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Abstract. The number l(G) of p-regular classes of a finite group G is a key invariant
in modular representation theory. Several outstanding conjectures propose that this
number can be calculated or bounded in terms of certain invariants of some subgroups
of G. Our main question here is if l(G) can be bounded by the number of conjugacy
classes of some subgroup of G of order not divisible by p. This would have consequences
for the Malle–Robinson l(B)-conjecture. Furthermore, we investigate a π-version of this,
for sets of primes π.

As part of our investigations, we study finite groups that have more conjugacy classes
than any of their proper subgroups. These groups naturally appear in questions on
bounding from above the number of conjugacy classes of a group, and were considered
by G. R. Robinson and J. G. Thompson in the context of the k(GV )-problem. We
classify the almost Abelian groups G with F ∗(G) quasi-simple. Our results should be of
use in several related questions.

1. Introduction

We investigate relations between the number of conjugacy classes of a finite group and
those of its subgroups. More specifically, let π be a set of primes. We write k(G) for the
number of conjugacy classes of a finite group G, and kπ(G) for its number of conjugacy
classes of π-elements, that is, elements whose order is only divisible by primes in π. We say
that G is π-bounded, if there is a π-subgroup H ≤ G such that kπ(H) = k(H) ≥ kπ(G).
In this case, H is called a π-witness for G.

Clearly, any group is π(G)-bounded, where π(G) denotes the set of prime divisors of
|G|. Also, G is {p}-bounded for every prime p, with p-witness a Sylow p-subgroup of
G. More generally, if G has a Hall π-subgroup H and every cyclic π-subgroup of G is
contained in a G-conjugate of H, then G is π-bounded with π-witness H. We see that, in
particular, π-separable groups (and therefore all solvable groups) are π-bounded for all π.

In our first main theorem, we show that the same result also holds in important families
of groups at the opposite end of the spectrum.

Theorem 1. The following groups are π-bounded for all π:

(1) the symmetric and alternating groups;
(2) the sporadic simple groups and their automorphism groups; and
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(3) the full covering groups of the simple groups of Lie type.

A particularly interesting case, in modular representation theory, is when π = π(G)\{p}
for some prime p ∈ π(G). In this case we ask for a p′-subgroup H such that k(H) ≥
kp′(G) = l(G), with l(G) the number of irreducible p-Brauer characters of G. This
question is of interest in trying to prove the Malle–Robinson l(B)-conjecture [10]. Here
we show:

Theorem 2. Let G be a finite quasi-simple group. Then G is p′-bounded for every prime p.

At the time of writing, we do not know if all finite groups are p′-bounded for every p.
One of the reasons why we are interested in this question is the following implication for
the Malle–Robinson conjecture [10] on the number of characters in a p-block:

Theorem 3. Let G be a p-constrained finite group that is p′-bounded. Then the Malle–
Robinson l(B)-conjecture holds for G.

Here, G is p-constrained if its generalised Fitting subgroup F ∗(G) is a p-group.

Notice that if a finite group G happens to have a subgroup H < G such that k(H) ≥
k(G), then G is π-bounded for all π containing π(H). This leads us to study finite groups
G for which k(H) < k(G) for all proper subgroups H < G, baptised almost Abelian by
John Thompson (as clearly all Abelian groups have this property). In our fourth main
result, we obtain a classification of almost simple almost Abelian groups. As it turns out
there are no (non-Abelian) simple almost Abelian groups, yet there are (a few) almost
simple and very few quasi-simple almost Abelian groups.

Theorem 4. Let G be a finite group with F ∗(G) quasi-simple. Then G is almost Abelian
if and only if

(1) G is almost simple and isomorphic to one of PGL2(q) with q odd, PGL3(q) with
q ≡ 1 (mod 3), L3(3).2, L3(4).3, L3(4).6, L3(4).D12, S6, A6.2

2, or M12.2; or
(2) G is quasi-simple and isomorphic to one of 3.A6, 6.A6 or 2.M12; or
(3) G is neither almost simple nor quasi-simple and isomorphic to one of 3.L3(4).6,

41.L3(4).23 or 2.M12.2.

As is well-known, there is a great deal of research on the problem of bounding above
the number of conjugacy classes of finite groups, many times in terms of the size (not the
number of conjugacy classes) of certain specific subgroups, or simply in terms of specific
ad-hoc functions. (See for instance [7], [8], [12], etc.) Of course, some of this work, but not
all, is directly motivated by Brauer’s k(B)-conjecture. As a consequence of our present
work, we point out that if one wishes to establish a certain upper bound for k(G), which
is known to hold for all proper subgroups of G and which can be reduced to groups with
F ∗(G) quasi-simple, only the groups in Theorem 4 now have to be checked.

The paper is structured as follows. In Section 2 we investigate almost Abelian nearly
simple groups and prove Theorem 4. In Section 3 we study π-bounded almost simple
groups and prove Theorem 1. Finally, in Section 4 we specialise to the question of p′-
boundedness and prove Theorems 2 and 3.

Acknowledgement: We thank Thomas Breuer for furnishing character tables of exten-
sions of certain covering groups of An and constructions for extensions of L3(4), as well
as for his comments on an earlier version.
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2. Almost Abelian nearly simple groups

In this section we investigate finite groups G such that k(H) < k(G) for all proper
subgroups H < G. Recall from the introduction that we call such a group almost Abelian,
a term coined by John Thompson (private communication, 1993). If G is not almost
Abelian, then any subgroup H < G with k(H) ≥ k(G) is called a witness to G not being
almost Abelian.

Some related questions of interest are: which finite groups do not have a solvable
subgroup H ≤ G with k(H) ≥ k(G), or, which groups do not possess a nilpotent subgroup
H ≤ G with k(H) ≥ k(G)?

Example 2.1. Observe that all extra-special p-groups, for p a prime, are almost Abelian.
The smallest non-nilpotent almost Abelian group is SL2(3) of order 24. The smallest
solvable but not nilpotent almost Abelian group of order not divisible by 6 is the group
[320, 1012] in the Small Groups Library of GAP [14], with chief factors 22.24.5.

Almost Abelian groups do not behave well with respect to quotients by central sub-
groups. For example SL2(3) is almost Abelian, but A4 is not. Conversely, D16/Z(D16) =
D8 is almost Abelian, but D16 is not.

Let us observe the following for possible future use.

Proposition 2.2. (a) A direct product of almost Abelian groups is almost Abelian.
(b) If G = ZH, where [Z,H] = 1 and Z is abelian, then G is almost Abelian if and

only if H is almost Abelian.

Proof. (a) Let A,B be almost Abelian finite groups, and let H be a proper subgroup of
A×B. Then k(H) ≤ k(H ∩ A)k(H/(H ∩ A)) and

H/(H ∩ A) ∼= HA/A ∼= B ∩HA.
If H∩A < A, then k(H∩A) < k(A) since A is almost Abelian. We also have k(B∩HA) ≤
k(B) since B is almost Abelian, so we obtain k(H) < k(A)k(B).

If H ∩ A = A, that is to say, if A ≤ H, we have H = A × (H ∩ B) by Dedekind’s
modular law. But H is a proper subgroup of G, so that H ∩B < B and then the previous
argument applies with the roles of A, B interchanged.

In any case, then, we have k(H) < k(A × B), so that A × B is almost Abelian, as H
was an arbitrary proper subgroup of A×B.

(b) Recall that in this case k(G) = k(H)|Z : Z ∩H|. Assume that G is almost Abelian.
If X ≤ H, then k(X)|Z : Z∩H| ≤ k(X)|Z : Z∩X| = k(XZ) ≤ k(G) = k(H)|Z : Z∩H|,
with equality if and only if Z ∩H ≤ X and XZ = G, that is if X = H. Hence, if X < H,
then k(H) < k(X). The other implication is shown similarly. �

2.1. Almost Abelian decorated sporadic groups. We now start our classification
of nearly simple almost Abelian groups. This relies on the classification of finite simple
groups. For certain small groups, like A6 and L3(4) we also use extensive explicit com-
putations with character tables as well as inside permutation representations of various
extensions in the GAP system [14], partly provided to us by Thomas Breuer. Through-
out, G will be a finite group such that F ∗(G) is quasi-simple, that is, F ∗(G) is perfect,
F ∗(G)/Z(F ∗(G)) is non-Abelian simple, and furthermore, G/Z(F ∗(G)) is almost simple.
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We fix the following notation. We set Z := Z(F ∗(G)), Ḡ := G/Z, and S := F ∗(G)/Z =
Ḡ(∞) the non-Abelian composition factor of G.

The rationale behind studying nearly simple almost Abelian groups is the following.
When working with linear groups X, we often end up via Clifford theory in the following
situation: X is an almost Abelian subgroup of Y = GL(V ) for some finite vector space over
a finite field, X has a unique component E which is an absolutely irreducible subgroup of
GL(V ). We know that X is a subgroup of N := NY (E), so we seek to understand almost
Abelian subgroups of N . Let Z be the group of non-zero scalars in Y . By Proposition
2.2(b), we have that XZ is almost Abelian. Since E is absolutely irreducible, we know
that XZ is maximal subject to inducing the same group of outer automorphisms on E
as X does. Also, for any subgroup W of Z, the group XW is almost Abelian by the
same argument. In other words, the subgroup X (containing E) of N is almost Abelian if
and only if XZ is, so it is a question of which subgroups of NY (E)/ECY (E) have almost
Abelian full preimages in N .

Note that our results fall short of providing a complete classification of nearly simple
almost abelian groups. This would seem to require a much more extensive case-by-case
study.

We start with the sporadic groups.

Proposition 2.3. Let G be such that F ∗(G) is quasi-simple with S a sporadic simple
group or 2F4(2)′. Then G is almost Abelian if and only if G = M12.2, G = 2.M12 or
2.M12.2. In all other cases a witness can be chosen to be solvable, and even nilpotent if
G 6= J2.2.

