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A MURNAGHAN–NAKAYAMA RULE FOR VALUES
OF UNIPOTENT CHARACTERS IN CLASSICAL GROUPS

FRANK LÜBECK AND GUNTER MALLE

Abstract. We derive a Murnaghan–Nakayama type formula for the values of unipotent characters of
finite classical groups on regular semisimple elements. This relies on Asai’s explicit decomposition of
Lusztig restriction. We use our formula to show that most complex irreducible characters vanish on
some `-singular element for certain primes `.

As an application we classify the simple endotrivial modules of the finite quasi-simple classical groups.
As a further application we show that for finite simple classical groups and primes ` ≥ 3 the first Cartan
invariant in the principal `-block is larger than 2 unless Sylow `-subgroups are cyclic.

1. Introduction

The classical Murnaghan–Nakayama rule provides an efficient recursive method to compute the values
of irreducible characters of symmetric groups. This method can be adapted to the finite general linear
and unitary groups, where it then allows to compute values of unipotent characters not on arbitrary but
just on regular semisimple elements, see [10, Prop. 3.3]. This adaptation uses the fact that the unipotent
characters of general linear groups coincide with Lusztig’s so-called almost characters and then applies
the Murnaghan–Nakayama rule for the symmetric group.

In the present paper, we derive a Murnaghan–Nakayama rule for the values of unipotent characters
of the finite classical groups on regular semisimple elements, see Theorem 3.3. Our approach here is not
via a corresponding formula for the underlying Weyl group (of type Bn or Dn), since for classical groups
Lusztig’s Fourier transform is non-trivial and thus the relation between almost characters and unipotent
characters becomes quite tricky. Instead we combine Asai’s result expressing the decomposition of Lusztig
induction in terms of hooks and cohooks of symbols and which already has a Murnaghan–Nakayama like
form, with Lusztig’s character formula.

As a first application we derive a vanishing result for irreducible characters of quasi-simple groups on
`-singular elements:

Theorem 1. Let ` > 2 be a prime and G a finite quasi-simple group of `-rank at least 3. Then for any
non-trivial character χ ∈ Irr(G) there exists an `-singular element g ∈ G with χ(g) = 0, unless either G
is of Lie type in characteristic `, or ` = 5 and one of:

(1) G = L5(q) with 5||(q − 1) and χ is unipotent of degree χ(1) = q2Φ5;
(2) G = U5(q) with 5||(q + 1) and χ is unipotent of degree χ(1) = q2Φ10;
(3) G = Ly and χ(1) ∈ {48174, 11834746}; or
(4) G = E8(q) with q odd, d`(q) = 4 and χ one character in the Lusztig-series of type D8.
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The second main ingredient in the proof, apart from our Murnaghan–Nakayama formula, is a result
asserting the existence of `-singular regular semisimple elements in classical groups of Lie type (see
Lemma 2.1) which may be of independent interest.

We then apply this vanishing result in order to classify simple endotrivial modules over fields k of
positive characteristic ` for finite classical groups.

Theorem 2. Let G be a finite quasi-simple group of classical Lie type Bn, Cn, Dn or 2Dn with non-
cyclic Sylow `-subgroup. Then there exists a non-trivial simple endotrivial kG-module V if and only if
G = Sp8(2), k has characteristic ` = 5, and dim(V ) = 51.

Our approach relies on the fact, proven in [11, Thm. 1.3] that any endotrivial module is liftable to a
characteristic 0 representation, which can then be studied by ordinary character theory. In particular,
its character cannot vanish on any `-singular element, and this latter condition can be checked with the
previous Murnaghan–Nakayama formula.

As a further application we give a (partial) answer to a question of Koshitani, Külshammer and
Sambale [9], which is then used in [10] to settle this question completely:

Theorem 3. Let G be a finite simple group of classical Lie type Bn, Cn, Dn or 2Dn. Let ` > 2 be a
prime for which Sylow `-subgroups of G are non-cyclic. Then the `-modular projective cover of the trivial
character of G has at least three ordinary constituents.

In particular the first Cartan invariant of G satisfies c11 ≥ 3.

Our paper is organised as follows. In Section 2 we prove the existence of regular semisimple elements
in suitable maximal tori of groups of classical type and determine possible overgroups of collections of
maximal tori. Section 3 contains the proof of the Murnaghan–Nakayama rule, see Theorem 3.3. We
apply this in Section 4 to prove a vanishing result on `-singular elements, see Theorems 4.1 and 4.2. In
Section 5 we show Theorem 2 classifying simple endotrivial modules for classical groups. In Section 6 we
collect the previous results to prove the vanishing result in Theorem 1. Finally, in Section 7.1 we show
the application to the proof of Theorem 3.

Acknowledgement: We thank Andrew Mathas for useful explanations concerning the notation and
results of [8]. We also thank the anonymous referee for his helpful comments.

2. Maximal tori in classical groups

In this section we establish the existence of regular semisimple `-singular elements in suitable tori of
classical groups of Lie type. This will be a main ingredient in the proof of the vanishing Theorem 1.
Moreover, we formulate a criterion for collections of maximal tori of simple algebraic groups not to be
contained in a common proper reductive subgroup.

2.1. Weyl groups and maximal tori in symplectic and orthogonal groups. For a prime power
q and K = Fq we consider the natural representation of G = Sp2n(K) on V = K2n (case Cn) and of
G = SO2n+1(K) on V = K2n+1, and a Steinberg morphism F on G with fixed point group GF = Sp2n(q),
respectively GF = SO2n+1(q). With respect to an appropriate choice of basis of V we can assume (see
[13, Exmp. 6.7]) that the subgroup T of diagonal matrices forms an F -stable maximal torus of G, its
elements have the form diag(t1, . . . , tn, t−1

n , . . . , t−1
1 ), respectively diag(t1, . . . , tn, 1, t−1

n , . . . , t−1
1 ), and F

acts by raising the diagonal entries to their q-th power. The Weyl group W acts on T by its natural
permutation action on the diagonal entries. More precisely, W is isomorphic to the wreath product
C2 o Sn, where the cyclic groups of order 2 interchange the entries {ti, t−1

i }, i = 1, . . . , n, while the
symmetric group permutes the n pairs {ti, t−1

i }. See [5, Chap. 15] for more details.
The GF -conjugacy classes of F -stable maximal tori of G are parameterised by the conjugacy classes

of W . An element t ∈ T is conjugate to an element t′ ∈ GF if wF (t) = t for some w ∈ W . Then t′ lies
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in an F -stable maximal torus parameterised by the class of w. Such an element t′ is regular semisimple
if w is unique.

The conjugacy classes of W are parameterised by pairs of partitions (λ, µ) ` n of n as follows: If
w ∈W permutes entries of a regular diagonal element as above, then a cycle containing entries ti and t−1

i

for some i is of even length 2µj and contributes a part µj to µ. Otherwise a cycle of length λj permutes
some diagonal entries and there is another cycle of the same length permuting the inverse diagonal entries
in the same way; this contributes a part λj to λ.

We can embed an even dimensional orthogonal group G = SO2n(K) (type Dn) into G̃ = SO2n+1(K)
such that it is stable under the Steinberg morphism of G̃ and its fixed points are GF = SO+

2n(q). There
is a second Steinberg morphism F ′ on G leading to the twisted groups GF ′

= SO−
2n(q). The Weyl group

W of G is a subgroup of index 2 in the Weyl group W̃ of G̃, consisting of the conjugacy classes of W̃
whose parameter (λ, µ) has an even number of parts in µ. If µ is empty in (λ, µ) and λ has only even
parts then the corresponding class in W̃ splits into two classes in W , called degenerate classes. The
twisted Steinberg morphism F ′ acts on W like conjugation by the short root generator of W̃ . This way
the F ′-conjugacy classes of W can be parameterised by the conjugacy classes of W̃ whose parameter
(λ, µ) has an odd number of parts in µ. Since G and G̃ have the same rank, maximal tori of G are also
maximal tori of G̃.

