.

(a) If G = F4(k) then one of the following holds:

(1) p = 2 and F ∗(M) = L3(16), U3(16) or L2(17);
(2) p = 13 and M = 33 : SL3(3) or F ∗(M) = L2(25), L2(27) or 3D4(2); or
(3) M = L2(p) with 13 6 p 6 43.

(b) If G = E6(k) then one of the following holds:

(1) p = 2 and F ∗(M) = L3(16), U3(16) or Fi22;
(2) p = 13 and M = 33+3 : SL3(3) or F ∗(M) = 2F4(2)′; or
(3) M = L2(p) with 13 6 p 6 43.

(c) If G = E7(k) then one of the following holds:

(1) p = 19 and F ∗(M) = U3(8) or L2(37); or
(2) M = L2(p) with 19 6 p 6 67.

(d) If G = E8(k) then one of the following holds:

(1) p = 2 and F ∗(M) = L2(31);
(2) p = 7 and F ∗(M) = S8(7) or Ω9(7);
(3) p = 31 and M = 25+10.SL5(2) or 53.SL3(5), or F ∗(M) = L2(32), L2(61) or L3(5); or
(4) M = L2(p) with 31 6 p 6 113.

Proof. Let G be a simple exceptional algebraic group over k of rank at least 4. Let M be a
maximal Lie primitive subgroup of G (i.e., M is Lie primitive, not a subfield group, and is not
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contained in any finite subgroup of G other than subfield groups). We split the analysis into
various cases. The possibilities for M are essentially listed in [LS03, Thm. 8]. See also [MT11].

Case 1. M has a normal elementary abelian r-subgroup.
If r = p then M is contained in a proper parabolic subgroup (see e.g. [MT11, Rmk. 17.16(a)]).

When r 6= p, then by [MT11, Thm. 29.3] this implies that one of the following holds:

(i) p 6= 3, G = F4(k) with M ∼= 33 : SL3(3);
(ii) p 6= 3, G = E6(k) with M ∼= 33+3 : SL3(3);
(iii) p 6= 2, G = E8(k) with M ∼= 25+10.SL5(2); or
(iv) p 6= 5, G = E8(k) with M ∼= 53.SL3(5).

By considering the order of a regular unipotent element, we see that the only possibilities are
p = 13 in (i) or (ii) and p = 31 in (iii) or (iv).

Case 2. F (M) = 1 but M is not almost simple.
By [LS03], the only possibility is that G = E8(k) and M ∼= (A5×A6).22. Note that the order

of a regular unipotent element in E8(k) is larger than the order of any p-element of M .

Case 3. F ∗(M) is a simple group of Lie type in characteristic p.
We first deal with the case that F ∗(M) = L2(pa). Suppose that a regular unipotent element

of G has order pb with b > 1. Since a Sylow p-subgroup of F ∗(M) has exponent p, it follows
that [M : F ∗(M)] > pb−1. Thus, M must contain field automorphisms of order pb−1, whence
a > pb−1.

If p = 2, this implies that a > 8 and a > 16 for G = E8. Thus 2a > t(G) unless G = E7,
whence M is contained in a positive dimensional proper subgroup [LS03, Thm. 5]. Consider the
remaining case of E7. Note that any involution in F ∗(M) has all Jordan blocks of size 2 on any
nontrivial irreducible representation in characteristic 2. Thus, an element of order 16 in M will
have all Jordan blocks of size 16. So if x ∈ M is a regular unipotent element in E7, it will have
all Jordan blocks on the adjoint module of size 1 or 16. A regular unipotent element does not
act as such [La95], whence this case cannot occur.

If p = 3, then a > 9 and if 5 6 p < h, then pa > 55. In all these cases, pa > t(G). It follows
by [LS03, Thm. 5] that M is contained in a positive dimensional proper subgroup.

Thus, we may assume that the regular unipotent element has order p which gives us the lower
bound for p in the result. It follows by [ST93, Thms. 1.1 and 1.2] that a = 1 and M = L2(p).
The upper bound for p follows by [ST90, Thm. 2] (see also [MT11, Thm. 29.11]).

If p = 2 and F ∗(M) = 2B2(22a+1), a > 1, then the exponent of a Sylow 2-subgroup of M is 4
and so M will not contain a regular unipotent element.

If p = 3 and F ∗(M) = 2G2(32a+1)′, then the exponent of a Sylow 3-subgroup of F ∗(M) is
9. Thus, there must be a field automorphism of order 3 in M (or of order 9 when G = E8(k)).
It follows that 32a+1 > t(G) unless 2a + 1 = 3 and G = F4, E6 or E7. So aside from this case,
[LS03, Thm. 5] implies that M is contained in a positive dimensional subgroup.