Proof. From the GAP tables [14] and the list of p-ranks in [5, Tab. 5.6.1] it follows that
most quasi-simple sporadic groupsG have an elementary Abelian sectionH for some prime
p with k(H) = |H| > k(G). Now if H = X/Y , say, then k(X) ≥ k(H) = |H| > k(G),
whence in this case G cannot be almost Abelian. The exceptions are the groups in the
following list, with a witness as indicated

G 3.M22 4.M22 6.M22 12.M22 2.J2 2.HS
k(G) 34 39 65 109 38 42
H C2

6 C44 C66 C132 C10 × C5 C10 × C5

and G = M12 and G = 2.M12. The group M12, with k(M12) = 15, has a subgroup C2
4 ,

while for G = 2.M12 with k(G) = 26 the maximal k(H) = 23 for proper subgroups H < G
is attained for example for H a Sylow 2-subgroup. So this group is almost Abelian.

For the case when G 6= F ∗(G) is almost simple, again the table of p-ranks shows that
we only need to consider

G M12.2 M22.2 J2.2 HS.2 J3.2
2F4(2)

k(G) 21 21 27 39 30 29
H − C5

2 [96] 21+6
+ C34 C5

2

for all of which a solvable subgroup H as listed does the job (with [96] denoting an
unspecified group of order 96; observe that the only witnesses in this group, of orders 96
and 384, are not nilpotent), except for G = M12.2. Here the maximal k(H) = 20 for
H < G is attained, for example, for an Abelian subgroup H = C10 × C2.
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Finally, assume that G is neither perfect nor Z(F ∗(G)) = 1, so G is a non-trivial
covering group of M12.2, M22.2, J2.2, J3.2, McL.2, Suz.2, ON.2, Fi22.2 or Fi24. For all
of these but the first, the preimage in G of a suitable Sylow p-subgroup of G/Z(F ∗(G))
has more conjugacy classes than G has. On the other hand, G = 2.M12.2 has k(G) = 34
while any proper subgroup has at most 32 conjugacy classes. �

2.2. Almost Abelian decorated alternating groups. To deal with symmetric and
alternating groups, we use the following upper bound

p(n) <
π√

6(n− 1)
exp

(
π
√

2(n− 1)/3
)

for n > 1

for the number p(n) of partitions of n (see [15, Thm. 15.7]).

Proposition 2.4. Let G be such that F ∗(G) is a covering group of an alternating group
An, n ≥ 5. Then G is almost Abelian if and only if G = S5

∼= PGL2(5), S6, A6.22
∼=

PGL2(9), A6.2
2, 3.A6 or 6.A6. In all other cases apart from 3.A6.21 and 3.A6.22 there is

a nilpotent witness.

Proof. We discuss the various possibilities for G, starting with the almost simple ones.
The symmetric group Sn has an elementary Abelian subgroup H = 3k with k = bn/3c.
The above estimate for p(n), respectively the explicit value of p(n) for small n shows that
H is a witness when n ≥ 12 and n 6= 13, 14, 17. For the remaining values n ≥ 7 there
exists a nilpotent witness H according to the following table:

n 7 8 9 10 11 13 14 17
k(Sn) 15 22 30 42 56 101 135 297
H D8C3 D2

8 D8C6 D2
8C2 D2

8C3 D3
8 C3

3C5 C4
3C5

For S5
∼= PGL2(5) and S6 there are no proper subgroups with sufficiently many (i.e., 7

respectively 11) conjugacy classes.
For G = An the elementary Abelian 3-subgroup H of order 3k, with k = bn/3c, has

k(H) ≥ k(G) whenever n /∈ {5, 8, 11}, using that k(An) < k(Sn) for n ≥ 5 (see e.g. [3,
Cor. 2.7]) and explicit values for small n. For the remaining values we can choose:

n 5 8 11
k(An) 5 14 31
H C5 C15 C2

3C5

Finally, for A6.23 we may take H = C2
3 , while k(A6.2

2) = 13 is larger than the class number
of any proper subgroup, and A6.22

∼= PGL2(9) is also almost Abelian by inspection.
In all of the cases above for which we found a witness H of odd order, the 2-coverings

2.Sn and 2.An can also not be almost Abelian, with witness the full preimage Ĥ of H,
since, k(Ĥ) = 2k(H) ≥ 2k(Sn) ≥ k(2.Sn). Comparing with the precise value of k(2.Sn),
only 2.Sn with n ∈ {5, 7, 8, 10} needs to be discussed, where we find witnesses as follows:

n 5 7 8 10
k(2.Sn) 12 23 31 57
H C6C2 C24 C12C3 C30C2
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It remains to discuss the case when S = A6 and when F ∗(G) is an exceptional cover of
A7. In the latter case, we find witnesses as follows:

n 3.A7 3.A7.2 6.A7 6.A7.2
k(G) 23 22 40 35
H C2

6 C2
6 C42 C42

For various extensions of A6 witnesses are given by:

n A6.23 2.A6.22 3.A6.21 3.A6.22 3.A6.23 3.A6.2
2 6.A6.21 6.A6.22

k(G) 8 20 16 16 22 20 26 29
H C2

3 C20 3.A6 3.A6 C24 C24 C30 C30

Note that for 3.A6.21 and 3.A6.22 there do not exist solvable witnesses. Finally, the
covering groups of A6 have k(3.A6) = 17, k(6.A6) = 31, while the (smallest) proper
subgroups with maximal class number are cyclic of order 15, 30 respectively. �

2.3. Lie type groups: some small cases. For most groups of Lie type, we will exhibit
a unipotent witness. But there are a number of small groups, for which such a witness
does not exist. These are discussed in this section.

Proposition 2.5. Let G be such that F ∗(G) is a covering group of L2(q) (9 6= q ≥ 4) or
2B2(q

2) (q2 ≥ 8). Then G is almost Abelian if and only if G ∼= PGL2(q) with q odd. In the
other cases, there exists an Abelian unipotent witness for Ḡ unless Ḡ is one of PGL2(q)
with q even, L2(8).3, L2(16).4 or 2B2(8).3.

Proof. Let first S = L2(q) with q ≥ 5. We start with the almost simple case. The outer
automorphism group of S is generated by a field automorphism γ of order f , where q = pf ,
and, if q is odd, a diagonal automorphism δ of order 2. Thus we need to discuss extensions
of S by γd for d|f , by δγd for d|f with f/d even, and by 〈δ, γd〉 for d|f . Let’s consider
these in turn.

If q ≥ 5 is odd then k(L2(q)) = (q + 5)/2 ≤ q, so here a Sylow subgroup in the
defining characteristic, of order q, provides a witness. For even q ≥ 8 we have k(L2(q)) =
q + 1, which is attained by a cyclic subgroup of that order. For odd q ≥ 5 we have
k(PGL2(q)) = q + 2, but all proper subgroups have fewer conjugacy classes, so these
groups are almost Abelian. If q is the square of an odd prime power, there is a further
extension G = S.〈δγf/2〉 of S of degree 2, which has k(G) = (q + 6

√
q + 5)/4 < q.

Now assume that G is a proper extension of one of the groups G0 = G0(q) considered
before by a field automorphism, say |G : G0| = e > 1 with e|f , and write q = re. The
conjugacy classes of G are parametrised as follows: for any class with representative in
G0(r

d), d|e, we obtain at most e/d · k(G0(r
d))/d classes. Thus

k(G) ≤
∑
d|e

e · k(G0(r
d))/d2 = k(G0(q))/e+ e

∑
d|e,d 6=e

k(G0(r
d))/d2.

This can be seen to be less than or equal to q unless q ∈ {4, 8, 9, 16, 25}, and even less than
q/2 when 4|e. Now L2(4).2 ∼= PGL2(5) is in our exceptions, and q = 9 was excluded, while
G = L2(8).3 has an extra-special subgroup H = 31+2 with k(H) = k(G), k(L2(16).2) = 16,
G = L2(16).4 with k(G) = 17 has a subgroup C17, and the extensions of L2(25) different
from PGL2(25) have less than 25 classes. Finally, for G = S.〈δγd〉 with d|f , f/(2d) even,
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we have k(G) ≤ 2k(S.〈γ2d〉) < q by the above. This completes the discussion of almost
simple extensions of L2(q).

By our previous considerations, Ḡ has a unipotent witness H, in which case its full
preimage in G will give a witness in G, unless Ḡ is one of PGL2(q), L2(8).3 or L2(16).4.
The latter two groups do not have proper covering groups, nor does PGL2(q) for q even.
If q is odd, then k(2.L2(q).2) = 2(q + 1), which is also the order of the Abelian preimage
of a maximal torus of PGL2(q) in 2.L2(q).2. Note that we excluded L2(4) ∼= L2(5) and
L2(9) ∼= A6, so there are no exceptional covering groups.

Now assume that S = 2B2(q
2), q2 ≥ 8, is a Suzuki group. First observe that S has

a unipotent witness H, of order 2q2, as well: let P ≤ S be a Sylow 2-subgroup. Then
Z(P ) contains (and in fact is equal to) an elementary Abelian subgroup of order q2 (viz.,
Ω1(Z(P ))). We may take H > Z(P ) with |H/Z(P )| = 2, then H is Abelian as H/Z(P ) is
cyclic. Since k(S) = q2 + 3, H is a witness. Here, the outer automorphism group consists
solely of field automorphisms, which are of odd order. By the argument employed for
L2(q) above, we find that k(G) ≤ q2 for all such extensions G 6= S unless q2 = 8. Here
k(2B2(8).3) = 17, but there a (unipotent) Sylow 2-subgroup U has k(U) = 22.

The only Suzuki group with a non-trivial coverings is S = 2B2(8), with Schur multiplier
22. Now G = 2.2B2(8) with k(G) = 19 has a unipotent subgroup of order 32 with
20 conjugacy classes, while for G = 22.2B2(8) with k(G) = 35 and G = 22.2B2(8).3
with k(G) = 25 we may take the full preimage in G of a subgroup of order 13 of S as
witness. �

Proposition 2.6. Let G be such that F ∗(G) is a covering group of L3(q) (q 6= 2, 4) or
U3(q) (q 6= 2). Then G is almost Abelian if and only if G ∼= PGL3(q) with q ≡ 1 (mod 3)
or G = L3(3).2.

In the other cases, there exists a unipotent witness for Ḡ unless Ḡ is one of PGL3(q)
with q 6≡ 1 (mod 3) or PGU3(q).