Let (λ, µ) = ((λ1, . . . , λr), (µ1, . . . , µs)) ` n. Then the order of the corresponding maximal torus TF

in GF is

|TF | =
r∏

i=1

(qλi − 1)
s∏

i=1

(qµi + 1)

and TF contains cyclic subgroups of orders qλi − 1 and qµi + 1 for all i.

2.2. Regular semisimple elements. We need to know that certain maximal tori contain regular ele-
ments. As before, let q be a prime power. For a prime ` not dividing q we denote by d`(q) the order of q
modulo `, that is the smallest d ≥ 1 with ` | (qd − 1). If d is even then we have ` | (qd/2 + 1). With these
definitions, ` | (qk − 1) if and only if d | k, and for even d we have ` | (qk + 1) if and only if k is an odd
multiple of d/2.

Lemma 2.1. Let G be a simple simply-connected classical group of type Bn, Cn or Dn defined over the
finite field Fq with corresponding Steinberg morphism F .

Let (λ, µ) = ((λ1, . . . , λr), (µ1, . . . , µs)) be a pair of partitions of n, and T a corresponding F -stable
maximal torus of G. Then TF contains regular elements if one of the following conditions is fulfilled.

(1) q > 3, λ1 < λ2 < . . . < λr and µ1 < µ2 < . . . < µs;
(2) q ∈ {2, 3}, λ1 < λ2 < . . . < λr, µ1 < µ2 < . . . < µs, all λi 6= 2, and if G is of type Bn or Cn

then also all λi 6= 1; or
(3) G is of type Dn, 2 < λ1 < λ2 < . . . < λr and 1 = µ1 = µ2 < µ3 < . . . < µs.

Proof. (a) We use the natural representations of G̃ = Sp2n(K) and G̃ = SO2n+1(K) with the natural
Steinberg morphism that raises matrix entries to their q-th power, and we consider SO±

2n(q) as subgroups
of SO2n+1(K).

We have described the maximal torus T of diagonal elements in G̃ in Section 2.1. The connected
centraliser C◦

G̃
(t) of t ∈ T equals T if and only if α(t) = 1 for all roots α of G with respect to T.

These roots are explicitly given in [5, Chap. 15] (for types Cn and Dn, but type Bn is very similar): It is
enough to describe a set of positive roots. Their values on t = diag(t1, t2, . . . , tn, t−1

n , . . . , t−1
1 ) respectively

t = diag(t1, t2, . . . , tn, 1, t−1
n , . . . , t−1

1 ) are
(Types Bn, Cn, Dn) α(t) = tit

−1
j and α(t) = titj for 1 ≤ i < j ≤ n,

(Type Bn only) α(t) = ti for 1 ≤ i ≤ n,
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(Type Cn only) α(t) = t2i for 1 ≤ i ≤ n.
So, C◦

G̃
(t) = T if and only if for all 1 ≤ i < j ≤ n we have ti 6= tj and ti 6= t−1

j , and in type Bn we
also have ti 6= 1 for 1 ≤ i ≤ n, and in type Cn we also have ti 6= ±1 for 1 ≤ i ≤ n.

(b) In type Cn we have G = G̃, while in types Bn and Dn the groups SO2n+1(K) and SO2n(K) are
not simply-connected. But there are isogenies from the simply-connected coverings G = Spinm(K) →
SOm(K) = G̃. If q is even, that is char(K) = 2, then this map has a trivial kernel and induces
isomorphisms Spin±m(q) → SO±

m(q). For odd q the kernel is a central subgroup of order 2, and the image
of the induced map Spin±m(q) → SO±

m(q) of the finite groups has index 2.
To show the existence of regular elements in tori of type (λ, µ) we construct a t ∈ T such that wF (t) = t

for some w ∈W in the class (λ, µ) and C◦
G̃

(t) = T. In cases Bn and Dn and odd q this t will be a square of
another element in TwF such that in all cases t has a preimage in a corresponding twisted maximal torus
of the simply-connected group G. This preimage is regular because centralisers of semisimple elements
in a simply-connected group are connected.

(c) Now let (λ, µ) = ((λ1, . . . , λr), (µ1, . . . , µs)) ` n be a pair of partitions. We construct t ∈ T by
describing the entries t1, . . . , tn ∈ K.

First assume that G is of type Cn or that q is even.
For 1 ≤ i ≤ r let ai ∈ Fqλi be of order qλi − 1 and use ai, a

q
i , . . . , a

qλi−1

i as entries of t (note that

aqλi

i = ai).

For 1 ≤ j ≤ s let bj ∈ Fq2µj be of order qµj + 1 and use bj , b
q
j , . . . , b

qµj−1

j as entries of t (note that then

bq
µj

j = b−1
j ).

If G is of type Bn or Dn and q is odd, we use as t the square of the element just described (so ai is of
order 1

2 (qλi − 1) and bj is of order 1
2 (qµj + 1)).

It is clear from this construction that the Steinberg morphism F of Sp2n(K), respectively SO2n+1(K)
permutes the entries of t such that this can be reversed by an element w ∈ W of cycle type (λ, µ), so
t = wF (t).

(d) We next discuss when t fails to be regular. Let λi, µj > 0 with qλi − 1 = qµj + 1. Then µj < λi

and the assumption is equivalent to qµj (qλi−µj − 1) = 2. It follows that q = 2, µj = 1 and λi = 2.
(e) Let k ∈ Z, 0 < k < λi and assume (qλi − 1) | (qk ∓ 1). Then qλi − 1 ≤ qk ∓ 1, which holds if and

only if qk(qλi−k − 1) ≤ 0 or 2, respectively. This is only possible for q = 2, k = 1 and λi = 2. Similarly,
for odd q the condition 1

2 (qλi − 1) | (qk ∓ 1) implies q = 3, k = 1 and λi = 2.
Now let k ∈ Z, 0 < k < µj . A similar argument as above shows that for all q we have (qµj +1) - (qk∓1)

and for odd q we also have 1
2 (qµj + 1) - (qk ∓ 1).

(f) Now we prove assertions (1) and (2) of the statement by showing that in those cases the element
t ∈ T constructed in (c) does not lie in the kernel of any root.

First note that the ai (1 ≤ i ≤ r) and bj (1 ≤ j ≤ s) have pairwise different orders. This follows
from (d) since for q = 2 we assume that all λi 6= 2.

According to (a) we need to show that for 1 ≤ i ≤ r any of the entries (ai, a
q
i , . . . , a

qλi−1

i ) are not equal

or inverse to each other, and similarly for the (bj , b
q
j , . . . , b

qµj−1

j ). Since the map x 7→ xq permutes these

entries of t and their inverses it suffices to show that for 0 < k < λi we have aqk

i 6= a±1
i (equivalently

aqk∓1
i 6= 1), and similarly for the bj . Now aqk∓1

i = 1 implies (qλi − 1) | (qk ∓ 1) or 1
2 (qλi − 1) | (qk ∓ 1),

respectively. Using (e) this implies λi = 2 and q ∈ {2, 3}, contradicting the assumptions.
Similarly, step (e) shows that we always have bq

k

j 6= b±1
j for 0 < k < µj .

For type Cn we also have to show that a2
i 6= 1 (1 ≤ i ≤ r) and b2j 6= 1 (1 ≤ j ≤ s). This holds because

a2
i = 1, i.e., (qλi − 1) | 2, implies λi = 1 and q ∈ {2, 3}, contradicting the assumption. Note that always
qµi + 1 > 2.
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For type Bn we also have to show that ai 6= 1 (1 ≤ i ≤ r) and bj 6= 1 (1 ≤ j ≤ s). This follows as
qλi − 1 = 1 implies q = 2 and λi = 1, while 1

2 (qλi − 1) = 1 implies q = 3 and λi = 1 for odd q, and as
always qµj + 1 > 1.