Suppose that M = 2G2(27).3. Let V be the adjoint module for G. The only irreducible
representations of M in characteristic 3 of dimension at most dimV are the trivial module, a
module of dimension 21 or if G = E7 a module of dimension 81. By noting that dimH1(M,W ) 6
1 for any of the possible modules W occurring as composition factors of V [Si93], it follows easily
thatM has fixed points on V , whence by Lemma 3.1 thatM is contained in a positive dimensional
subgroup of G.

12



Rigidity

It follows by [LS03, Thm. 8] that 2r 6 s where s is the rank of G and r is the untwisted rank
of F ∗(M). Similarly it follows that either q 6 9 or F ∗(M) = U3(16) or L3(16).

The cases to deal with are therefore:
F ∗(M) = U3(2a), 1 < a 6 4 or L3(2a), 1 6 a 6 4 with p = 2. In this case, the exponent of

a Sylow p-subgroup of M is at most 8 unless 2a = 16 and so M contains no regular unipotent
elements. If 2a = 16, the same argument rules out E7(k) and E8(k).

Next suppose that F ∗(M) = L3(q) or U3(q) with q = 3, 5, 7 or 9. The exponent rules out the
possibility that M contains a regular unipotent element.

Similarly, if F ∗(M) = 3D4(q) or 2F4(q)′, then G = E8 and the exponent of M is too small.
If F ∗(M) = G2(q), the exponent is too small unless M involves a field automorphism and so
M = G2(4).2 is the only possibility. The exponent of a Sylow 2-subgroup of M is 16 and so
G = F4(q) or E6(q). The only absolutely irreducible non-trivial modules of M in characteristic 2
have dimension 12, 28, 36 or dimension greater than 78. By [Si92], H1(M,V ) = 0 for any of these
modules whence M has fixed points on the adjoint module for F4 or E6. Thus by Lemma 3.1,
M is contained in a positive dimensional subgroup.

Next consider the case that F ∗(M) = S4(q),L4(q) or U4(q) with q = pa 6 9. If p is odd,
then the exponent of a Sylow p-subgroup of M is either p or 9, a contradiction. If q is even, the
exponent of M is at most 8, also a contradiction.

Next suppose that F ∗(M) = S6(q) or Ω7(q) with q = pa 6 9. Again, it follows that the
exponent of a Sylow p-subgroup of M is smaller than the order of a regular unipotent element
of G.

The remaining cases are when M has rank 4 and is defined over a field of size q = pa 6 9
and so we may assume that G = E8(k) since s > 2r. If p = 2, then aside from the case
M 6= F ∗(M) = F4(4), the exponent of a Sylow 2-subgroup of M is at most 16, which is too small
by Table 3.

In the case F ∗(M) = F4(4), an element x of order 32 would have x2 a regular unipotent
element of F4(4). It follows by [Lu01] that the only irreducible M -modules in characteristic 2
are either trivial, have dimension 52 or have dimension greater than 248. It follows that M has
at least 40 trivial composition factors on the adjoint module of E8(k). Since H1(M,V ) = 0
for dimV = 52 [JP76], this implies that M has fixed points on the adjoint module. Thus by
Lemma 3.1, M is contained in a positive dimensional subgroup (and by [LS03], this is not
possible).

Similarly, if p = 3 or 5, then the exponent of a Sylow p-subgroup of M is at most 27 or 25
and so M cannot contain a regular unipotent element of E8. The remaining possibility is that
p = q = 7, whence F ∗(M) = S8(7) or F ∗(M) = Ω9(7).

Case 4. F ∗(M) is a simple group not of Lie type in characteristic p.
We can eliminate almost all of these by comparing the order of a regular unipotent element

to the exponent of the possibilities for M given in [LS03, Thm. 8]. Moreover, the element of the
right order must have centralizer a p-subgroup (since this is true for regular unipotent elements).
The possibilities remaining are given in the theorem.

Remark 3.5. One can show that some of the subgroups listed in Theorem 3.4 are Lie primitive
and do contain regular unipotent elements. On the other hand, most of the possibilities with
M ∼= L2(p) given above likely do not occur (indeed this follows by Magaard’s thesis [Ma90] for
F4 and by unpublished work of Aschbacher [As89] for E6).
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Note in particular that if p > 113, then there are no Lie primitive subgroups containing a
regular unipotent element (and likely this is true for p > 31).

We note the following easy result.

Lemma 3.6. Let V be a finite dimensional vector space over an algebraically closed field k. Let
x, y ∈ GL(V ) be elements with quadratic minimal polynomials. Then H := 〈x, y〉 leaves invariant
a subspace of dimension at most 2.

Proof. If p 6= 2 and x, y are both semisimple, then we can replace x by ax + b and y by cy + d
and thus assume that x, y are involutions, whence H is dihedral (similarly, if p = 2 and x, y are
unipotent).

In the general case let Vx and Vy be eigenspaces of x, y of maximal dimension. If Vx ∩Vy 6= 0,
thenH has a 1-dimensional invariant space. Since x, y are quadratic, dimVx,dimVy > (dimV )/2.
So we may assume that dimVx = dimVy = (dimV )/2 and V = Vx ⊕ Vy.