Proof. We first discuss the almost simple case, that is F ∗(G) = S. The outer automor-
phism groups of the groups in question are generated by a diagonal automorphism δ, a
graph automorphism σ and a field automorphism γ. Here the first two have order at
most 3, respectively 2, while the latter has order f when q = pf for L3(q) and order 2f
for U3(q) and then its fth power is σ. Again we first consider extensions not involving
field automorphisms.

For inner-diagonal extensions G the class numbers are given by

G L3(q) PGL3(q) PGL3(q) U3(q) PGU3(q) PGU3(q)
q ≡ 1 (3) q ≡ 1 (3) q 6≡ 1 (3) q ≡ 2 (3) q ≡ 2 (3) q 6≡ 2 (3)

k(G) 1
3
(q2 + q + 10) q2 + q + 2 q2 + q 1

3
(q2 + q + 12) q2 + q + 4 q2 + q + 2

|H| q2 − q2 + q + 1 q2 (q + 1)2 (q + 1)2

and the size of a suitable (Abelian) witness H is indicated in the last row, except for
PGL3(q) with q ≡ 1 (mod 3) which has no proper subgroup with that many classes.
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The class numbers of the extensions G of inner-diagonal groups by the graph automor-
phism of order 2 are given by

G L3(q).2 PGL3(q).2 PGL3(q).2 U3(q).2 PGU3(q).2 PGU3(q).2
q ≡ 1 (3) q ≡ 1 (3) q 6≡ 1 (3) q ≡ 2 (3) q ≡ 2 (3) q 6≡ 2 (3)

k(G) 1
6
(q2+10q+37) 1

2
(q2+4q+11) 1

2
(q2+4q+9) 1

6
(q2+10q+39) 1

2
(q2+4q+13) 1

2
(q2+4q+11)

when q is odd, and that same numbers minus 3/2 when q is even. These quantities are
larger than q2 only when q ≤ 3, or when H is one of PGU3(4), PGL3(5) or PGU3(5).(Note
that L3(4) was excluded.) Of these, only L3(3).2 is almost Abelian, while PGU3(4).2 has
a unipotent subgroup U of order 32 with k(U) = k(G) = 20, and G = PGL3(5).2,
PGU3(5).2 have unipotent subgroups U of order 53 with k(U) = 29 ≥ k(G). This
completes the discussion of extensions only involving diagonal and graph automorphisms.

When q = r2 is a square there is an extension of L3(q) and of PGL3(q) by a graph-field
automorphism of order 2, with class numbers

G L3(q).2 PGL3(q).2 PGL3(q).2
q ≡ 1 (3) q ≡ 1 (3) q 6≡ 1 (3)

k(G) 1
6
(q2+4q+3r+46) 1

2
(q2+4q+3r+14) 1

2
(q2+4q+3r+6)

hence all smaller than q2 when q > 4, and even smaller than q2/3 when q is a fourth
or sixth power. Also, if q = r3 is a third power there is an extension of L3(q), q ≡ 1
(mod 3), and of U3(q), q ≡ 2 (mod 3), of degree 3, by the product δγf/3 of a diagonal
and a field automorphism, with k(L3(q).3) = (q2 + q + 24(r2 + r) − 14)/9, k(U3(q).3) =
(q2 +q+24(r2 +r)+36)/9 (this can be seen since γf/3 fixes exactly three more irreducible
characters than δγf/3, see [9, §3]). Both class numbers are less than q2/2, hence this also
covers the extensions of those groups by the graph automorphism of order 2.

Now assume that G is a proper extension of one of the groups G0 = G0(q) consid-
ered before by a field automorphism. Then the counting argument given in the proof of
Proposition 2.5 shows that k(G) < q2 unless S = L3(4), which was excluded.

It remains to discuss the case when G contains automorphisms of the form δγd or σγd

but not γd, and f/d is divisible by 9, 4 respectively. In these cases G has a normal
subgroup G1 of index 3 containing the non-trivial field automorphism γd/3, respectively
γd/2, and as we argued before, k(G1) ≤ q2/3, so k(G) ≤ q2. This concludes the discussion
of the almost simple case.

Now consider the general case. By the first part, there is a unipotent witness for Ḡ,
whose full preimage will furnish a witness in G, unless Ḡ is one of PGL3(q), PGU3(q)
or L3(3).2. Now none of PGL3(q) for q 6≡ 1 (mod 3), PGU3(q) for q 6≡ 2 (mod 3) and
L3(3).2 does have proper covering groups. Furthermore, for q ≡ 1 (mod 3) we have
k(3.L3(q).3) = 3q(q + 1), since exactly nine of the q2 + q + 8 irreducible characters of
SL3(q) (corresponding to semisimple elements of PGL3(q) with disconnected centraliser)
are not invariant under the diagonal automorphism. The full preimage of a maximal
torus of order q2 + q+ 1 of PGL3(q) is Abelian and thus provides a witness. Similarly, for
2 < q ≡ 2 (mod 3) we have k(3.U3(q).3) = 3(q2 + q + 2), and the Abelian preimage of a
maximal torus of order (q + 1)2 has more classes. Note that all groups L3(q) and U3(q)
with an exceptional Schur multiplier were excluded in our statement. �

We now discuss two further groups with large Schur multiplier.
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Proposition 2.7. Let G be such that F ∗(G) is a covering group of S = L3(4). Then G
is almost Abelian if and only if it is one of S.3, S.6, S.D12, 41.S.23 , 3.S.6.

Proof. The group S = L3(4) has Schur multiplier 3× 42 and Out(S) ∼= D12, the dihedral
group of order 12. Class numbers for many of the extensions are contained in [14], and
for all other extensions, we get at least upper bounds from these by trivial considerations.
The group 3.S.3 has a cyclic subgroup of order 63, and its preimage in G is a witness in
all cases. Thus we may assume that either |Z| or |G : F ∗(G)| is prime to 3. According
to [14] the class numbers of certain quasi-simple groups Z.S, (an upper bound for) the
maximal class number of any group G with F ∗(G) = Z.S and the class number of a
suitable 2-subgroup H of Z.S are given below:

Z 1 2 22 41 42 2× 4 42

k(Z.S) 10 18 34 30 32 60 112
max k 28 39 49 48 50 69 180
k(H) 19 32 64 40 64 80 88

Thus we obtain witnesses in all groups with Z = 22, 42, 4 × 2. The group 42.S has
a subgroup C2

4C7 which provides a witness. For F ∗(G) = 41.S the only extensions with
class number bigger than 40 are of the form 41.S.23 and 41.S.2

2. While the latter, of which
there are two isomorphism types with 42 resp. 48 classes, contain a unipotent subgroup
with 44 resp. 49 classes, the group 41.S.23 is almost Abelian. Its 3-fold cover has only 71
classes and thus is not almost Abelian. The only extensions with F ∗(G) = 2.S with more
than 32 classes are the two types of groups 2.S.22, with 33 resp. 39 classes, and both have
a unipotent subgroup H with k(H) = 40. Finally, for F ∗(G) = S, we need to discuss
S.22 with 22 classes and with a unipotent subgroup having 26 classes, and the groups
with |G : F ∗(G)| divisible by 3. These contain an Abelian subgroup of order 21, which is
enough for S.3.22 and S.3.23, while the other three possibilities are almost Abelian and
occur in the conclusion. Again by direct computation, among their 3-covers only 3.S.6 is
almost Abelian. �

Proposition 2.8. Let G be such that F ∗(G) is a covering group of U4(3). Then G is not
almost Abelian.

Proof. The group S = U4(3) has Schur multiplier 4× 32 and Out(S) ∼= D8, the dihedral
group of order 8. We have k(S) = 20, k(31.S) = 52, k(32.S) = 46, and k(32.S) = 136.
Also, 32.S has an elementary Abelian subgroup U of order 36, and (thus) 31.S and 32.S
have such a subgroup U of order 35 and S has such a subgroup U of order 34. It follows that
the full preimage of U in G is a witness at least if |G : F ∗(G)| ≤ 4. It thus only remains
to discuss groups G with G/F ∗(G) ∼= D8 = Out(S). But then the Sylow 3-subgroup of
Z must either be trivial, or the full 32 of the Schur multiplier, and k(S.D8) = 61 and
k(32.S.D8) = 110 < 36. �

2.4. Lie type groups: the generic case.

Theorem 2.9. Let G be almost simple with socle S = F ∗(G) of Lie type. Then G has a
unipotent subgroup U with k(U) ≥ k(G) unless S is one of L2(q), L3(q), U3(q), U4(2) or
S4(2)′ ∼= A6.
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Proof. Let G be as in the statement. Let n denote the Lie rank of S = F ∗(G), q the
underlying field size and p the characteristic of S. According to [3, Cor. 1.2] we have
k(G) ≤ 100 qn, which is itself bounded above by qn+7. On the other hand Table 3.3.1 in
[5] shows that S has a large elementary Abelian p-subgroup U . A quick comparison gives
that for S of type E6,

2E6, E7 or E8 the size of U is larger than qn+7.
To deal with the remaining types we consider better bounds for k(G). For S = Ln+1(q),

n ≥ 3, the outer automorphism group is generated by diagonal, graph and field automor-
phisms. For G an extension by a diagonal automorphism we have k(G) ≤ qn+5qn−1 by [3,
Cor. 3.7(2)], so in general we obtain k(G) ≤ 2 logp(q)(q

n+5qn−1). By [5, Tab. 3.3.1] there

is an elementary Abelian p-subgroup E of G of size qk where k = b(n+ 1)2/4c. Thus we
are done unless either n = 3, q ≤ 5, or (n, q) = (4, 2). For S = L5(2) we have |Out(S)| = 2
and 2k(S) = 54 < 26, for S = L4(5) we have |Out(S)| = 8 and 8k(S) = 392 < 54. For
S = L4(4) we have |Out(S)| = 4, k(S) = 84 and k(S.21) = 63, so k(G) ≤ 168 < 44. For
S = L4(3) we have k(G) ≤ 56 < 34, and for S = L4(2) ∼= A8 with k(A8) = 14 we can take
U = C4

2 , for Aut(S) = S8 there is a subgroup U of order 26 with k(U) = 25 > k(S8) = 22.
For S = Un+1(q), n ≥ 3, we have k(G) ≤ qn + 8qn−1 for any extension G of S only

containing diagonal automorphisms by [3, Cor. 3.11(2)], so k(G) ≤ 2 logp(q)(q
n + 8qn−1)

in general. Now S has a unipotent subgroup U = q1+2(n−1) with k(U) ≥ q2(n−1), so the
claim holds unless either n = 3 and q ≤ 8, or (n, q) = (4, 2). The group S = U5(2)
has k(G) ≤ 47 < 26, the group S = U4(8) has |Out(S)| = 6 and 6k(S) = 3612 < 84,
the group S = U4(7) has |Out(S)| = 8 and 8k(S) = 928 < 74, the group S = U4(5) has
|Out(S)| = 4 and 4k(S) = 388 < 54, the group S = U4(4) has k(S) = 94, k(Aut(S)) = 73,
so k(G) ≤ 44. The group S = U4(3) was discussed in Proposition 2.8.