(g) The argument for statement (3) is very similar. A suitable element t can be defined as before,
except that for µ1 = 1 we choose b1 = 1. Then the entry for µ2 = 1 has order q+ 1 for even q or 1

2 (q+ 1)
for odd q which is always larger than 1. �

Remark 2.2. Let G be a connected reductive group with Steinberg morphism F and T an F -stable
maximal torus of G. Let ` be a prime dividing |TF |. If TF contains a regular element then TF also
contains an `-singular regular element.

Proof. Let t ∈ TF be an `-regular (that is of order prime to `) regular element and u ∈ TF be any
element of order `. Then tu has order `|t| and some power of tu equals t, hence tu is also regular. �

2.3. Maximal connected reductive subgroups. The following lemma will allow us to decide if a
collection of classes of maximal tori of a classical group has representatives inside the centraliser of a
semisimple element:

Lemma 2.3. Let G be a simple algebraic group of classical type Bn, Cn (with n ≥ 2) or Dn (with n ≥ 4)
with Frobenius endomorphism F such that GF is a classical group. Let Λ be a set of pairs of partitions
(λ, µ) ` n. Assume the following:

(1) there is no 1 ≤ k ≤ n − 1 such that all (λ, µ) ∈ Λ are of the form (λ1, µ1) t (λ2, µ2) (that is λ
contains the parts from λ1 and λ2 and similarly for µ) with (λ1, µ1) ` k;

(2) the greatest common divisor of all parts of all (λ, µ) ∈ Λ is 1; and
(3) if G is of type Bn, then there exist pairs (λ, µ) ∈ Λ for which µ has an odd number of parts, and

for which µ has an even number of parts.
If s ∈ GF is semisimple such that CG(s) contains maximal tori of G corresponding to all (λ, µ) ∈ Λ then
s is central.

Proof. The types of maximal tori are insensitive to isogeny types, so we may assume that G is a classical
matrix group Sp(V ) or SO(V ). Let s ∈ GF be a non-central semisimple element. Then H := C◦G(s) fixes
each eigenspace of s on V . Since s is non-central it has at least two different eigenvalues. Since s is F -
stable, the eigenspaces of s are permuted under the action of F . First assume that the set of eigenspaces
forms one orbit, of length f > 1 say, under the action of F . Then H is a central product of isomorphic
classical groups, HF is an extension field subgroup and hence its maximal tori have parameters all parts
of which are divisible by f , contradicting (2).

So there are at least two F -orbits of eigenspaces. Let V1 < V be an F -stable sum of eigenspaces of
minimal possible dimension. Then either V1 ∩ V ⊥

1 6= 0 or V1 is non-degenerate and V = V1 ⊥ V ⊥
1 . The

stabilisers of totally singular spaces are contained in maximal parabolic subgroups [13, Prop. 12.13], but
these only have tori of types as excluded by (1). Else, H is contained in the stabiliser of V1 ⊥ V ⊥

1 , a
central product of classical groups. The latter are of types Ca +Cb, respectively Ba +Db or Da +Db with
a + b = n, a, b > 0 for G of type Cn, respectively Bn, Dn. Then the parameters of F -stable maximal
tori of H are of the form excluded by (1) of the lemma, for k = a, unless G is of type Bn and V1 is
1-dimensional, when H could be of type Dn. In that case, the number of parts in the second entry of the
parameters of F -stable maximal tori of H all have a fixed parity (namely even for HF untwisted, and
odd for HF twisted). This is excluded by (3). �

3. A Murnaghan–Nakayama rule

In this section we derive a Murnaghan–Nakayama type formula for the values of unipotent characters
of classical groups of Lie type on regular semisimple elements. It relies on a result of Asai on the
decomposition of Lusztig restriction.
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3.1. Lusztig restriction. We consider the following setup: G is a connected reductive algebraic group
over an algebraic closure of the finite field Fp, and F : G → G is a Steinberg endomorphism of G, with
finite group of fixed points GF . For an F -stable Levi subgroup L ≤ G of G Lusztig defined, via certain
`-adic cohomology constructions, induction and restriction functors

RG
L : ZIrr(LF ) → ZIrr(GF ) and ∗RG

L : ZIrr(GF ) → ZIrr(LF )

between the respective groups of virtual characters. These are adjoint to one another with respect to
the usual scalar product of characters. We need the following connection between Lusztig restriction and
ordinary restriction on regular semisimple conjugacy classes:

Proposition 3.1. Let L ≤ G be an F -stable Levi subgroup. Let χ ∈ Irr(GF ) and s ∈ LF be regular
semisimple. Then ∗RG

L (χ)(s) = χ(s).

Proof. According to the character formula in [5, Prop. 12.2(ii)] we have

∗RG
L (χ)(s) =

|C◦L(s)F |
|C◦G(s)F |

∑
u∈C◦

G(s)F
u

Q
C◦

G(s)

C◦
L(s) (u, 1)χ(s),

where the sum runs over unipotent elements in C◦G(s)F , and Q
C◦

G(s)

C◦
L(s) is a certain 2-parameter Green

function. Since s is assumed to be regular semisimple, T := C◦G(s) = C◦L(s) is a torus. Hence the only
term in the sum is the one for u = 1, and by [5, p. 98] the Green function takes the value

Q
C◦

G(s)

C◦
L(s) (1, 1) = QT

T(1, 1) = 1

(again using that C◦G(s) contains no non-trivial unipotent elements). The claim follows. �

3.2. Symbols. We now specialise to simple groups of classical type. By Lusztig’s results their unipotent
characters are parameterised by so-called symbols. Here, a symbol is an unordered pair of finite sets of
non-negative integers, usually denoted as

S =
(
X

Y

)
=

(
λ1 λ2 . . . λr

µ1 µ2 . . . µs

)
with λ1 < λ2 < . . . < λr and µ1 < µ2 < . . . < µs where r, s ≥ 0. Two symbols are said to be equivalent
if one can be obtained from the other by a sequence of shift operations

S 7→
(

0 λ1 + 1 λ2 + 1 . . . λr + 1
0 µ1 + 1 µ2 + 1 . . . µs + 1

)
or by interchanging the rows X and Y of S. The rank of S is by definition

rk(S) =
r∑

i=1

λi +
s∑

i=1

µi −
⌊(

r + s− 1
2

)2 ⌋
.

The defect of S is def(S) := |r − s|. Note that the rank and the defect are well-defined on equivalence
classes. We will use the following notation to describe explicit symbols: n := {0, 1, . . . , n} and for a set
X, a k ∈ X and l /∈ X we write X \ k ∪ l := X \ {k} ∪ {l}.

Let d be a positive integer. We say that S has a d-hook h at x ∈ X if 0 ≤ x− d /∈ X, and similarly at
x ∈ Y . Removing that d-hook leads to the symbol S \ h :=

(
X′

Y

)
with X ′ = X \ x ∪ (x− d) (respectively

S \ h :=
(

X
Y ′

)
with Y ′ = Y \ x ∪ (x − d)). Attached to the hook h is the sign εh := (−1)m where

m := |{y ∈ X | x − d < y < x}| (respectively m := |{y ∈ Y | x − d < y < x}|). We say that S has a
d-cohook c at x ∈ X if 0 ≤ x − d /∈ Y , and similarly at x ∈ Y . Removing that d-cohook leads to the
symbol S \ c :=

(
X′

Y ′

)
with X ′ = X \ {x}, Y ′ = Y ∪{x− d} (respectively Y ′ = Y \ {x}, X ′ = X ∪{x− d}).

Attached to the cohook c is the sign εc := (−1)m, where m := |{y ∈ X | y < x}|+ |{y ∈ Y | y < x− d}|
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(respectively m := |{y ∈ Y | y < x}|+ |{y ∈ X | y < x−d}|), see [6, §3] for example. Note that removing
a d-hook or a d-cohook from a symbol of rank n yields a symbol of rank n− d.