Thus, with respect to this decomposition, we may assume that

x :=
(
aI B
0 cI

)
, y :=

(
dI 0
E fI

)
,

with scalars a, c, d and f . If B is not invertible, then x and y have a common fixed 1-space.
So assume that B is invertible. Conjugating x, y by diagonal matrices allows us to assume that
B = I and to replace E by any matrix similar to E. In particular, we may assume that E is
upper triangular, whence x, y have a common 2-dimensional invariant space.

Corollary 3.7. Let G = E8(k) over an algebraically closed field k of characteristic p > 5.
Suppose that x is an involution in G, y is in the conjugacy class 4A1 and z is a regular unipotent
element with xyz = 1.

(i) If p > 7, then 〈x, y〉 is not contained in a Lie primitive subgroup.

(ii) If p = 7 and 〈x, y〉 is contained in a Lie primitive subgroup, then 〈x, y〉 is contained in a
proper closed subgroup of G of positive dimension.

Proof. We use Theorem 3.4. Suppose that H := 〈x, y〉 6 M with M a maximal Lie primitive
subgroup of G. Consider the possibilities for M in Theorem 3.4(d) with p > 5.

Note that the Sylow p-subgroup of M cannot be cyclic of order p (because y and z do not
generate conjugate subgroups). This rules out the cases M = L2(p) and p = 31.

The only cases remaining are with p = 7 and F ∗(M) = S8(7) or F ∗(M) = Ω9(7). Thus (i)
holds. So consider the remaining case with p = 7 and assume that H is not contained in a proper
closed positive dimensional subgroup of G.

It follows that H is not contained in a parabolic subgroup of M either (for then H would
normalize a unipotent subgroup and so be contained in a parabolic subgroup of G as well).

Since H is generated by unipotent elements, it follows that H 6 F ∗(M). Moreover H acts
irreducibly on the natural module for M (for stabilizers of nondegenerate spaces do not contain
regular unipotent elements and stabilizers of totally singular spaces are contained in parabolic
subgroups). Thus y does not act quadratically on the natural module for M by Lemma 3.6.

If H = Ω9(7), then similarly, we see that y is not a short root element. It follows by the main
results of [Su09] that on any irreducible module other than the natural or the trivial module for
M in characteristic 7, y has a Jordan block of size at least 5. However, y has all Jordan blocks of
size at most 4 on the adjoint module W for E8 (by [La95]). It follows that all composition factors
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are trivial in case H 6 S8(7) (since the natural module is not a module for the simple group). In
case H 6 Ω9(7), since H1(H,V ) = Ext1H(V, V ) = 0 for the natural module V [Mc98], it follows
that W is a semisimple M -module and M must have a fixed point on W (since 248 is not a
multiple of 9). However, the stabilizer of a point of W has dimension at least 8 by Lemma 3.1
and so H is contained in a positive dimensional proper closed subgroup, a contradiction.

This completes the proof.

4. Some Nonexistence Results

Lemma 4.1. Let k be a field of characteristic p 6= 2. Let G = SLn(k) = SL(V ). Assume that
x ∈ G is an involution, y ∈ G is a unipotent element with quadratic minimal polynomial and
z ∈ G is a regular unipotent element. Then xyz 6= 1.

Proof. If n = 2, the only involution is central and the result is clear. If n = 3, we see that x and
y have a common eigenvector v with xv = −v. Thus, xy is not unipotent.

So assume that n > 4. If x and y have a common eigenvector, the result follows by induction.
Thus, n = 2m and the fixed spaces of x and y on V each have dimension m. Thus, choosing an
appropriate basis for V , we may assume that:

x =
(
Im J
0 −Im

)
and y =

(
Im 0
Im Im

)
,

where J is in Jordan canonical form. If J has more than one block, then V = V1 ⊕ V2 with Vi

invariant under 〈x, y〉, whence xy is certainly not regular unipotent. Note that

xy − In =
(

J J
−Im −2Im

)
.

If J is not nilpotent, then we see that xy − In is invertible, whence xy is not unipotent (indeed
has no eigenvalue 1). If J is nilpotent, we see that −2 is an eigenvalue and so again xy is not
unipotent.

By viewing SO2m(k) inside SL2m(k) and starting with m = 2, essentially the same proof
yields:

Lemma 4.2. Let G = SO2m(k), m > 2, with k of characteristic p 6= 2. Assume that x ∈ G is
an involution, y ∈ G is a unipotent element with quadratic minimal polynomial and z ∈ G is a
regular unipotent element. Then xyz 6= 1.

We will also need to deal with one special case where the unipotent element does not neces-
sarily act quadratically.

Lemma 4.3. Let k be a field of characteristic p 6= 2. Let G = Spin14(k). Let V be the natural
14-dimensional module for G. If x ∈ G is an involution, y ∈ G is unipotent with dimCV (y) > 8
and z ∈ G is a regular unipotent element, then xyz 6= 1.