For S = S2n(q), n ≥ 2, and G only involving diagonal automorphisms, by [3, Thms. 3.12
and 3.13] we have k(G) ≤ qn + 62 qn−1 when q is odd, and k(G) ≤ qn + 29 qn−1 when
q is even. Furthermore, |Out(S2n(q))| = gcd(2, q − 1) logp(q) for n > 2 or q odd, and

|Out(S4(2
f ))| = 2f . There is an elementary Abelian unipotent subgroup of S of order

qn(n+1)/2. So we are done unless n = 2 and q ≤ 13, or (n, q) = (3, 2). For S = Sp6(2)
we have |Out(S)| = 1 and k(S) = 30 < 26. The extension PCSp4(q) of S by a diagonal
automorphism has q2 + 3q + 7 < q3 classes for odd q, and q2 + 2q + 3 classes when q is
even, which gives our claim for q > 4. Now S = Sp4(4) has k(S) = 27, k(S.2) = 30, thus
k(G) ≤ 43. Also, S = S4(3) has k(G) ≤ 25 < 33. Finally, S4(2) ∼= S6 is almost Abelian.

For S = O2n+1(q) of type Bn we may assume n ≥ 3 and q is odd, as otherwise it
is isomorphic to a symplectic group. Here k(G) ≤ 7.1 qn by [3, Thm. 3.17(1)] for any
G inducing diagonal automorphisms, and thus k(G) ≤ logp(q)(7.1 q

n), while there is an
elementary Abelian p-subgroup of order q2n−1, which gives a witness in all cases.

For S = O+
2n(q) an even-dimensional orthogonal group of rank n ≥ 4, we have k(S) ≤

qn/2 + 9 qn−1 when q > 3 by [3, Tab. 2], respectively k(G) ≤ min{27.2 qn, qn + 68 qn−1}
when q ≤ 3 by [3, Thm. 1.1], when G only involves diagonal automorphisms. Now
|Out(S)| ≤ 2 gcd(q − 1, 2)2 logp(q) for n > 4, and 3 times that number for n = 4. On the

other hand, S has an elementary Abelian p-subgroup of order q(
n
2) by [5, Tab. 3.3.1]. This

proves our claim for O+
2n(q) unless n = 4, q ≤ 5. For the remaining groups, for S = O+

8 (5)
we have |Out(S)| = 24 and 24k(S) = 24 · 360 < 56, for S = O+

8 (4) we have |Out(S)| = 12
and k(S) = 405, k(S.2) = 375, so k(G) < 46 for all relevant G, for S = O+

8 (3) we have
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k(Aut(S)) = 171, k(S.3) = 94, k(S.2) ≤ 144, and thus k(G) ≤ 432 < 36. Finally, for
S = O+

8 (2) we have k(S) = 53, k(S.2) = 67, k(S.3) = 55 and k(S.S3) = 68, while S.2
contains a subgroup S6(2)× 2 and hence an elementary Abelian subgroup C7

2 .
For S = O−2n(q) we have |Out(S)| = 2 gcd(qn + 1, 4) logp(q), and there is an elementary

Abelian p-subgroup U of order q2+(n−1
2 ), respectively of order q6 when n = 4. Thus we are

done unless n = 4, 5, q ≤ 3. As k(O−10(2)) = 115 and k(O−10(3)) = 226, these two groups
do satisfy the conclusion. Further, S = O−8 (3) has |Out(S)| = 4 and 4k(S) = 448 < 36,
and S = O−8 (2) has k(S) = 39, k(Aut(S)) = 60, both less than 26.

For the remaining exceptional type groups we use the explicit formulas for k(S) given in
[3, Tab. 1]. For 2G2(q

2), q2 = 32f+1 (f ≥ 1), we have k(G) ≤ (2f + 1)(q2 + 8) while there
is an elementary Abelian p-subgroup U of order |U | = q4, for 2F4(q

2) (q2 = 22f+1 ≥ 8) we
have k(G) ≤ 2(2f + 1)q4 while |U | = q10, for G2(q) (q ≥ 3) we have k(G) ≤ logp(q)(q

2 +
2q+9) while |U | = q3, for 3D4(q) we have k(G) ≤ logp(q)(q

4+q3+q2+q+6) while |U | = q5

(and k(3D4(2)) = 35, k(3D4(2).3) = 49, while there is a subgroup U = C2
4 × C2

2), by [5,
Table 3.3.1]. For S = F4(q) we have k(S) ≤ 2 logp(q)(7.6 q

4) and there is an elementary
Abelian U < G with |U | = q9. This completes the proof. �

We can thus complete the proof of Theorem 4(1):

Corollary 2.10. Let G be almost simple with F ∗(G) of Lie type. Then G is almost
Abelian if and only if G = PGL2(q) with q odd, or G = PGL3(q) with q ≡ 1 (mod 3), or
G is one of L3(3).2, L3(4).6, L3(4).D12, L2(9).21

∼= S6 or Aut(L2(9)) ∼= Aut(A6).

Proof. By Theorem 2.9 we only need to discuss the groups L2(q), L3(q), U3(q),
2B2(q

2),
and U4(2). For S = U4(2) ∼= S4(3) we already saw a 3-group witness, and the other
groups were treated in Propositions 2.5–2.7. �

For more general extensions of groups of Lie type we have the following immediate
consequence of Theorem 2.9:

Corollary 2.11. Let G be such that F ∗(G) is quasi-simple of Lie type in characteristic p
with |Z(F ∗(G))| prime to p and F ∗(G)/Z(F ∗(G)) none of L2(q), L3(q), or U3(q). Then
G is not almost Abelian.

Proof. For all groups in the statement except U4(2) ∼= S4(3), G/Z(F ∗(G)) has a unipotent
witness U , and as by assumption |Z(F ∗(G))| is prime to the characteristic p, the full
preimage of U is a witness in G. For U4(2) the claim is checked directly. �

But more is true, namely for most quasi-simple groups we can find a unipotent witness:

Theorem 2.12. Let G be quasi-simple of Lie type. Then there is a unipotent subgroup
U ≤ G with k(U) ≥ k(G) unless S = G/Z(G) is one of L2(q), L3(q), U3(q), U4(2), S4(3),
or G = 2.L4(2).

Proof. First assume that |Z(G)| is prime to the underlying characteristic p of G. Then,
we may assume that G is the universal p′-covering group of S = G/Z(G). The Suzuki and
Ree groups do not have proper p′-covering groups, so they are handled by Theorem 2.9.
So, G = GF for a simple algebraic group G of simply connected type with a Frobenius
endomorphism F . Recall that we exclude the groups S = L2(q), L3(q) and U3(q). The
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tables 1, 2 and 3 in [3] give upper bounds for the class numbers k(G). For groups of
exceptional type, these coincide with the bounds for adjoint type groups used in the proof
of Theorem 2.9, so the claim in that case follows. For G = SLn(q) the bounds on k(G)
are better than for PGLn(q), so we only need to look at the three groups SL5(2), SL4(5)
and SL4(3) violating the bound in the proof of Theorem 2.9. In fact, the first is also of
adjoint type, and for the other two, k(G) is small enough. For G = SUn(q), the bound for
q = 2 is worse than for PGUn(q), but still small enough except for G = SU6(2). There,
k(G) = 132 < 28 as required. Also, the exceptional cases SU4(7), SU4(5), SU4(3) can be
inspected individually to verify the claim.

For the symplectic and orthogonal groups, we may assume p 6= 2, as otherwise G is
as in Theorem 2.9. Among symplectic groups, only Sp4(q) with q ≤ 13 are left by the
proof of Theorem 2.9. Here k(G) = q2 + 5q + 10, which is less than q3 unless q = 3.
For Sp4(3) there is no unipotent witness. For Spin2n+1(q), n ≥ 3 and q odd, the bound
from [3] is sufficient except for G = Spin7(3), but there k(G) = 88 < 35. Finally, for the
even dimensional spin groups, only Spin+

8 (3), Spin+
8 (5), Spin−8 (3) and Spin−10(3) need to

be considered. For all four of them, the actual class number is smaller than the size of
our Abelian unipotent subgroup.

Finally, assume that Z(G) has order divisible by p, which means thatG is an exceptional
covering group of S (see [11, Tab. 24.3]). We deal with these in turn. For G not a covering
group of one of the excluded groups, that is, G one of 22.U6(2), 2. S6(2), 3.O7(3), 3.G2(3),
2.G2(4), 2.F4(2) or 22.2E6(2) one checks that k(G) is always less than |U | for the unipotent
witness U in G/Z(G) from Theorem 2.9. The group S = O+

8 (2) has a 2-subgroup U of
order 28 with k(U) = 130, larger than k(2.S) = 83. Moreover, 22.S contains a subgroup
2×2. Sp6(2), which in turn has a unipotent subgroup with 152 classes while k(22.S) = 143.
Note that 2B2(8) and U4(3) were treated in Propositions 2.5 and 2.8. �

Finally, we complete the proof of Theorem 4:

Proof of Theorem 4. By Propositions 2.3–2.7 all that is left to do is to investigate excep-
tional covering groups of almost simple, non-simple groups of Lie type. We may discard
those with S an alternating group, or with S isomorphic to a group of Lie type in different
characteristic or for which Out(S) = 1.