For a symbol S = (X,Y ) with all entries of X,Y not larger than m we define the dual symbol
S∨ = (X ′, Y ′) where

X ′ = m \ {m− x | x ∈ X} and Y ′ = m \ {m− y | y ∈ Y }.
The hooks and cohooks of S and S∨ are each in natural bijection such that removing hooks or co-

hooks commutes with the duality operation. This observation will allow us to simplify some of the later
statements and proofs.

3.3. Unipotent characters of symplectic and orthogonal groups. Now assume that G is simple
of type Bn, Cn or Dn, and F does not induce the triality automorphism when G is of type D4 nor the
exceptional graph automorphism in type B2 or C2. According to Lusztig [12] the unipotent characters
of G := GF are then parameterised by (equivalence classes of) symbols of rank n. More precisely, if G is
of type Bn or Cn, the unipotent characters of G are parameterised by symbols of rank n and odd defect.
Now assume that G is of type Dn. If the Steinberg endomorphism F is untwisted, then the unipotent
characters of G are parameterised by symbols S of rank n and defect def(S) ≡ 0 (mod 4), where symbols
with two equal rows stand for two characters each. These are the so-called degenerate symbols. If GF is
of twisted type, then the unipotent characters of G are parameterised by symbols S of rank n and defect
def(S) ≡ 2 (mod 4).

If S is a symbol parameterising a unipotent character ρ of a classical group then the Alvis–Curtis
dual ρ∨ of ρ is parameterised by the dual symbol S∨ which has the same rank, the same defect and the
same hook and cohook lengths (see [12, 4.5.5, 4.6.8]). (In fact, the degree ρ∨(1) differs by a power of the
underlying characteristic of G from the degree ρ(1).)

3.4. Values of unipotent characters at regular semisimple elements. We first recall the following
result of Asai on the decomposition of Lusztig induction as given in [6, (3.1), (3.2)]. We restate it in
terms of the restriction functors ∗RG

L instead of the induction functors RG
L as in the cited reference.

This is a summary of results from [1, 2.8], [2, 1.5] and [3, 2.2.3]. Note that there is a sign missing in the
formula [6, (3.2)] in the case Dn as can be seen by considering the trivial character.

Theorem 3.2 (Asai (1984)). Let G be of type Bn, Cn or Dn. Let d ≥ 1. Let S be a symbol of a
unipotent character of G = GF . If S is not degenerate, we write ρS for the corresponding character. If
S is degenerate we write ρS for the sum of the two corresponding characters.
(a) Let L be the centraliser in G of an F -stable torus Td of G with |TF

d | = qd − 1. Then
∗RG

L (ρS) =
∑

h d-hook

εh ρS\h

where h runs over the d-hooks of S.
(b) Let L be the centraliser in G of an F -stable torus Td of G with |TF

d | = qd + 1. Then
∗RG

L (ρS) = (−1)δ
∑

c d-cohook

εc ρS\c

where c runs over the d-cohooks of S, and δ = 0 for types Bn, Cn, δ = 1 for type Dn.

With this we can show a Murnaghan–Nakayama formula for values of unipotent characters at regular
semisimple elements.

Theorem 3.3. Let G be of type Bn, Cn or Dn. Let S be a symbol of a unipotent character of G = GF .
If S is not degenerate, we write ρS for the corresponding character. If S is degenerate we write ρS for the
sum of the two corresponding characters. Let s ∈ G be regular semisimple lying in an F -stable maximal
torus T of G parameterised by (λ, µ) ` n.
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(a) If λ has a part of length d then

ρS(s) =
∑

h d-hook

εh ρS\h(s)

where h runs over the d-hooks of S.
(b) If µ has a part of length d then

ρS(s) = (−1)δ
∑

c d-cohook

εc ρS\c(s)

where c runs over the d-cohooks of S, and δ = 0 for types Bn, Cn, δ = 1 for type Dn.
On the right hand side of these formulae the symbols and characters belong to a Levi subgroup of semisim-
ple rank n− d and s lies in a maximal torus of that Levi subgroup corresponding to the pair of partitions
(λ \ d, µ) ` (n− d) in case (a), respectively (λ, µ \ d) ` (n− d) in case (b).

Proof. First assume that λ has a part of length d. Then the torus T has an F -stable subtorus Td with
|TF

d | = qd − 1, see Section 2.1. We consider Lusztig restriction of ρ = ρS to the F -stable Levi subgroup
L := CG(Td) ∼= HTd, with H a group of the same type as G and of rank n − d. This is a d-split Levi
subgroup containing T, so s, and according to Asai’s Theorem 3.2(a), the constituents of ∗RG

L (ρ) are, up
to the sign εh as given in the statement, precisely those unipotent characters of LF whose parameterising
symbol is obtained from S by removing a d-hook. Application of Proposition 3.1 then gives the claim
in (a).

If µ has a part of length d, then T has an F -stable subtorus Td with |TF
d | = qd + 1, and we can argue

precisely as before using Theorem 3.2(b) for the decomposition of Lusztig restriction to L := CG(Td) ≥
T 3 s. �

Note that in the theorem ρS\h, respectively ρS\c, is a unipotent character of the classical group LF

of rank n − d (of the same type as G, except that removing cohooks changes the value of the defect
modulo 4, so in type Dn interchanges the twisted and untwisted types), and that s is a fortiori regular
in L. Thus, the above result gives a recursive algorithm to compute the character values on all regular
semisimple elements.

In case of degenerate symbols we only get the values of the sum of two unipotent characters. These
unipotent characters form one element Lusztig families and so their values on regular semisimple classes
are the values of the corresponding degenerate irreducible characters of the Weyl group, see [12, (4.6.10)].
The two characters for a degenerate symbol have the same values on non-degenerate classes, but differ-
ent values on the degenerate classes. See [15] for a definition of unique parameters for the degenerate
characters and classes and a formula to compute the missing values on degenerate classes.

The following vanishing result is immediate from the above:

Corollary 3.4. Let G, S and ρS be as in Theorem 3.3, and let s ∈ G be a regular semisimple element
lying in an F -stable maximal torus parameterised by (λ, µ). Then ρS(s) = 0 in any of the two following
cases:
(1) λ has a part of length d, but S does not have a d-hook; or
(2) µ has a part of length d, but S does not have a d-cohook.
Thus, if ρS(s) 6= 0 and (λ, µ) = ((λ1, . . . , λr), (µ1, . . . , µs)), then it is possible to remove λi-hooks for
1 ≤ i ≤ r and µi-cohooks for 1 ≤ i ≤ s from S in any chosen order.

We remark that we have computed many character values on semisimple classes for classical groups
of rank ≤ 10 by Deligne–Lusztig theory. These examples helped to find the statements given in the next
section. And they also provided an independent check of the Murnaghan–Nakayama formula 3.3.
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4. Vanishing of characters

In this section we prove Theorem 1 for quasi-simple groups of classical type. So let G be a simply-
connected simple algebraic group of type Bn with n ≥ 3, Cn with n ≥ 2 or Dn with n ≥ 4, and let
F be a Steinberg morphism of G (we exclude the 3D4 case) with G = G(q) := GF . We consider
the corresponding finite groups G = Spin2n+1(q) only for odd q, and Sp2n(q) and Spin±2n(q) for any q,
respectively.

We consider primes ` such that the Sylow `-subgroups of G are not cyclic. We will show that for such
` with only very few exceptions all ordinary irreducible characters of G vanish on some `-singular regular
semisimple element.

If we write d := d`(q) for the order of q modulo ` as in Section 2.2 and then n = ad + r, 0 ≤ r < d,
for odd d respectively n = ae + r, 0 ≤ r < e, for even d = 2e, then our assumption on ` implies a ≥ 2
because the cyclotomic polynomial Φd(q) must divide the order of G(q) at least twice. If G is of type
2Dn we have n > 2d for odd d and n > 2e for even d = 2e (see the order formula in [13, Tab. 24.1]).

4.1. Non-unipotent characters. We first deal with non-unipotent characters, and afterwards examine
in more detail the unipotent characters.