Proof. Since x is an involution in G, the −1 eigenspace of x on V either has dimension at least
8 or has dimension at most 4. If this dimension is at least 8, then x and y have a common
eigenvector v with xv = −v, whence xy is not unipotent. If this dimension is at most 4 and
xyz = 1, then 2 = dimCV (z) > dimCV (x) ∩ CV (y) > 4, a contradiction.
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5. Rigidity for E8

Let p be a prime with p > 7. Let G = E8(k) with k an algebraic closure of the prime field Fp.
Let C1 be the conjugacy class of involutions with centralizer D8(k), C2 the unipotent conjugacy
class 4A1 and C3 the class of regular unipotent elements in G. Observe that since p > 5, the
centralizers of elements in these classes are connected and so Ci ∩ E8(q) is a single conjugacy
class for any finite subfield Fq 6 k.

Lemma 5.1. Let G be a simple algebraic group with a maximal parabolic subgroup P . Write
P = QL where Q is the unipotent radical of P and L is a Levi subgroup. If u ∈ P is a regular
unipotent element in P and u = u1u2 where u1 ∈ Q and u2 ∈ L, then u2 is a regular unipotent
of L.

Proof. Let B be a Borel subgroup of P containing u. Let T be a maximal torus of B and
Xα = {xα(t) | t ∈ k} be the root subgroup in B corresponding to a positive root α. So we
may write u =

∏
xα(tα). By conjugating, we may assume that L = 〈T,Xβ〉 for all roots β not

involving the simple root defining P . Then u is regular if and only if tα 6= 0 for all simple roots
α, whence u1 is a regular unipotent element of L.

Theorem 5.2. Let G = E8(k) with k an algebraic closure of Fp with p > 5. If (x, y, z) ∈
C1 × C2 × C3 with xyz = 1, then 〈x, y〉 ∼= E8(q) with q = pa for some a.

Proof. Assume that H := 〈x, y〉 does not contain a conjugate of E8(p). By Corollary 3.7, it
follows that H is contained in a maximal closed subgroup of G of positive dimension. By [SS97,
Thm. A], the only reductive such subgroup would be isomorphic to A1(k). Since A1(k) has a
unique conjugacy class of unipotent elements, it cannot intersect both yG and zG.

The remaining possibility is that H 6 P where P is a maximal parabolic subgroup. Write
P = QL where L is a Levi subgroup of P and Q is the unipotent radical. Set S = [L,L]. Since
y and z are unipotent, H 6 [P, P ] = QS.

Write x = x1x2, y = y1y2 and z = z1z2 where x1, y1, z1 ∈ Q and x2, y2, z2 ∈ L. By Lemma 5.1,
z2 is a regular unipotent element in L.

It follows by [La95] that if S1 is a direct factor of S of type A, then the projection of y2 in
S1 is a non-trivial quadratic unipotent element (because of the Jordan block structure on the
adjoint module). Applying Lemma 4.1 gives a contradiction if S1

∼= Aj(k) with j > 2.
Thus, S ∼= E7(k),Spin14(k) or A1(k)E6(k). If S = Spin14(k), it follows by [La95] that y2

is either a quadratic unipotent element or has one Jordan block of size 3 and all other Jordan
blocks of size at most 2. Now Lemma 4.3 gives a contradiction.

So we see that either S ∼= E7(k) or A1(k)E6(k). Suppose that S = A1(k)E6(k). It then
follows that x2 must be trivial in A1(k) by Lemma 4.1. So in this case H is contained in a
(non-maximal) parabolic subgroup P1 with unipotent radical Q1 and semisimple part E6(k). Let
H0 be the projection of H in E6(k). By [La95], it follows that y2 will be in one of the classes
3A1, 2A1, A1 or 1. Let J = E6(k) 6 S. Let V be the Lie algebra of J . Then dim[x2, V ] 6 40 and
dim[y2, V ] 6 40. It follows that dim[x2, V ] + dim[y2, V ] + dim[z2, V ] 6 152. By Scott’s Lemma
[Sc77], H0 has a fixed point on V (since V is a self dual module). Thus H0 is contained in a
positive dimensional maximal closed subgroup M of J by Lemma 3.1. By [SS97], this implies that
M is either parabolic or M ∼= F4(k). If H0 is contained in a proper parabolic subgroup of E6(k),
then H is contained in at least three non-conjugate maximal parabolic subgroups. However, this
contradicts the fact that there are at most two maximal parabolic subgroups containing our
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triple (i.e., the E7(k) parabolic or the A1(k)E6(k) parabolic). So H0 is not contained in a proper
parabolic subgroup of E6(k).