For S = U6(2) we have k(S.2) = 65, k(S.3) = 114 and k(S.S3) = 99, while a suitable
maximal torus of S, 3.S, S.3 and 3.S.3 has order 34, 35, 35, and 36 respectively. The
full preimage of this in G will thus provide a witness. The group S = O7(3) has an
Abelian subgroup of order 26, so its preimage in 3.S.2 and 6.S.2 provides a witness as
k(3.S.2) = 132, k(6.S.2) = 186. For S = O+

8 (2) the class number k(22.S) = 143 is larger
than k(22.S.A) for any 1 6= A ≤ Out(S) ∼= S3, while the class number k(2.S.2) = 112 is
smaller than that of a 2-subgroup H of S with k(H) = 130.

Further, k(3.G2(3).2) = 39 < k(3.G2(3)) = 45, k(2.G2(4).2) = 65 < k(P ) = 118
with P ∈ Syl2(G2(4)), k(2.F4(2).2) = 151 < k(U) = 29, with U an elementary Abelian
unipotent subgroup of F4(2), and for S = 2E6(2), k(S.A) ≤ 266 for A ≤ Out(S) ∼= S3,
while S has an Abelian unipotent subgroup of order 213 > 266|Z| since |Z| ≤ 12. This
deals with all remaining possibilities for S. �
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3. π-bounded finite groups

Let π be a set of primes. Recall that we say that a finite group G is π-bounded if
there exists a π-subgroup H ≤ G with kπ(G) ≤ kπ(H) = k(H). Here, kπ(G) denotes the
number of π-conjugacy classes of G. In this case, H is called a (π-)witness for G. Clearly,
if there is a π-witness for G at all, then there is an almost Abelian such witness.

Of course solvable groups are π-bounded for any π by the fact that all their maximal
π-subgroups are conjugate (these are then Hall π-subgroups). Also, the extreme cases
|π| = 1 (by the Sylow theorems) and π = π(G) are obviously fine. By a theorem of
Wielandt [16] any group with a nilpotent Hall π-subgroup is π-bounded.

3.1. General observations. Let us start out with a few easy but nonetheless useful
observations:

Lemma 3.1. Let G be a finite group and let N be a normal π′-subgroup of G. Then G is
π-bounded if and only if G/N is π-bounded.

Proof. Using the Schur–Zassenhaus theorem, we have kπ(G) = kπ(G/N). Thus if H is a
π-witness for G, then HN/N is a π-witness for G/N . Conversely, if J/N is a π-witness
for G/N and H is a complement of N in J , then H is a π-witness for G. �

Lemma 3.2. Let N E G be finite groups with G/N a π′-group. If N is π-bounded then
so is G.

Proof. Let H ≤ N be a π-subgroup with k(H) ≥ kπ(N). As all π-elements of G are
contained in N , we have kπ(G) ≤ kπ(N), whence k(H) ≥ kπ(G) as well. �

We next record some restrictions on potential π-witnesses for future use. (We shall
not use these in the sequel.) If we have kπ(G) ≤ k(H) for some π-subgroup H of G, we
may suppose that k(H) is maximised over π-subgroups of G, and that |H| is minimised
over π-subgroups with the maximal possible number of conjugacy classes. Thus we may
suppose that H is almost Abelian, and with k(H) maximised over π-subgroups of G.

Note also that we may restrict attention to the case that kπ(G) > kπ(H) whenever
H < G (for in any other case, a π-witness for a suitable proper subgroup H would be a
witness for G too). Likewise, the same applies if we are seeking an Abelian witness, (or
nilpotent, solvable, etc). We call such a group G almost π-Abelian.

In fact the statement that every finite group is π-bounded is equivalent to the statement
that every almost π-Abelian group is an almost Abelian π-group. For if G is an almost
π- Abelian group which is not a π-group, then G is certainly not π-bounded, for G itself
is then not a π-witness, but no proper subgroup of G has as many classes of π-elements
as G does, so there is no π-witness for G at all. If G is an almost π-Abelian π-group,
then G is almost Abelian, since G has more classes of π-elements that any of its proper
subgroups, so G has more conjugacy classes than any of its proper subgroups, as all
relevant subgroups are π-groups.

On the other hand, if G is a finite group of minimal order subject to not being π-
bounded, then G is certainly not a π-group, but as we remarked above, G must be almost
π-Abelian, otherwise a proper subgroup H of G with kπ(H) ≥ kπ(G) is π-bounded by
the minimality of G, and then a π-witness for H is a π-witness for G, contrary to G not
being π-bounded.
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While it seems impractical to classify almost π-Abelian groups G for general π, or
even the almost simple such G, the following properties of almost π-Abelian groups seem
noteworthy:

Lemma 3.3. Let G be an almost π-Abelian finite group for some set of primes π. Then:

(a) Oπ′(G) is contained in the Frattini subgroup of G.
(b) k(G) ≤ kπ(G)kπ′(G), and furthermore, equality holds if and only if G is an almost

Abelian π-group. In particular, if equality holds, then G is π-bounded.

Proof. Assume that N = Oπ′(G) is not contained in the Frattini subgroup of G. Then
there is a maximal subgroup M with G = NM . Then G/N ∼= M/Oπ′(M), so M has
the same number of π-classes as G does, contrary to G being almost π-Abelian. Thus we
have (a).

For (b), we have k(G) =
∑

x kπ(CG(x)), where x runs through a set of representatives
for the conjugacy classes of π′-elements of G. For each such x, we have (by hypothesis)
that kπ(CG(x)) ≤ kπ(G), and the inequality is strict unless x ∈ Z(G). Hence the first
claimed inequality follows. Furthermore, it is clear that the inequality is strict unless
CG(x) = G for each π′-element x ∈ G.

Hence if equality holds, then every π′-element of G is central, so G ∼= Oπ′(G)×Oπ(G)
by Schur–Zassenhaus. Then (a) forces Oπ′(G) = 1. On the other hand, an almost Abelian
π-group is clearly almost π-Abelian, so (b) follows. �

Proposition 3.4. Let G be a finite group, and let G∗ be a central extension of G by a
finite Abelian subgroup Z. Assume that H is a π-witness for G, and that either H is
cyclic, or the order of H is prime to (the π-part of) the order of the Schur multiplier of
G. Then Oπ(H∗) is a π-witness for G∗, where H∗ is the full preimage of H in G∗.

Proof. If Z is π′-group, then we have kπ(G∗) = kπ(G), so it is no loss of generality to
suppose that Z is a π-group (for otherwise, we may just extend in two stages, first by
Oπ′(Z) (which does not change the number of π-classes) and then by Oπ(Z)).

Each π-element x ofG has |Z| preimages inG∗, all of which are π-elements, and for every
π-element y∗ of G∗ the image y∗Z is a π-element of G. Hence we have kπ(G∗) ≤ |Z|kπ(G),
and equality can only hold if whenever y∗ is a π-element of G∗, no two elements of the
coset y∗Z are conjugate in G∗.

If H is cyclic, then its full preimage H∗ in G∗ is Abelian of order |Z||H|, and then

k(H∗) = |Z|k(H) ≥ |Z|kπ(G) ≥ kπ(G∗).

If H has order coprime to (the π-part of) the order of the Schur multiplier of G, then
the full preimage of H in G∗ has order |Z||H| and has |Z|k(H) conjugacy classes, so we
still obtain k(Oπ(H∗)) ≥ kπ(G∗). �

In the next result, which is due to the third author and was used in [13, Prop. 3] without
proof, a related weaker variant of π-boundedness is proven:

Lemma 3.5. Let G be a finite group and π be a set of prime divisors of |G|, say π =
{pi | 1 ≤ i ≤ n}. Then there are pi-subgroups Qi of G such that

kπ(G) ≤
n∏
i=1

k(Qi).
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In particular, kπ(G) ≤ |G|π.

Proof. For each i, choose a pi-subgroup Qi of G with k(Qi) maximal among pi-subgroups.
We proceed by induction on |π|, the result being clear when |π| = 1.

Suppose then that |π| > 1 and let π1 = π\{p1}. Then

kπ(G) =
∑
x

kπ1(CG(x)),

where x runs over a set of representatives for the conjugacy classes of p1-elements of G.
By induction, for each such x, we have

kπ1(CG(x)) ≤
n∏
i=2

k(Qi)

(for we may assume the relevant inequality in CG(x) by induction, but with Qi replaced by
some pi-subgroup Ri of CG(x) with its number of conjugacy classes maximised. However,
our choice of Qi certainly yields k(Ri) ≤ k(Qi)). It is clear that the number of conjugacy
classes of p1-elements of G is at most k(Q1), by the case |π| = 1. Hence we do have

kπ(G) ≤
n∏
i=1

k(Qi),

as claimed. �

Remark 3.6. (1) Note that the subgroups Qi may be chosen to be almost Abelian (if
any Qi is not almost Abelian, then it has a proper subgroup Ri with k(Ri) ≥ k(Qi), and
then we can replace Qi by Ri).

(2) Notice that kπ(G) = |G|π if and only if G has an Abelian Hall π-subgroup H and
a normal π-complement K:

If H and K exist, then the equality clearly holds. Conversely, if equality holds, then
the argument of the proof of Lemma 3.5 shows that we must have kp(G) = |P | for each
prime p ∈ π and each Sylow p-subgroup P of G. In particular, this requires that any two
elements of P conjugate in G are already conjugate in P , in which case G has a normal
p-complement by Burnside’s transfer theorem. Since p ∈ π was arbitrary, we see that G
has a normal π-complement, L say. Then

[G : L] = kπ(G) = kπ(G/L) = k(G/L)

and G/L is Abelian. By the Schur–Zassenhaus theorem, we know that G has a Hall
π-subgroup M , and M ∼= G/L is Abelian.

(3) Let us recall a very useful fact proved by Fulman and Guralnick in [3, Lemma 2.3]:
If G is a finite group and N EG then kπ(G) ≤ kπ(N) kπ(G/N).