Theorem 4.1. Let G be one of the groups Spin2n+1(q) for odd q and n ≥ 3, Sp2n(q) for any q and
n ≥ 2, or Spin±2n(q) for any q and n ≥ 4. Let 2 6= 6̀ |q be a prime such that the Sylow `-subgroups of G
are non-cyclic. Then any non-unipotent irreducible complex character of G vanishes on some `-singular
regular semisimple element, except for the two cases G = C2(2) = Sp4(2) and G = C4(2) = Sp8(2).

The group Sp4(2) ∼= S6 contains no 3-singular regular semisimple elements. It has three non-trivial
irreducible characters which do not vanish on any 3-singular class, the unipotent character

(
012
−

)
and the

two characters of degree 10 (belonging to Lusztig series of type A1(q)× (q + 1)).
The group Sp8(2) has only one 5-singular regular semisimple class and there are 15 irreducible char-

acters which do not vanish on this class. There is only one non-trivial character which does not vanish
on any 5-singular class, the unipotent character

(
01
4

)
.

Proof. We use the following facts from Deligne–Lusztig theory. The irreducible characters of G are
partitioned into Lusztig series which are parameterised by semisimple conjugacy classes of the dual group
G∗. If s ∈ G∗ is semisimple then the values of characters in the Lusztig series of s on semisimple
elements t ∈ G are linear combinations of values of Deligne–Lusztig characters on t which belong to types
of tori which occur in the connected centraliser of s in G∗. In particular Deligne–Lusztig characters
corresponding to a maximal torus T of G vanish on regular semisimple classes which do not intersect T ,
see e.g. [11, Prop. 6.4].

Since G is simply-connected the dual group G∗ has trivial center so that non-unipotent characters are
in Lusztig series of non-central elements.

We show the theorem by listing in each case a set of types of maximal tori which contain regular `-
singular elements by Lemma 2.1 and which cannot all occur in any proper centraliser. We have described
these subgroups together with the types of tori they contain in Lemma 2.3. Note that for G of type Bn

the dual group is of type Cn (we need to apply Lemma 2.3 for type Cn and consider tori with regular
elements in type Bn); the same remark holds with Bn and Cn interchanged.

Let d = d`(q) and write n = ad+ r with 0 ≤ r < d for odd d and n = ae+ r with 0 ≤ r < e for even
d = 2e, a ≥ 2, as explained above.

Recall that for odd d a torus of type (λ, µ) contains `-singular elements if and only if some part of λ
is a positive multiple of d. For even d = 2e a torus of type (λ, µ) contains `-singular elements if and only
if µ contains an odd multiple of e or λ contains an even multiple of e.

We collect the tori we consider in Table 4.1.
A few additional remarks are in order. In the two cases marked with (∗) in the table we need to rule out

the possibility that the given tori all lie in a subgroup of type Dd+Dn−d or De+Dn−e, respectively. Such
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Table 1. Tori needed in the proof of Theorem 4.1

type d a r tori
Cn,Bn odd any 0 ((n),−), ((n− d), (d)), and ((n− d), (1, d− 1)) if d > 1
Cn,Bn odd any > 0 ((n− r), (r)), ((n− r − d), (d+ r)), ((n− r − d), (d+ r − 1, 1))
Dn odd any 0 ((n),−), ((n− 1, 1),−) if d = 1, or ((n− d), (d− 1, 1)) if d > 1
Dn odd any > 0 ((n− d− r, d+ r),−), ((n− r, r),−) if r 6= 2, or ((n− 2), (1, 1)) if

r = 2
2Dn(∗) odd any 0 ((n− d), (d)), ((d), (n− d)), ((n− d− 1, d), (1)) if d > 1
2Dn odd any > 0 ((n− r), (r)), ((n− d− r), (d+ r)), ((n− d− r, 1), (d+ r − 1))
Cn,Bn = 2e even 0 ((n),−), ((n− e), (e)), (−, (n− e− 1, e, 1)) if e > 1
Cn,Bn = 2e even > 0 ((n− r), (r)), (−, (n− e, e)), (−, (n− e− 1, e, 1)) if r 6= 1
Cn,Bn = 2e odd 0 (−, (n)), (−, (n− e, e)), ((n− e− 1), (e, 1)) if e > 1
Cn,Bn = 2e odd > 0 (−, (n− r, r)), ((n− r − e), (r + e)), ((n− r − e), (r + e− 1, 1))
Dn = 2e even 0 ((n),−), ((n− e− 1), (e, 1)) if (n, e) /∈ {(4, 1), (6, 3)}, or ((n− e−

2), (e, 2)) otherwise
Dn = 2e even > 0 (−, (n− e, e)), ((n− 1, 1),−) if r = 1, ((n− r), (r − 1, 1)) if r > 1
Dn(∗) = 2e odd 0 (−, (n − e, e)), (−, (n − 2e, 2e)), ((1), (n − 2e, 2e − 1)) if e > 1,

((2e), (e− 1, 1) if n = 3e
Dn = 2e odd > 0 (−, (n− r, r)), (−, (n− e, e)), ((1), (n− r, r − 1)) if r > 1
2Dn = 2e even 0 ((n− e), (e)), ((n− 2e), (2e)), ((n− 2e, 2e− 1), (1)) if e > 1
2Dn = 2e even > 0 ((n− r), (r)), ((n− e), (e)), ((n− r, 1), (r − 1)) if r > 1
2Dn = 2e odd 0 (−, (n)), ((n− e), (e)), ((n− e, 1), (e− 1)) if e > 1
2Dn = 2e odd > 0 ((n− e− r), (e+ r)), (−, (n− r, r − 1, 1)) if r > 1, ((1), (n− 1)) if

r = 1

a subgroup stabilises a decomposition of the orthogonal space on which G acts into two non-degenerate
subspaces. In the first case one of these subspaces must be of minus- and the other of plus-type. So the
corresponding finite subgroups are of type 2Dd + D2d or Dd + 2D2d, each of these only contains one of
the types of tori, ((d), (n− d)) or ((n− d), (d)). The argument for the second case is similar, there both
subspaces must be of minus-type or both of plus-type.

It remains to check for which groups one of the tori given in Table 4.1 does not contain regular elements.
Note that for q = 3 we have d > 2 because ` 6= 2, and for q = 2 we have d > 1. Furthermore, when
r > 0, we have d ≥ 3 or e ≥ 2, respectively. This implies that only the following cases need an extra
consideration:
C2(2) with e = 1: this is the first exception mentioned in the statement.
B4(q) with q = 3 and e = 2: We compute that for q = 3 the torus of type ((1), (1, 2)) contains regular

element. So, we can argue with tori of types ((4),−) and ((1), (1, 2)).
C4(q) with q = 3 and e = 2: In this case the torus of type ((2), (2)) in C4(3) contains regular elements.

Here we can argue with tori of types ((4),−) and ((2), (2)) by checking that the dual group (adjoint of
type B4(3)) does not contain a semisimple element whose centraliser contains tori of both types.

For C4(2) and e = 2 (and so ` = 5) only tori of type ((4),−) contain `-singular regular elements. This
leads to the second exception mentioned in the statement.

2D4(2) with e = 1: Here, the maximal tori containing `-elements all have conjugates inside a subgroup
of type D1 +D3. We can apply the argument from above: the tori of types ((1), (3)) and ((3), (1)) cannot
both occur in the same rational form of such a subgroup. �

4.2. Unipotent characters. In the following theorem we use symbols to describe unipotent characters
and refer to Section 3.2 for the notation.
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Theorem 4.2. Let G be one of the groups Spin2n+1(q) for odd q and n ≥ 3, Sp2n(q) for any q and
n ≥ 2, or Spin±2n(q) for any q and n ≥ 4. Let 2 6= 6̀ |q be a prime such that the Sylow `-subgroups of G
are non-cyclic.