Thus, H0 is contained in F4(k). By Theorem 3.4, H0 is not contained in a Lie primitive
subgroup of F4(k). By [SS97], H0 is not contained in a proper positive dimensional subgroup of
F4(k). This implies that H0 contains a conjugate of F4(p). However, F4(p) has no fixed points on
V (V is a direct sum of the adjoint module for F4(p) and an irreducible 26-dimensional module).
Thus, this case cannot occur.

It follows that H is contained only in an E7(k) parabolic. Since E7(k) in E8(k) is simply
connected, it follows that x2 has centralizer D6(k)A1(k). Arguing as above, we see that y2

is in the closure of 4A1 (in E7(k)). Let W denote the Lie algebra of E7(k). It follows that
dim[x2,W ] + dim[y2,W ] + dim[z2,W ] < 2 dimW , whence H has a fixed point acting on W and
so QH is contained in a positive dimensional subgroup of P . By [SS97], H is either contained in
a proper parabolic subgroup of P or in X := A1(k) oL2(7) with p = 7. In the first case, H would
be contained in another maximal parabolic subgroup (not of type E7), a contradiction. In the
latter case, we note that a regular unipotent element of G has order 49 and in particular is not
contained in F ∗(X). Note that y has order 7 and all Jordan blocks of y on the Lie algebra of E8

have size at most 4 [La95]. However, any unipotent element of X outside F ∗(X) has a Jordan
block of size 7 on any module where F ∗(X) acts nontrivially. This contradiction completes the
proof.

Theorem 5.3. The subvariety X = {(x, y, z) ∈ C1×C2×C3 | xyz = 1} of G3 is a regular G-orbit
and if (x, y, z) ∈ X, then 〈x, y〉 is a conjugate of E8(p). In particular, (Ci ∩ E8(p) | 1 6 i 6 3) is
a rationally rigid triple.

Proof. Let q = pa for some a. We first want an estimate of the size of X(q), the set of Fq-points
of X. As we have already observed, Ci(q) := Ci ∩ E8(q) is a single conjugacy class in E8(q).

Let xi ∈ Ci ∩ E8(p). Then

|X(q)| = |C1(q)|C2(q)||C3(q)|
|G|

∑
χ

χ(x1)χ(x2)χ(x3)
χ(1)

,

where the sum is over all irreducible characters of E8(q). By Theorem 2.7, |X(q)| 6 (1 + ε)q248

for q sufficiently large (for a given ε > 0).
By Theorem 5.2, the centralizer of any triple in X is trivial, whence any G-orbit in X has

dimension 248 and any G(q)-orbit has size |G(q)| = q248+O(q247). It follows that X(q) is a single
G(q)-orbit for q sufficiently large. Thus, X is a single G-orbit and as we have observed any orbit
is regular.

Note that X is defined over Fp. So by Lang’s theorem (since the stabilizer of a point of the
orbit X is trivial and in particular connected), the Fp-points of X form a single E8(p)-orbit.
Applying Theorem 5.2 once again, we see that any triple generates a subgroup isomorphic to
E8(p).

An application of the rigidity criterion (see e.g. [MM99, Thm. I.4.8]) now completes the proof
of Theorem 1.3.
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6. Characteristic Zero

6.1 Fields
Let G be a simple algebraic group of type G2 or E8 over an algebraically closed field k of
characteristic 0 with the conjugacy classes Ci defined as in Table 1. Let X be the variety of
triples (x, y, z) ∈ C1 × C2 × C3 with product 1. Note that this variety is actually defined over
Z[1/2] (since the conjugacy classes are defined over Z[1/2]).

We can extend our results to characteristic 0 in a fairly straightforward manner. First we
note:

Lemma 6.1. Let k be an algebraically closed field of characteristic 0. Then X(k) is an irreducible
variety of dimension 248.

Proof. As we have noted,X is defined over Z[1/2]. Thus, dimX(Q̄) = dimX(Fp) for p sufficiently
large. This implies the statement about dimension. Similarly, since X(Fp) is irreducible for all
p > 5, the same is true for X(Q̄) (all this is saying is that if R is an affine commutative ring over
S := Z[1/n] and R⊗S Fp is a domain for all large p, then R⊗S Q̄ is as well).

We can prove a variant of Theorem 5.2 in characteristic 0.

Theorem 6.2. Let G = E8(k) with k an algebraically closed field of characteristic 0. If (x, y, z) ∈
X(k), then H := 〈x, y〉 is Zariski dense in G.

Proof. Just as in the proof of Theorem 5.2, we see that H is not contained in a proper parabolic
subgroup of G. Since unipotent elements have infinite order, the only other possibility would
be that H is contained in a closed reductive subgroup L of G containing a regular unipotent
element. By [SS97, Thm. 1], L ∼= A1(k). Thus, all unipotent elements of L are conjugate, a
contradiction.

Theorem 6.3. Let k0 be a field of characteristic 0. Let k be an algebraic closure of k0. Let G(k0)
be the split group over k0 (of type G2 or E8).