3.2. Symmetric and alternating groups are π-bounded. We now investigate π-
boundedness of nearly simple groups. For symmetric and alternating groups, we have a
conceptual approach for large primes. We say that a finite tuple T = (b1, b2, . . . , bt) of
integers is separable if for each i ≥ 2, there is a prime qi which divides bi, such that qi
does not divide

∏
j<i bj. Note that T is certainly separable if its elements are pairwise

coprime.
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Let T = (b1, b2, . . . , bt) be a fixed separable tuple of integers and let n be a fixed positive
integer. Each partition λ of n with all its parts drawn from T corresponds to a unique
ordered t-tuple of non-negative integers (a1, . . . , at) with

∑t
i=1 aibi = n, and each such

t-tuple does yield a unique partition of n with parts drawn from T (with ai parts of size bi
for 1 ≤ i ≤ t). In the spirit of [4] we define the Gödel number gT (λ) of λ with respect to
T to be the positive integer

∏t
i=1 b

ai
i . Note that when λ is a partition of n with all parts

drawn from T , then Sn has an Abelian subgroup of order gT (λ), which is isomorphic to

Ca1
b1
× . . .× Cat

bt
.

Theorem 3.7. For a separable tuple of integers T 6= ∅, the number of partitions of n with
all their parts drawn from T is less than or equal to the maximal value M of gT (λ) as λ
runs through partitions of n with all parts drawn from T , and equality can only hold when
T = (1) or 2 ∈ T . Furthermore, Sn has an Abelian subgroup of order M .

Proof. Since T is separable, it follows (using uniqueness of prime factorization) that if λ
and µ are different partitions of n with all their parts drawn from T , then gT (λ) 6= gT (µ).
For the t-tuple (a1, . . . , at) associated to the partition λ of n may be recovered from the
Gödel number gT (λ), since for i ≥ 2, aiνqi(bi) = νqi(gT (λ)) −

∑
j>i ajνqi(bj), and then

a1 = (n−
∑t

i=2 aibi)/b1.
Thus, the number of such partitions is the number of associated Gödel numbers. All

possible Gödel numbers are less than or equal to M . Furthermore, 2 cannot occur as the
Gödel number of a relevant partition when 2 /∈ T , so the number of such partitions is
strictly less than M in that case unless T = (1). �

Corollary 3.8. Let n ≥ 9 be an integer and let π be a set of primes each greater than√
n. Then Sn has an Abelian π-subgroup of order greater than 2kπ(Sn).

Proof. Let π = {p1 < . . . < pt}, where p1 >
√
n. Note that σ ∈ Sn is a π-element if and

only if the lengths of its disjoint cycles are all drawn from T := (1, p1, . . . , pt), and T is
clearly separable. Since n > 8, we have 2, 3 /∈ π. Theorem 3.7 allows us to conclude that
the number of conjugacy classes of π-elements of Sn is less than the maximal order M
of an Abelian π-subgroup of Sn. Furthermore, all relevant Gödel numbers gT (λ) are odd
integers as 2 6∈ π. As also 3 /∈ π, we may exclude at least M+1

2
integers less than M as

candidates for Gödel numbers, and the claim follows. �

More precisely, under the hypotheses of Corollary 3.8, the number of conjugacy classes
of π-elements of Sn is bounded above by the number of π-numbers less than or equal to
M , where M is the maximum order of an Abelian π-subgroup of Sn.

Remark 3.9. It is not difficult to prove that under the hypotheses of the corollary, we

have M ≤ p
n/p1
1 , but it need not be the case that M ≤ p

bn/p1c
1 . For example, if n = 19

and π = {5, 7}, then we have

M = 5 · 72 > 5b
19
5
c = 53.

Similarly, it need not be the case under the hypotheses of the corollary that the “obvi-

ous” Abelian π-subgroup of order p
bn/p1c
1 has order greater than 2kπ(Sn). For example,
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when n = 9 and π = {5, 7}, we see that S9 has three conjugacy classes of π-elements con-
taining elements of respective orders 1, 5 and 7. In this case, we have M = 7 > 2kπ(S9),
but we do not have

2kπ(S9) < p
b n
p1
c

1 = 5.

We now deal with the small primes.

Proposition 3.10. The symmetric group Sn, n ≥ 5, is π-bounded for all π containing a
prime p ≤

√
n, with a nilpotent witness when π ( π(Sn).

Proof. Let π ⊆ π(Sn) be a set of primes. Let p be the smallest prime in π. Then Sn has
an elementary Abelian subgroup Ck

p with k = bn/pc. On the other hand,

kπ(Sn) ≤ k(Sn) ≤ exp(π
√

2n/3) ≤ exp(2.6
√
n)

by the upper bound for p(n) in Section 2.2. Thus, to conclude, we need that p(n−p)/p ≥
exp(2.6

√
n), that is, ((n− p)/p) ln p ≥ 2.6

√
n, that is,

√
n/p ≥ 2.6/ ln p + 1/

√
n. This is

satisfied whenever p ≥ 17 or n ≥ 195. For n ≤ 194, using the precise value of p(n) one sees
that the claim holds whenever n ≥ 30. For the remaining values of n and p, we use the
exact number of πp-partitions of n, where πp := {r ∈ π(Sn) | r ≥ p} to see the assertion
unless p = 2 and n ≤ 17. For the latter cases, a subgroup Dk

8C
l
2 with bn/2c = 2k + l,

l ∈ {0, 1} has sufficiently many classes unless n ∈ {5, 7, 9, 11} and π contains 3. We can
then choose the following nilpotent witness H:

n 5 7 9 11
min π′ 5 5 7 7

kπ(Sn) ≤ 6 14 28 55
H C3C2 D8C3 D8C3C2 D2

8C3

�

As already observed in Proposition 2.4, the groups S5 and S6 are almost Abelian and
hence there can be no nilpotent witness for π the set of all primes.

Corollary 3.11. The alternating group An, for n ≥ 5, is π-bounded for any π.

Proof. Let p ∈ π be minimal. Note that if p > 2 then any π-subgroup of Sn is contained
in An, so the assertion follows from Corollary 3.8 if p >

√
n. If 2 < p ≤

√
n, since k(An) <

k(Sn) for n ≥ 5 (see e.g. [3, Cor. 2.7]), the argument in the proof of Proposition 3.10
shows the claim for n ≥ 30. For smaller values of n, we get the result by using the precise
number of πp-partitions.

Finally assume that p = 2. For n ≥ 18 and n = 16 an elementary Abelian 2-subgroup
does the job. For 10 ≤ n ≤ 17, n 6= 13, we can take a subgroup Dk

8C
l
2 with b(n− 2)/2c =

2k+ l, l ∈ {0, 1}, while for n = 13 a Sylow 2-subgroup has 56 = k(A13)+1 classes, and for
n = 8 a Sylow 2-subgroup has 16 = k(An) + 2 classes. For the remaining values of n there
is no suitable 2-subgroup. But for n ∈ {6, 7, 9}, if 3 ∈ π then we may choose an elementary
Abelian 3-subgroup, while if 3 /∈ π then kπ(An) is small enough for a 2-subgroup to work.
Finally, for n = 5, we take H = C5 if 5 ∈ π and H = C3 if π ⊆ {2, 3}. �

Proposition 3.12. Let G be a covering group of an alternating group An, n ≥ 5. Then
G is π-bounded for all π.
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Proof. By Corollary 3.11 we only need to consider proper covering groups. We will deal
with the exceptional covers of A6 and A7 later, so for the moment we have |Z(G)| = 2
and thus may assume 2 ∈ π by Lemma 3.1. Then

kπ(2.An) ≤ k(2.An) ≤ 2k(An) ≤ 2k(Sn) = 2p(n),

where the last inequality comes from [3, Cor. 2.7]. Now An has an elementary Abelian
subgroup of order 2k, where k = b(n−2)/2c and then its full preimage in 2.An has at least
2k conjugacy classes. Comparison with the asymptotic formula for p(n) from Section 2.2
shows that 2k is at least equal to our bound on kπ(2.An) for all n ≥ 50, whence the claim
in these cases.

Note that our estimate for k(2.An) is very crude. The precise number of irreducible
characters (and hence of conjugacy classes) of 2.An is given by the number of even par-
titions of n, plus the number of partitions all of which parts are odd and distinct, plus
the number of partitions of n into distinct parts, plus the number of partitions into m
distinct parts such that n ≡ m (mod 2). Using this precise value, we obtain the claim for
n ≥ 22.

Assume 3 ∈ π. Then we use that k(2.An) is less than the order of the full preimage of
an elementary Abelian 3-subgroup of An in 2.An unless (n, p) = (5, 5) or (8, 7). If n = 5
then a subgroup C6 does the job, for n = 8 we can take C30. For 3 /∈ π the maximal
elementary Abelian 2-subgroups are sufficient whenever n ≥ 14, or n = 10, 12. For the
remaining values of n we take H as indicated below:

n 5 6 7 8 9 11 13
kπ(2.An) ≤ 7 9 11 12 11 23 37

H C10 C10 C14 C14 C14 C2
5 C70

Finally, for the exceptional covering groups of A6 we take H = C5 when 5 ∈ π, and
H = 32 : 4 when 5 /∈ π (respectively their full preimages), and for the exceptional covering
groups of A7 we take H = C7 when 7 ∈ π, the full preimage of C6 when 2, 3 ∈ π, of C5

when 5 ∈ π, and an Abelian subgroup C4 or C2
3 otherwise. �

3.3. Sporadic groups are π-bounded.

Proposition 3.13. Let G be almost simple with F ∗(G) a sporadic simple group or the
Tits simple group. Then G is π-bounded for all π, with a nilpotent witness if π ( π(G).

Proof. For p a prime let us denote πp := {r ∈ π(G) | r ≥ p}. Observe that if kπp(G) ≤ p,
then G is π-bounded for all {p} ⊆ π ⊆ πp, with witness H ∼= Cp. Using the explicitly
known character tables of the groups in question, we determine those primes p such that
kπp(G) > p. For these cases, we compare kπp(G) to the order of a maximal elementary
Abelian p-subgroup H of G given in [5, Tab. 5.6.1]. This leaves 27 pairs (G, p), mostly
with p = 2. We now discuss these.