Let ρS be a unipotent character of G for some symbol S and assume that ρS does not vanish on any
regular semisimple `-singular class. Then either ρS is the trivial character, or the Steinberg character, or
up to Alvis-Curtis duality we are in one of the following cases (as before we set d = d`(q), and interpret
−1 as the empty set):
(1) G = Sp2n(q) or Spin2n+1(q), d is odd, n = 2d+ r with 0 ≤ r < d and

S =
(
d− r − 1 \ 0 ∪ d ∪ 2d

d− r − 1

)
;

(2) G = Sp2n(q) or Spin2n+1(q), d = 2e is even, n = 2e+ r with 0 ≤ r < e and

S =
(

e− r − 1 ∪ e
e− r − 1 \ 0 ∪ 2e

)
;

(3) G = Spin+
2n(q), d is odd, n = 2d+ r with 0 ≤ r < d and

S =
(
d− r − 1 \ 0 ∪ d ∪ 2d

d− r

)
;

(4) G = Spin+
2n(q), d = 2e is even, n = 2e+ r with 0 ≤ r ≤ e and

S =
(

e− r − 1 ∪ e
e− r \ 0 ∪ 2e

)
;

(5) G = Spin−2n(q), d is odd, n = 2d+ r with 0 < r ≤ d and

S =
(
d− r \ 0 ∪ d ∪ 2d

d− r − 1

)
;

(6) G = Spin−2n(q), d = 2e is even, n = 2e+ r with 0 < r < e and

S =
(

e− r ∪ e
e− r − 1 \ 0 ∪ 2e

)
;

(7) G = Sp4(2), d = 2 and S =
(
0 1 2
−

)
or

(
0 2
1

)
(there is no regular semisimple `-singular element);

(8) G = Sp6(2), d = 2 and S =
(
0 1 3
−

)
;

(9) G = Sp8(2), d = 4 and S =
(
0 1
4

)
or

(
1 4
0

)
; or

(10) G = Spin−8 (2), d = 2, 4 and S =
(
1 3
−

)
.

Conversely, all characters listed above take non-zero values on all regular semisimple `-singular classes.
More precisely, in cases G = Spin−8 (2), d = 2, 4, S =

(
1 3
−

)
the character ρS has value 2 on classes of

type (−, (2, 1, 1)). In all other cases the character values are ±1.

Proof. (a) Our strategy is to use Corollary 3.4 of the Murnaghan–Nakayama formula. We consider
maximal tori with `-singular regular elements which are parameterised by pairs of partitions with very
few parts. For example, if for a symbol S the character ρS has non-zero value on regular elements in a
torus of type ((λ1), (µ1)) then the Murnaghan-Nakayama formula implies that we can remove a λ1-hook
from S and that the resulting symbol has a µ1-cohook which after removing leaves a symbol of rank 0.

(b) For groups of type Bn and Cn we need to consider symbols of rank n with odd defect. First note
that there is only one symbol of rank 0 with odd defect, namely the defect 1 symbol(

0
−

)
=

(
n

n− 1

)
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(apply the shift operation n times). We will write all symbols with 2n + 1 entries, because this way we
can construct all symbols of rank n by adding hooks or cohooks starting from the rank 0 symbol without
the need of further shift operations. Also, we will write all symbols of non-zero defect such that the larger
number of entries is in the first row.

The symbols of rank t ≤ n which have a t-hook are
(
n\k∪k+t

n−1

)
for n + 1 − t ≤ k ≤ n and their dual

symbols
(

n
n−1\k∪k+t

)
for n− t ≤ k ≤ n− 1.

To find up to duality all symbols S of rank n which have an (n − t)-cohook c such that S \ c has a
t-hook, it is sufficient to take the first set of symbols of rank t with a t-hook and to add an (n− t)-cohook
in all possible ways (filling the gap k, creating new entries in the first or the second row or moving the
k + t entry). We get: (

n ∪ l + n
n− 1 \ l

)
(1 ≤ l ≤ t),(

n \ k ∪ k + t ∪ l + n− t
n− 1 \ l

)
(n− t < k ≤ n, t < l < n, k − l 6= n− 2t),(

n− 1 ∪ l + n− t
n \ k \ l ∪ k + t

)
(n− t < k ≤ n, t ≤ l ≤ n, k 6= l),(

n− 1 ∪ k + n
n \ k

)
(n− t < k ≤ n).

(c) We now prove the theorem for the case Bn, Cn for n ≥ 3 and odd d. Write n = ad + r with
0 ≤ r < d. Note that for q = 2 or 3 we have d > 1 (since ` 6= 2). In our argument we will use maximal
tori which by Lemma 2.1 contain regular `-singular elements.

First assume r = 0 and let S be a symbol of rank n such that ρS is non-zero on all regular semisimple
`-singular classes. Then as a torus of type ((n),−) contains `-singular elements, S has an n-hook, that is
(up to duality) one of

S =
(
n \ k ∪ k + n

n− 1

)
(1 ≤ k ≤ n).

Tori of type ((d), (n − d)) also contain `-singular regular elements. Therefore S must have a d-hook h
and an (n − d)-cohook such that S \ h still has an (n − d)-cohook. This is only the case for k = n and
k = n − d. For k = n we obtain the symbol

(n−1∪2n
n−1

)
of the trivial character. For k = n − d we get the

symbol

S =
(
n \ n− d ∪ 2n− d

n− 1

)
.

If a > 2 then this symbol has no (a − 1)d = (n − d)-hook, hence ρS is zero on regular elements in tori
of type ((n − d), (d)). For a = 2 we get one of the symbols shown in part (1) of the statement (after
applying the inverse shift operation n− d times).

Now let r > 0 (and so d ≥ 3). We consider tori of types ((ad), (r)) = ((n− r), (r)) and ((d, n− d),−).
Here we check for every symbol S listed in (b) (for t = n − r) if it has an (n − r)-hook and if we can
get the rank 0 symbol by removing a d-hook and an (n− d)-hook in both possible orders. Note that the
last condition implies that S has defect one because removing hooks does not change the defect. These
conditions yield in all cases relations between the parameters k and l and then determine k. The only
possible symbols which remain are those of the trivial character and

S =
(

n
n \ d \ n− r ∪ n+ d− r

)
.
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If a > 2 this has no (a−1)d-hook and so ρS is zero on regular elements in tori of type (((a−1)d), (d+r)).
For a = 2 the dual of S is given in statement (1), that is

(n−1\n−d+r∪n+r∪n+d+r
n−1

)
and applying the inverse

shift operation n− d+ r times.
(d) The argument for type Bn, Cn, n ≥ 7, and even d = 2e, n = ae + r, is very similar. Pairs of

partitions corresponding to tori with `-singular regular elements must now have an odd multiple of e in
the second part or an even multiple of e in the first part. Therefore we distinguish the cases of even and
odd a and of r = 0 and r > 0. We just list the types of tori which we consider in the given order such
that the arguments from (c) work with slight modifications.
a even, r = 0: ((n),−) and ((n− e), (e)), and for a > 2 also ((n− 2e), (2e)).
a even, r > 0: ((n− r), (r)), (−, (n− e, e)) and ((n− e), (e)), and for a > 2 also (−, ((a− 1)e, e+ r)).
a odd, r = 0: ((n − e), (e)), (−, (n)) and (−, (n − e, e)), and finally to rule out a symbol of defect 3

also ((n− e, e),−) (if a ≤ 3) or ((n− 3e), (3e)) (if a > 3).
a odd, r > 0: ((n− r − e), (e+ r)), (−, (n− r, r)) and ((n− e), (e)).
(e) The cases of type Dn and 2Dn can also be discussed with very similar arguments. The only symbol

of rank 0 and even defect has defect 0 and is
(−
−
)

=
(n−1
n−1

)
and so all the symbols of rank n with an n-hook

are

S =
(
n− 1 \ k ∪ k + n

n− 1

)
(0 ≤ k ≤ n).