(i) X(k0) is a regular G-orbit; and

(ii) if (x, y, z) ∈ X(k), then 〈x, y〉 is a Zariski dense subgroup of G(k) which is conjugate to a
subgroup of G(Q).

Proof. We only give the proof for E8, the one for G2 being identical (but easier). It follows by
Theorem 6.2 that if (x, y, z) ∈ X, then the centralizer of 〈x, y〉 is trivial. In particular, every
G(k)-orbit on X(k) has dimension 248 by Lemma 6.1, whence X(k) is a regular G(k)-orbit. If
(x, y, z) and (x′, y′, z′) are in X(k0), then g · (x, y, z) = (x′, y′, z′) for some g ∈ G(k). If σ is in
the absolute Galois group of k/k0, then σ(g) also takes (x, y, z) to (x′, y′, z′) whence σ(g) = g
and so g ∈ G(k0). This shows that X(k0) is either empty or is a single regular G(k0)-orbit.

We now show that X(k0) is nonempty. Fix z ∈ C3 in G(Q) (for example take z the product
over a set of non-trivial elements from root subgroups for the simple roots). Let D = CG(z).
Note that D is a connected abelian unipotent group of dimension r, the rank of G.

Let Y be the subvariety of X with the third coordinate equal to z. Note that Y is a regular D-
orbit (because X is a regular G-orbit). Thus, Y defines a D-torsor [Se02, I.5.3]. Since connected
unipotent groups have no nontrivial torsors (by the additive version of Hilbert’s Theorem 90
[Se02, III.2.1]), it follows that Y (Q) is nonempty and so X(k0) is nonempty. Thus, if (x, y, z) ∈ X
we see that 〈x, y〉 is conjugate to a subgroup of G(Q) and is Zariski dense (by Theorem 6.2).
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6.2 The p-adic case
Here we give elementary proofs for some more general results for the p-adic case.

Fix a prime p and set Zp to be the ring of p-adic integers with field of fractions Qp. Let K
be a finite unramified extension of Qp with R the integral closure of Zp in K. Let G be a split
simply connected simple Chevalley group over R. Let P be the maximal ideal of R over p. Say
R/P ∼= Fq. For convenience, we assume that q > 4.

Let Nj be the congruence kernel of the natural map from G(R) to G(R/P j) and set N = N1.

Lemma 6.4. Let x1, . . . , xr ∈ G(R) with
∏
xi ∈ N and set yi = xiN . Assume that 〈y1, . . . , yr〉 =

G(R)/N . Then there are conjugates wi of xi such that
∏
wi = 1 and xiN = wiN . Moreover,

〈x1, . . . , xr〉 and 〈w1, . . . , wr〉 are dense in G(R) in the p-adic topology.

Proof. By induction and a straightforward compactness argument, it suffices to assume that∏
xi ∈ Nj and then show that we can choose nij ∈ Nj so that

∏
x

nij

i ∈ Nj+1. This follows from
the fact that 〈y1, . . . , yr〉 = G(R)/N and G(R)/N has no covariants on Nj/Nj+1

∼= Lie(G(R)/N)
[We96, 3.5].

The fact that 〈w1, . . . , wr〉 and 〈x1, . . . , xr〉 are each dense in G(R) follows from the fact that
N is contained in the Frattini subgroup of G(R) [We96].

Remark 6.5. If y1, . . . , yr ∈ G(R)/N with
∏
yi = 1, where the order of each yi is prime to p and

〈y1, . . . , yr〉 = G(R)/N , then we can lift each yi to an element xi ∈ G(R) with yi = xiN and yi

of the same order as xi and so the previous result applies in this case. See [GT12] for a more
general result.

Theorem 6.6. Let p > 5 be prime. Let C1, C2, C3 be the conjugacy classes in G = E8 given in
Table 1. Then

Y := {(x1, x2, x3) | xi ∈ Ci ∩G(R), x1x2x3 = 1, 〈x1, x2〉 is dense in G(R)}

is a single regular orbit of G(R).

Proof. By Theorem 5.3 and Lemma 6.4, Y is nonempty. Any two points of Y are in the same
G(K)-orbit via some g ∈ G(K). However, since both triples generate dense subgroups of G(R),
g normalizes G(R) and G(R) is self-normalizing, so g ∈ G(R).

Finally, we show that there are triples in X which are close to integral.

Theorem 6.7. Let G be a simple algebraic group of type G2 or E8. Let m be the product of the
bad primes for G. Set S = Z[1/m]. There exists (x, y, z) ∈ X ∩ G(S)3 such that 〈x, y〉 is dense
in G(Zp) for all good primes p.

Proof. Let K = Qp with p a good prime for G. Let Di, i = 1, 2, 3, be the corresponding conjugacy
classes in G(Fp) = G(R)/N and let Ci be the classes in G(Q). By Lemma 6.4, we can choose
wi ∈ Ci ∩ G(R) with w1w2w3 = 1. Note that if w := (w1, w2, w3) ∈ Y (R), then since Γ(w) :=
〈w1, w2〉 is dense in G(R), it follows that G(R) acts regularly on those elements in X(R) which
generate a dense subgroup of G(R).