For M11 we need to consider p = 2. If 3 ∈ π then H = C2
3 does the job, if 11 ∈ π then

we take H = C11, and else a Sylow 2-subgroup can be chosen. For M12 again p = 2 is
open, and we take H = C2

4 . For M12.2 at p = 2 we take C10 × C2 when 5 ∈ π, and a
Sylow 2-subgroup H (with k(H) = 17) else. For J1 we take C19 if 19 ∈ π, C15 if p = 3
and 5 ∈ π, C7 if p = 3 and 7 ∈ π, C11 if p = 3 and 11 ∈ π; C15 if {2, 3, 5} ⊆ π, C11 if
p = 2 and {3, 5} 6⊆ π, and C3

2 else.
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For M22 with p = 5 we take C11 if 11 ∈ π and C5 else; for J2 with p = 2 take C2
5 when

5 ∈ π, and C4
2 else, for J2.2 with p = 2 take C2

5 if 5 ∈ π, and a Sylow 2-subgroup H (with
k(H) = 22) else; for M23 with p = 3, 5 take C11 if 11 ∈ π, take C2

3 if p = 3 and 11 /∈ π,
take C23 when p = 5 and 23 ∈ π, and C5 otherwise. For HS or HS.2 with p = 2 take a
Sylow 2-subgroup. For J3 with p = 5 take C17 if 17 ∈ π, and C5 else; when p = 2 take C3

3

when 3 ∈ π and C4
2 else; for J3.2 with p = 2 take C34 if 17 ∈ π and a suitable subgroup

H of order 128 with k(H) = 26 else.
For M24 with p = 3, 5 take C23 if 23 ∈ π, C15 if 5 ∈ π, and C2

3 else. For McL with
p = 2 take C4

3 when 3 ∈ π, and C4
2 else; for McL.2 with p = 2 take again C4

3 when 3 ∈ π,
C2

5 when 5 ∈ π, and C4
2 otherwise. For He and He.2 with p = 3 take C2

7 if 7 ∈ π and C2
3

otherwise. For Suz.2 with p = 2 take C5
3 when 3 ∈ π and C6

2 else. For ON and ON.2
with p = 5 take C19 or C31 or C2

5 , for ON and ON.2 with p = 2 take H = C3
4 . For Co3

with p = 2 we may take C3
4 , for HN.2 with p = 2 take C4

3 if 3 ∈ π and C6
2 else. For Ly

with p = 2 take C5
3 when 3 ∈ π, C3

5 when 5 ∈ π, C31 when 31 ∈ π, C67 when 67 ∈ π and
C4

2 else. For Ly with p = 7 or p = 11 we take Cr, r ∈ {31, 67} if r ∈ π, and Cp else. For
Th with p = 2 take H = 21+8, for Fi23 with p = 7 either take C11 or C7.

For J4 with p ≥ 3 we may take Cr for the maximal r ∈ π provided that r ≥ 23, we take
C15 when p = 3 and 5 ∈ π, and C2

3 else, we take C35 when p = 5 and 7 ∈ π, and C5 else,
and we take C7 when p = 7. �

3.4. Groups of Lie type. For groups of Lie type, we start out with the following trivial
consequence of Theorems 2.9 and 2.12 in conjunction with Lemma 3.1:

Corollary 3.14. Let S be simple of Lie type in characteristic p, not one of L2(q), L3(q),
U3(q), U4(2) or S4(2)′. If G is either almost simple with F ∗(G) = S or quasi-simple with
G/Z(G) = S and (|Z(G)|, p) = 1, then G is π-bounded for any π containing p.

The following easy generalisation of a well-known result deals with p /∈ π for groups of
simply connected type.

Theorem 3.15. Let G be a connected reductive algebraic group such that [G,G] is simply
connected. Let F : G→ G be a Frobenius map and T ≤ G be an F -stable maximal torus.
Let π be a set of primes not containing the defining prime of G. Then

kπ(GF ) =
1

|W |
∑
w∈W

|TwF |π

where W = NG(T)/T is the Weyl group of G. In particular, (TwF )π is a π-witness for
GF for any w ∈ W with |TwF |π maximal.

Proof. Our assumption on π means we are only interested in semisimple conjugacy classes
of G := GF . By [2, Prop. 3.7.3] there is a natural bijection between semisimple conjugacy
classes of G and F -stable W -orbits in T preserving element orders, so kπ(G) = |(T/W )Fπ |.
Now we have

|(T/W )F | = 1

|W |
∑
w∈W

|TwF |

[2, Prop. 3.7.4], and again the underlying bijection descends to π-elements. The stated
formula follows, as well as the fact that the maximal |TwF |π gives a π-witness. �
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Proposition 3.16. Let G be an exceptional covering group of a simple group of Lie type.
Then G is π-bounded for any π.

Proof. In the proof of Theorem 2.12 we found witnesses H for most of these covering
groups not being almost Abelian, and these also provide π-witnesses whenever H is a
π-group. It thus only remains to consider the following: Coverings of U4(3), U6(2),
S6(2), O7(3), O+

8 (2), G2(3), G2(4), F4(2) or 2E6(2) with π not containing the defining
characteristic, and coverings of L3(4) and 2B2(8).

Now S = Sp6(2),O+
8 (2), G2(3), G2(4), F4(2) are of simply connected type, and |Z(G)|

is a p-power, so we are done with Theorem 3.15 when p /∈ π.
For S = U4(3) if 3 /∈ π then kπ(G) ≤ 8, and we may take H = C4

2 when 2 ∈ π,
respectively Cp for p ∈ π when 2, 3 /∈ π.

The group S = U6(2) has an elementary Abelian subgroup C4
3 , which is large enough

for all covering groups G of S with 3 ∈ π. The maximal kπ(G) for 2, 3 /∈ π is 5, less or
equal to any p ∈ π.

The group S = O7(3) has an elementary Abelian subgroup C5
2 , which is large enough

for all covering groups G of S with 2 ∈ π. If 2, 3 /∈ π then kπ(G) ≤ 5.
The group S = 2E6(2) has an elementary Abelian subgroup C5

3 , which works when
3 ∈ π, a subgroup C2

5 for 2, 3 /∈ π, 5 ∈ π, C2
7 for 2, 3, 5 /∈ π, and for 2, 3, 5, 7 /∈ π,

kπ(G) ≤ 8.
The various 2-covers G of L3(4) different from 42.L3(4) possess a 2-subgroup U with

k(U) ≥ k(G), and thus the preimage of U in any 2′-covering shows the claim when 2 ∈ π.
For G = 42.L3(4) with k(G) = 112 a subgroup C2

4C7 is a witness when 7 ∈ π, else a
2-subgroup U with k(U) = 88 does the job. When 2 /∈ π then kπ(G) ≤ 6, and in fact
kπ(G) = 2 if 5, 7 /∈ π, so we are done again.

Finally, the group S = 2B2(8) has a subgroup C13 which works when 13 ∈ π. For 13 /∈ π
a Sylow 2-subgroup of G does the job, and when 2, 13 /∈ π then kπ(G) ≤ 5. �

We thus obtain Theorem 1(3):

Corollary 3.17. Let G be the full covering group of a simple group of Lie type in char-
acteristic p. Then G is π-bounded for any π.

Proof. By Proposition 3.16 we may assume thatG is not an exceptional covering and hence
|Z(G)| is prime to p. Then, if p /∈ π we argue as follows: there is a simple algebraic group
G of simply connected type such that G = GF and the claim follows by Theorem 3.15.

For p ∈ π this is essentially Corollary 3.14; that is, only the exceptions mentioned in
that result have to be discussed. It follows from the proof of Propositions 2.5 and 2.6 that
SL2(q) is π-bounded when 2 ∈ π, and that SL3(q), SU3(q) are π-bounded when 3 ∈ π. For
G = SL2(q) with 2 /∈ π we have kπ(G) ≤ q, so a Sylow p-subgroup provides a witness.
Similarly, for G = SL3(q) or SU3(q) with 3 /∈ π we have kπ(G) < q2 and so again a Sylow
p-subgroup can be chosen as witness. For G = SU4(2) if 3 ∈ π there is an Abelian witness
of order 27, when 3 /∈ π then kπ(G) ≤ 6 and an elementary Abelian subgroup C3

2 does
the job. �

We do not see how to treat the case of almost simple groups of Lie type when p /∈ π,
but we offer some partial results for certain sets π:
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Corollary 3.18. Let G be connected reductive with a Frobenius map F and let π be a
set of primes not containing the defining prime of G and such that the centralisers of all
π-elements of GF are connected. Then G = GF is π-bounded.

Proof. The proof of Theorem 3.15 extends to this case, since the only place at which the
assumption on [G,G] was used is to ensure that centralisers of semisimple (π-) elements
are connected, which here we guarantee by our assumption on π. �

Corollary 3.19. Let G be simple of Lie type, or the group of F -fixed points of a simple
algebraic group G of adjoint type in characteristic p. Assume either p ∈ π, or one of:

(1) G has type 3D4, F4 or E8;
(2) 2 /∈ π, and G has type Bn, Cn (n ≥ 2), Dn, 2Dn (n ≥ 4) or E7; or
(3) 3 /∈ π and G has type E6 or 2E6.

Then G is π-bounded.

Proof. If p ∈ π we may invoke Corollary 3.14. So assume p /∈ π. If G is of adjoint type,
then the claim follows from Corollary 3.18 as centralisers of semisimple elements of order
prime to 2 in case (2), respectively prime to 3 in case (3), are connected. For the simple
groups we may take a π-witness for the simply connected covering G̃ whose image in G
is then also a π-witness for G by Lemma 3.1 as Z(G̃) is a π′-group. �

4. p′-bounded groups

We now specialise to the case when π contains all but one prime divisor of |G|. If
G is π-bounded for π(G) \ π = {p} we also say that G is p′-bounded. Recall that G is
p′-bounded if there is a p′-subgroup H ≤ G with k(H) ≥ l(G), where l(G) denotes the
number of p′-classes of G, that is, the number of irreducible p-Brauer characters of G.
One motivation for our study is the application to the l(B)-conjecture, see Corollary 4.6.