Here it is sufficient to consider the cases with k ≥ (n−1)/2 in the further arguments because the remaining
ones are the duals of these.

(f) Type Dn, n ≥ 7. We list again which tori we consider in the various cases.
d odd, r = 0: ((n),−) and in case d = 1 we use ((n− 1, 1),−) and for d ≥ 3 we use ((n−d), (d− 1, 1)).

For a > 2 we also need ((n− 2d), (2d− 1, 1)) to rule out one possibility.
d odd, r > 0: ((n− d, d),−) and ((n− r, r),−) if r 6= 2 or ((n− 2), (1, 1)) if r = 2, ((d), (n− d− 1, 1)).
d = 2e even, n = ae, a even: ((n),−) and (−, (n − 1, 1)) if e = 1 or ((n − e − 1), (e, 1)) if e > 1. For

a > 2 we also use ((n− 2e), (2e− 1, 1)).
d = 2e even, n = ae+ r, a even, r > 0: (−, (n− e, e)), ((n− e− 1), (e, 1)) and ((n− r, r),−) if r 6= 2

or ((n− 2), (1, 1)) if r = 2. For a > 2 we also need ((2e), (n− 2e− 1, 1)).
d = 2e even, n = ae, a odd: (−, (n − e, e)) and ((n − e, e),−) if e 6= 2 or ((n − 2), (1, 1)) if e = 2.

Finally, use ((n− 3e, 3e),−) if a > 3. For a = 3 we get the exception listed in (4) for the parameter r = e
(that is n = 2e+ r = 3e).
d = 2e even, n = ae + r, a odd, r > 0: (−, (n − e, e)), (−, (n − r, r)), ((n − e − 1), (e, 1)) and

((2e), (n− 2e− 1, 1)).
(g) Type 2Dn, n ≥ 7. We list again which tori we consider in the various cases.
d odd, n = ad: Recall that in this case we have a ≥ 3. We use ((n − d), (d)) and ((n − 2d), (2d)).

For a > 3 we also use ((n − 3d), (d)) and for a = 3 we get the exception listed in (5) for r = d (that is
n = 2d+ r = 3r).
d odd, n = ad+ r, r > 0 (and so d ≥ 3): ((n− r), (r)), ((d), (n− d)) and ((d, 1), (n− d− 1)). And for

a > 2 also ((2d), (n− 2d)). For a = 2 this leads to the other exceptions listed in (5).
d = 2e even, n = ae, a even: Recall that in this case we have a ≥ 4. We use ((n−e), (e)), ((n−2e), (2e))

and one of ((3), (n− 3)) (if e = 1) or ((n− 3e), (3e)) (if e > 1) or (−, (6, 1, 1)) (if n = 8).
d = 2e even, n = ae+ r, a even, r > 0 (so e > 1): ((n− e), (e)) and ((n− r), (r)). For a > 2 we also

use ((2e), (n− 2e)). For a = 2 this leads to the exceptions listed in (6).
d = 2e even, n = ae, a odd: (−, (n)), ((n− e), (e)) and ((n− e− 1, 1), (e)).
d = 2e even, n = ae+ r, a odd, r > 0: ((n− e), (e)), ((n− e− r), (e+ r)) and ((2e), (n− 2e)). Finally

also ((r), (n− r)) if r 6= 2 or (−, (n− 2, 1, 1)) for r = 2.
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(h) For small rank n ≤ 6 we compute the number of regular elements in all tori, and determine the
values of unipotent characters on all `-singular regular semisimple classes via the Murnaghan-Nakayama
formula in Theorem 3.3. This yields the extra cases in statements (7) to (10).

(i) The symbols given in statements (1) to (6) each contain a unique d-hook and a unique 2d-hook (or
a unique e-cohook and unique 2e-hook, respectively). Removing these we always get the symbol of the
trivial representation of the appropriate rank (and the Steinberg representation for the dual symbols).
Therefore, the Murnaghan-Nakayama formula shows that the values on all regular semisimple `-singular
elements are ±1. �

5. Simple endotrivial modules

In this section we prove Theorem 2 on the classification of simple endotrivial modules for finite classical
groups. Note that the case of linear and unitary groups has already been treated in [10], so we only need
to consider symplectic groups and spin groups as in the previous section.

5.1. On certain unipotent characters. We first rule out some candidate characters. Let Φd ∈ Z[x]
denote the dth cyclotomic polynomial.

Proposition 5.1. Let χ be the unipotent character of G = SO6d−1(q) or Sp6d−2(q) (respectively of
SO+

2(3d−1)(q), SO−
6d(q)) parameterised by the symbol(

d 2d
0

)
respectively

(
d 2d
0 1

)
,

(
d 2d

)
,

with d ≥ 3 odd, or the unipotent character of SO+
6e(q) parameterised by(

2e
e

)
for d = 2e even. Then χ(1) 6≡ ±1 (mod |G|`) for any prime 2 < ` with d`(q) = d.

Proof. Since Φd(q) divides |G| at least twice it is sufficient to show that χ(1) 6≡ ±1 (mod Φd(q)2`). We
use a version of Babbage’s congruence for quantum binomial coefficients[

hd− 1
d− 1

]
x

≡ x(h−1)(d
2) (mod Φd(x)2) in Z[x]

for any d, h ≥ 2 (proved in [10, Lemma 3.7]). If χ belongs to
(
d 2d

0

)
, we can express its degree using a

quantum binomial coefficient evaluated at q2, see [4, 13.8]:

χ(1) =
(q2 − 1) · · · (q6d−2 − 1)(q2d − qd)(q2d + 1)(qd + 1)

2(q2 − 1) · · · (q4d − 1)(q2 − 1) · · · (q2d − 1)
=

1
2

[
3d− 1
d− 1

]
q2

qd(q2d + 1).

Substituting x = q2 in the Babbage congruence we get a congruence over the integers modulo Φd(q2)2.
Since Φd(x2) = Φd(x)Φd(−x) we also get a congruence modulo Φd(q)2:

χ(1) ≡ 1
2
q2d(d−1)+d(q2d + 1) (mod Φd(q)2).

It suffices to show that 2χ(1) 6≡ ±2 (mod Φd(q)2`). Since Φd(q) | (qd − 1) we get

2χ(1) ≡ q2d(d−1)+d · 2qd = 2(q2d)d ≡ 2(q2d − (qd − 1)2)d = 2(2(qd − 1) + 1)d

≡ 2(2d(qd − 1) + 1) (mod Φd(q)2).

Since ` 6= 2, d < ` and ` | (qd − 1) we conclude that 2χ(1) + 2 is not divisible by ` and that the highest
power of ` dividing 2χ(1)− 2 is (qd − 1)` = Φd(q)`.
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Now we turn to the unipotent character with symbol
(
d 2d
0 1

)
. Its degree differs from the previously

considered χ(1) by the factor

(q2d + q)(qd−1 + 1)
(q3d−1 + 1)(q + 1)

=
q3d−1 + 3qd + q − 1 + (qd − 1)2

q3d−1 + 3qd + q − 1 + (qd + 2)(qd − 1)2
.

We argue that both degrees are equal modulo Φd(q)2` .
For this, note that for integers a, b, c,m with ab/c ∈ Z, b ≡ c (mod m) and (c,m) = 1 there is an

integer c̃ with cc̃ ≡ bc̃ ≡ 1 (mod m) and so ab/c ≡ ab/c · cc̃ ≡ abc̃ ≡ a (mod m). This applies here
because (q3d−1 +1)(q+1) is not divisible by ` (since d ≥ 3 is the order of q modulo ` and (q3d−1 +1)(q+
1)(q3d−1 − 1)(q − 1) = (q6d−2 − 1)(q2 − 1) is not divisible by `).