By Theorem 6.3, we may choose x ∈ X(Q). Thus, x ∈ X(Z[1/d]) for some positive (squarefree)
integer d which is a multiple of the bad primes. Moreover, by replacing d by a multiple, we may
assume that Γ(x) surjects onto G(Fp) and in particular generates a dense subgroup of G(Zp) for
any p which does not divide d. Suppose that some good prime p divides d. By Lemma 6.4, we
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may choose y ∈ X(Zp) with Γ(y) generating a dense subgroup of G(Zp). So y = g.x for some
g ∈ G(Qp).

We note that G(Qp) = G(Z[1/p])G(Zp). Indeed, G(Zp) is open in G(Qp) in the p-adic topol-
ogy, and G(Z[1/p]) is dense in G(Qp), since Z[1/p] is dense in Qp and G(Qp) is generated by
root subgroups each isomorphic to Qp. So write g = g1g2 where g1 ∈ G(Z[1/p]) and g2 ∈ G(Zp).
Thus, g−1

1 .y = g2.x, and so w := g−1
1 .y = g2.x ∈ G(Z[1/d]) ∩G(Zp) = G(Z[1/d′]) where d = pd′.

Moreover, we see that Γ(w) surjects onto G(Fr) for any r not dividing d′ (because y and so g−1
1 .y

have this property and also for r = p since g2.x has this property).
Continuing in this manner, we see that we can produce such an embedding into G(S) as

required.

Note that the results of this section give Theorem 1.2.

For G = G2, Dettweiler and Reiter [DR10] exhibited a triple in X(Z) (and so every triple
generates a subgroup conjugate to one in G(Z)). If G = E8, we do not know if the group generated
by our triple is in fact conjugate to a subgroup of G(Z).

Suppose that x = (x1, x2, x3) ∈ X(Z). Let Γ = Γ(x). Let W = Lie(G(F2)) and V =
Lie(G(C)). It is clear that dim[xi,W ] 6 dim[xi, V ] and since x1 is an involution, dim[x1,W ] 6
(1/2) dimW < dim[x1, V ]. Thus∑

dim[xi,W ] <
∑

dim[xi, V ] = 2 dimW.

By Scott’s Lemma [Sc77] it follows that the image of Γ in G(F2) either has fixed points or
covariants on W . Since G(F2) has no fixed points on W , it follows that the image of Γ is a proper
subgroup of G(F2). Indeed, the same shows that the image of Γ is contained in a proper positive
dimensional subgroup of G(F2).

7. Remarks on F4

Let k be an algebraically closed field of characteristic p > 3 and G = F4(k). Let C1 be the
conjugacy class of G consisting of involutions with centralizer A1(k)C3(k), C2 the conjugacy
class of unipotent elements A1 + Ã1 and C3 the conjugacy class of regular unipotent elements.
We set

X := {(x, y, z) ∈ C1 × C2 × C3 | xyz = 1}.
The character theory proof as in Theorem 2.7 goes through for this set of triples showing

that dimX = 52 and there is at most one component of dimension 52. By standard intersection
theory, any component of X has dimension at least 52, whence:

Proposition 7.1. X is an irreducible variety of dimension 52.

If x = (x1, x2, x3) ∈ X, let Γ(x) = 〈x1, x2〉.
Unfortunately, no triple in X generates an F4(p) because elements of both C1 and C2 have

a 14-dimensional fixed space on the 26-dimensional module V for G [La95]. Thus if xi ∈ Ci,
〈x1, x2〉 has at least a 2-dimensional fixed space on V . Since x3 has a 2-dimensional fixed space
on V , this is precisely the fixed space of Γ(x). Choose a B3-parabolic subgroup P containing x3.
Then P has a unique 1-dimensional invariant space on V , whence it follows that Γ(x) < P .

We can show:
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Theorem 7.2. If (x1, x2, x3) ∈ X, then 〈x1, x2, x3〉 = RG2(p) where R is nilpotent of class 2
and has order p14. Moreover, X is a single regular G-orbit.

Proof. Consider G2(k) < B3(k) < QB3(k) < P < G where P is a maximal parabolic subgroup
and Q is the unipotent radical of P .

By [CKS76, Prop. 4.5], [Q,Q] is the natural 7-dimensional module for B3(k) and A :=
Q/[Q,Q] is the 8-dimensional spin module for B3(k). Since G2(k) has only nontrivial irreducible
modules of dimension 7 or dimension at least 14, it follows that as G2(k)-modules, [Q,Q] is
irreducible and A ∼= k ⊕ B with B a 7-dimensional irreducible module for G2(k) (it must split
because A is self dual). Note that an element of Q fixed by G2(k) (even modulo [Q,Q]) is not of
the form u4(t) for some t 6= 0 (because the stabilizer of such an element is a maximal parabolic
subgroup of B3(k) and so does not contain G2(k)).