Remark 4.1. We are not aware of any finite group that is not p′-bounded for all primes p.
Recall that such a group necessarily has to be non-solvable.

4.1. Quasi-simple groups are p′-bounded. We first investigate p′-boundedness for the
finite quasi-simple groups G and in particular prove Theorem 2.

Proposition 4.2. Let G be a covering group of a sporadic simple group or of the Tits
simple group. Then G is p′-bounded for all primes p.

Proof. By Proposition 3.13 we only need to consider proper coverings, with Z(G) 6= 1.
From the list of ranks of covering groups of sporadic groups in [5, Tab. 5.6.1] it follows
that there are at least two primes r such that there exist elementary Abelian r-subgroups
H with k(H) ≥ maxp 6=r{kp′(G)}, for G/Z(G) one of Co1, F i

′
24, B. Furthermore, there is

an elementary Abelian r-subgroup of sufficient rank for at least one prime r for G/Z(G)
one of McL, Suz,Ru,ON,F i22, while this argument does not apply for any prime for
G/Z(G) ∈ {M12,M22, J2, J3, HS}.

For the groups G/Z(G) ∈ {McL, Suz,Ru,ON,F i22} we have that kp′(G) for the one
missing prime p is still bounded above by the size of some elementary Abelian p′-subgroup.

Thus we are left with the covering groups of the five groups

M12,M22, J2, J3, HS.
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For 2.M12 we take H = C22 for p = 3, 5, and a Sylow 2-subgroup for p = 11. For the
covering groups of M22 we take the full preimage of C11 for p 6= 11, and C4

2 respectively
C5

2 , respectively a Sylow 2-subgroup and its 3-coverings for p = 11. For 2.J2 we take
H = C2

5 × C2 for p = 3, 7, and H = C3
2 × C3 for p = 5, for 3.J3 we take C57 for p 6= 19,

and C4
3 for p = 19, and for 2.HS we take C2

5 × C2 for p 6= 5, and C3
4 for p = 5. �

Let G be a simple algebraic group of simply connected type and F : G→ G a Steinberg
endomorphism, with finite group of fixed points G = GF . All finite simple groups of Lie
type can be obtained as G/Z(G), except for 2F4(2)′ which was discussed in Proposition 4.2.

Proposition 4.3. Let G be a quasi-simple group of Lie type and p the defining charac-
teristic of G. Then G is p′-bounded.

Proof. By Lemma 3.1 we may assume that Op(G) = 1 and hence in particular that G
is not an exceptional covering group of G/Z(G) (see [11, Tab. 24.3]). First assume that
G = GF is obtained as above. The irreducible p-modular representations of G are known
to be parametrised by q-restricted weights, where q is the absolute value of all eigenvalues
of F on the character group of an F -stable maximal torus of the underlying algebraic
group G (see [1, Thm. 3.2]). There are precisely qr such, where r is the rank of G, so
l(G) = qr.

On the other hand, we will exhibit an Abelian p′-subgroup T of G (in fact, a maximal
torus) of order |T | > qr, which will complete the proof. For G = SLr+1(q) we take as
T the subgroup generated by a Singer cycle, of order (qr+1 − 1)/(q − 1), for SUr+1(q),
Sp2r(q) and Spin2r+1(q) with r ≥ 2, and for Spin−2r(q) with r ≥ 4 a Sylow 2-torus of order
(q + 1)r, and for Spin+

2r(q) with r ≥ 4 a torus of order (q2 + 1)(qr−2 + 1). For the groups
of exceptional type, it is easy to see that there is such a torus T , see Table 1.

Table 1. Large tori in exceptional groups

G |T | G |T |
2B2(q

2) q2 +
√

2q + 1 F4(q) (q + 1)4
2G2(q

2) q2 +
√

3q + 1 E6(q) (q2 + q + 1)3

G2(q) (q + 1)2 2E6(q) (q + 1)6
3D4(q) (q2 + q + 1)2 E7(q) (q + 1)7
2F4(q

2) (q2 +
√

2q + 1)2 E8(q) (q + 1)8

Now assume that Z ≤ Z(G) is a central (p′-)subgroup. Then |Z| ≤ q + 1 and thus
l(G/Z) = (qr − 1)/|Z| + 1 ≤ (qr + q)/|Z| (see [1, §4.2]), while the image of T in G/Z
has order |T |/|Z|. It is easily checked that (qr + q)/|Z| ≤ |T |/|Z|, showing that T/Z is a
witness for G/Z. �

We can now prove Theorem 2:

Proof of Theorem 2. We consider the cases for S = G/Z(G) according to the classification
of finite simple groups. If S is an alternating group, then G is p′-bounded for any p by
Proposition 3.12. If S is sporadic, the claim is in Proposition 4.2. Now assume that S is
of Lie type. If p is the defining characteristic, the assertion was shown in Proposition 4.3
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while if p is not the defining characteristic of S, it is in Corollary 3.14, Proposition 3.16
and Corollary 3.17. �

4.2. p′-bounded almost quasi-simple groups. We extend the results of the previous
section to some classes of almost quasi-simple groups.

Proposition 4.4. Let G be such that F ∗(G) is a covering group of a sporadic simple
group or of the Tits simple group. Then G is p′-bounded for all p.

Proof. By Proposition 4.2 we may assume that F ∗(G) 6= G. Then G/F ∗(G) is of order
at most 2, hence the claim follows with Lemma 3.2 when p = 2. Now assume that
p ≥ 3. A large elementary Abelian 2-subgroup, or a Sylow 2-subgroup prove our claim
for F ∗(G)/Z(F ∗(G)) ∈ {M22, HS,He, F i22, F

′
24,

2F4(2)′}. For M12.2 we take C2
2 × C5 for

p = 3, 11, and a Sylow 2-subgroup for p = 5, for 2.M12.2 we take a subgroup C3
2C4. For J2

we take a Sylow 5- or a Sylow 2-subgroup, for J3 we take a Sylow 19- or Sylow 3-subgroup,
for McL we take a Sylow 5- or a Sylow 3-subgroup, for Suz we take a Sylow 2-subgroup
or an elementary Abelian group of order 35, for ON a Sylow 19- or Sylow 7-subgroup,
and for HN an elementary Abelian subgroup of order 26 or 34. �

Proposition 4.5. Let G be such that F ∗(G) is a covering group of the alternating group
An, n ≥ 5. Then G is p′-bounded for all p.

Proof. By Proposition 3.12 we may assume that F ∗(G) 6= G. Then G/F ∗(G) is a 2-
group, hence the claim follows with Lemma 3.2 when p = 2. Now assume that p ≥ 3. By
Corollary 3.8 and Proposition 3.10 we may assume Z(G) 6= 1.

Then Sn contains an elementary Abelian 2-subgroup H of order 2k where k = bn/2c.
Using the same estimate as in the proof of Proposition 3.12 for n ≥ 26, and the explicit
value of k(Sn) one sees that H solves our problem for n ≥ 20 when G = 2.Sn. Looking
at elementary Abelian 3-subgroups of Sn only the following cases are left for 2.Sn, where
we can choose H as indicated:

n = 5 7 8 9 11 14
l(2.Sn) ≤ 10, 8 21, 13 25 22 72, 34 166

H C6C2, C8 C24, C14 D2
8 D2

8 D2
8.C3, D

2
8.C2 D3

8C2

Finally, the exceptional covering group G = 3.S7 has l(G) ≤ 19, for which we can take
H = C2

6 , and G = 6.S7 has l(G) ≤ 29, and we can take a cyclic subgroup of order 30
or 42. For S := F ∗(G)/Z(F ∗(G)) = A6, we choose H according to the following list:

G 2.S.22 3.S6 3.S.22 3.S.23 6.S6 6.S.22 3.S.22

l(G) 18, 12 13 10 19 20 17 17
H C20, C16 C3 × C3

2 C12 C24 C24 C24 C24

�

4.3. The number of characters in a p-block. Finally, we discuss the relation of p′-
boundedness to the l(B)-conjecture put forward by the first and third author [10]. Recall
that this stipulates that for any p-block B of a finite group G, with defect group D, we
have l(B) ≤ ps(D), where s(D) denotes the sectional rank of D.
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Proof of Theorem 3. Assume that G is p-constrained, that is, F ∗(G) = Op(G) is a p-
group. Then G has a unique p-block, the principal block B0(G). It is sufficient to see that
l(B0(G)) = l(G) ≤ |V |, where P = Op(G) and V = P/Φ(P ). We claim that Ḡ = G/P
acts faithfully on V . Suppose that x ∈ G acts trivially on V . Then so does xp′ , and by
coprime action, xp′ acts trivially on P . So x is a p-element. We conclude that CG(V ) is a
p-group, so it is contained in P , proving our claim. We are thus reduced to the situation
that G = V Ḡ with V = Op(G) elementary Abelian and Ḡ acting faithfully on it.

Note that l(G) = l(Ḡ) as all simple modules in characteristic p have Op(G) in their
kernel. By assumption there is a p′-subgroup H ≤ Ḡ with k(H) ≥ l(Ḡ). Then we get by
the (proved) k(GV )-conjecture that

l(G) = l(Ḡ) ≤ k(H) < k(V H) ≤ |V |,
as desired. �

Our Main Theorem 2 on quasi-simple groups thus implies:

Corollary 4.6. Let V G be an extension of an elementary Abelian p-group V by a quasi-
simple group G acting faithfully on V . Then l(V G) < ps(D), where D is a Sylow p-subgroup
of V G, and s(D) denotes the sectional rank of D.

Guralnick and Tiep [6] showed that all but finitely many quasi-simple groups G that
are not of Lie type in characteristic p do satisfy k(V G) < |V |/2 for any irreducible kG-
module V , by a detailed analysis of the possible modules V .

Our investigations on p′-boundedness lead us to formulate the following:

Conjecture 4.7. Let p be any prime. Then every finite group G is p′-bounded, that is,

l(G) ≤ max{k(H) | H ≤ G is a p′-subgroup}.
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