Let x ∈ G2(k) be an involution, y ∈ G2(k) a unipotent element in the class Ã1 and z in the
class of regular unipotent elements of G2(k) with xyz = 1. Then, by the rigidity result for G2(k),
〈x, y〉 ∼= G2(p) and so we may assume that 〈x, y〉 = G2(p). Moreover, by conjugating in G2(p),
we may assume that z = u1(1)u2(1)u3(1) where {ui(t) | t ∈ k}, 1 6 i 6 3, are the root subgroups
corresponding to the simple roots of G inside B3(k).

It is straightforward to see that dimCG(x) = 24 and that y has the same Jordan block
structure on the adjoint module for G as do elements in C2. This implies that x ∈ C1 and
y ∈ C2.

By the remarks above, [G2(p), Q] is a codimension 1 subgroup of Q. Indeed, setting R = Q(p),
we see that R0 := [G2(p), R] has order p14 and has index p in Q(p). It follows easily that every
element of R0 can be written as [x, q1][y, q2] for some q1, q2 ∈ Q(p). In particular, u4(−1) =
[x, q1][y, q2]v where q1, q2 ∈ Q(p) and v is a product of root elements in R corresponding to
nonsimple roots. Let q3 ∈ R with xq1yq2(q3z) = 1. Then q3z =

∏4
i=1 ui(1)v′ where v′ is a product

of root elements in R corresponding to nonsimple roots. In particular q3z is a regular unipotent
element of G.

Thus, we have produced a triple w := (w1, w2, w3) = (xq1 , yq2 , q3z) ∈ X. Note that H :=
Γ(w) 6 [R,G2(p)]G2(p). Since H contains a regular unipotent element, H[R,R]/[R,R] intersects
R/[R,R] nontrivially. The argument above shows that x does not act trivially on this intersection,
whence H[R,R]/[R,R] contains the hyperplane R0[R,R]/[R,R] of R/[R,R]. Note that H ∩
[R,R] 6= 1 for otherwise H ∩ [R,R] is abelian of order at least p7 and centralizes [R,R] < Z(Q).
Then (H ∩ R)[R,R] is abelian of order p14 (and this is not possible, either by inspection or by
[GLS98, Table 3.3.1]). Since H acts irreducibly on [R,R], this implies that [R,R] 6 H. Thus,
H ∩R = [G2(p), R] has index p in R.

We next claim that C := CG(H) = 1. Suppose not. Since G2(p) is self centralizing in B3(k)
and C 6 CG(w3) < P , it follows that C 6 Q. Since G2(p) acts without fixed points on [G2(p), Q],
it follows that C ∩ [G2(p), Q] = 1. Let T be the torus centralizing B3(k). Then T normalizes H
(because it centralizes G2(k) and normalizes Q). Thus, T also normalizes C. Since CQ(T ) = 1, it
follows that C has positive dimension and that Q = [G2(p), Q]C, whence C centralizes Q. Thus,
C 6 Z(Q) = [Q,Q], a contradiction.

We next show that any x = (x1, x2, x3) ∈ X is as above. As noted, we may assume that
x3 ∈ P and so H 6 P3.

Arguing as in the E8 case, we see that HQ/Q cannot be contained in a parabolic subgroup of
B3(k). It follows easily from the fact that HQ/Q contains a regular unipotent element of B3(k)
that either HQ/O contains a conjugate of B3(p) or is contained in G2(k). Arguing as above, we
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see that in HQ/Q, the xiQ are precisely in the rigid classes for G2 (inside B3). Note that on
the 8-dimensional module W for B3,

∑
dim[xi,W ] < 16, whence by Scott’s Lemma, H does not

act irreducibly on W and so HQ/Q 6 G2(k). By the rigidity result for G2(k), this implies that
HQ/Q ∼= G2(p). Now we argue as above to conclude that H = [R,G2(p)]G2(p) and has trivial
centralizer in G.

By Proposition 7.1 we conclude that since X is an irreducible variety of dimension 52 and
every orbit of G on X has dimension 52, X is a single G -orbit.

There are several other candidates for rigid triples (satisfying the necessary condition that∑
dimCi = 2dimG). In all cases, C3 will be the regular unipotent class. The possibilities are:

(i) C1 consists of involutions of type B4 and C2 consists of unipotent elements of type F4(a3).
(ii) C1 consists of involutions of type A1C3 and C2 is the class of elements which are a commuting

product of a B4-involution and a long root element.
(iii) C1 consists of unipotent elements of type A1 + Ã1 and C2 is the class of elements which are

a commuting product of a B4-involution and a long root element.

The second triple was suggested by Yun and it was recently shown [GLY13] that this triple
does give a rationally rigid triple in F4(p), p > 3.
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