The same argument works for the degree of the unipotent character with symbol
(
d 2d

)
. Its degree

differs from the previous χ(1) by the factor

2(q2d − qd + 1)
q2d + 1

=
2qd + 2(qd − 1)2

2qd + (qd − 1)2

and q2d + 1 is not divisible by `.
Finally we consider for even d = 2e the unipotent character ψ with symbol

(
2e
e

)
. Its degree is

ψ(1) =
[
3e− 1
e− 1

]
q2

(q2e + qe + 1)qe.

Evaluating Babbage’s congruence at q2 yields a congruence modulo Φe(q2)2. But note that for odd e we
have Φe(x2) = Φe(x)Φe(−x) and Φe(−x) = Φd(x), and for even e we have Φe(x2) = Φd(x). So, we also
get congruences modulo Φd(q)2. Using now Φd(q) | (qe + 1) we find with similar arguments as before
that ψ(1) ≡ −q2e2

(mod Φd(q)2) and that ψ(1)− 1 is not divisible by `, and that ψ(1) + 1 is divisible by
Φd(q)` but no higher power of `. �

In order to deal with certain unipotent characters, we recall some results of James and Mathas [8] on
reducibility of characters of Hecke algebras. Let Hn = Hn(q,Q) be the Iwahori–Hecke algebra of type Bn

with parameters q and Q over Z[q±1, Q±1]. Its irreducible characters are in natural bijection with those
of the Weyl group W (Bn) via the specialisation q 7→ 1, Q 7→ 1, and hence labelled by pairs of partitions
(λ, µ) of n. We write χλ,µ for the character of Hn labelled by (λ, µ). We consider certain specialisations
of Hn.

Proposition 5.2. Let ` be a prime and q a prime power. Set d = d`(q).
(a) If d is odd, n = 2d + r with 0 ≤ r ≤ d − 2, and (λ, µ) = ((d + r, r + 1, 1d−r−1),−), then the

character χλ,µ of Hn(q, q) is reducible modulo `.
(b) If d = 2e > 2 is even, n = 2e+ r with 0 ≤ r ≤ e− 1, and (λ, µ) = ((r), (e+ r + 1, 1e−r−1)), then

the character χλ,µ of Hn(q, q) is reducible modulo `.

Proof. Let ζd denote a primitive complex dth root of unity. The reduction modulo ` of Hn(q, q) factors
through the specialisation to Hn(ζd, ζd), thus a character which becomes reducible under the latter
specialisation will a fortiori be reducible modulo `. James and Mathas [8, Thms. 4.7(i) and 4.10] give
a sufficient criterion for χλ,µ to become reducible under the specialisation to Hn(ζd, ζd), if (λ, µ) is a
Kleshchev bipartition. In case (a), χλ,µ is reducible modulo Φd by [8, Thm. 4.10(i)] since the character of
the Hecke algebra of Sn labelled by λ = (d+ r, r+1, 1d−r−1) is reducible modulo Φd, as the first column
hook lengths are different.

In (b), (λ, µ) is Kleshchev, and for r > 0 the last box of the Young diagram of λ can be moved to the
end of the first column of µ without changing its residue, so χλ,µ is reducible by [8, Thm. 4.10(ii)]. For
r = 0 the character χλ,µ is reducible modulo Φ2e by [8, Thm. 4.10(i)] since the character of the Hecke
algebra of Sn labelled by the second part µ = (e+ 1, 1e−1) is. �
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The next reducibility result for characters of specialisations of the Hecke algebra of type Bn will be
used in the investigation of unipotent characters of Spin±2n(q).

Proposition 5.3. Let ` be a prime and q a prime power. Set d = d`(q).
(a) If d is odd, n = 2d + r with 0 ≤ r ≤ d − 2, and (λ, µ) = ((d + r, r + 1, 1d−r−1),−), then the

character χλ,µ, of Hn(q, 1) is reducible modulo `.
(b) If d = 2e > 2 is even, n = 2e + r with 0 ≤ r ≤ e − 1, and (λ, µ) = ((e + r, 1e−r), (r)), then the

character χλ,µ of Hn(q, 1) is reducible modulo `.
(c) If d is odd, n = 2d+ r with 1 ≤ r ≤ d− 1, and (λ, µ) = (d+ r− 1, r, 1d−r),−, then the character

χλ,µ of Hn−1(q, q2) is reducible modulo `.
(d) If d = 2e > 2 is even, n = 2e+ r with 1 ≤ r ≤ e− 1, and (λ, µ) = ((r − 1), (e+ r + 1, 1e−r−1)),

then the character χλ,µ of Hn−1(q, q2) is reducible modulo ` unless (e, r) = (2, 1).

Proof. Parts (a) and (c) again follow from [8, Thm. 4.10(i)] as the first column hook lengths of λ are
different. The characters χλ,µ as in (b) and (d) are reducible since the first, respectively second part of λ
is a hook partition, of length d = 2e, hence belonging to a reducible character of the Hecke algebra of type
S2e, unless this hook is either (2e) or (12e). The latter case only occurs in (d) when (e, r) = (2, 1). �

5.2. Simple endotrivial modules in classical type groups. We will use the fact shown in [11,
Thm. 1.3] that any endotrivial module is liftable to a characteristic 0 representation. Therefore, we can
investigate endotrivial modules by the ordinary character of their lift. These characters have the following
properties:

• they are irreducible modulo `,
• their values on `-singular classes are of absolute value 1,
• their degree is congruent to ±1 modulo |G|`.

Theorem 2 is now a consequence of:

Theorem 5.4. Let G = Sp2n(q) or G = Spin2n+1(q) with n ≥ 2, (n, q) 6= (2, 2), or G = Spin±2n(q) with
n ≥ 4, and ` a prime for which Sylow `-subgroups of G are non-cyclic. Let ρ be the character of a nontrivial
simple endotrivial kS-module, for a central factor group S of G. Then we have G = S = Sp8(2) ∼= O9(2),
` = 5, and ρ = ρS , with S =

(
0 1
4

)
, is the unipotent character of degree ρS(1) = 51.

Proof. By [11, Thms. 6.7 and 5.2] there do not exist non-trivial simple endotrivial kS-modules if either
` = 2 or ` divides q. Now let d = d`(q). Since Sylow `-subgroups of G are non-cyclic, the cyclotomic
polynomial Φd(q) has to divide the group order at least twice. By Theorem 4.1, all non-unipotent char-
acters of G vanish on some `-singular element of G, so cannot come from simple endotrivial modules.
The only candidates for endotrivial unipotent characters are those appearing in the conclusion of Theo-
rem 4.2. Of those, we can discard the Steinberg character of G, because G contains `-singular elements
with non-trivial unipotent part, and on those classes the value of the Steinberg character is zero.

Now consider the other unipotent characters listed in Theorem 4.2. First assume that G = Sp2n(q) or
G = Spin2n+1(q). Let ρ = ρS with S as in Theorem 4.2(1). So d is odd and n = 2d + r, 0 ≤ r ≤ d − 1.
Then ρ lies in the principal series and is parameterised by the character of the Weyl group W (Bn) labelled
by the pair of partitions ((d + r, r + 1, 1d−r−1),−) ` 2d + r. By Proposition 5.2(a), the corresponding
character of the Hecke algebra Hn of type Bn is reducible modulo ` for r 6= d−1. Since the decomposition
matrix of the Hecke algebra of W (Bn) embeds into that of G (see e.g. [7, Thm. 4.1.14]), this shows that
ρS is reducible modulo `, so does not give an example. The same argument applies to the Alvis–Curtis
dual characters, since Alvis–Curtis duality on the side of Hecke algebras corresponds to tensoring with
the sign character. In the case r = d− 1 we have S =

(
d 2d

0

)
and the corresponding unipotent character

does not satisfy the necessary degree congruence by Proposition 5.1.
So now assume that d = 2e is even and write n = 2e + r with 0 ≤ r ≤ e − 1. Let ρ = ρS as in

Theorem 4.2(2). Again, ρ lies in the principal series and is labelled by the pair of partitions ((r+1), (e+
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r, 1e−r−1)) ` 2e + r. Hence it is reducible modulo ` by Proposition 5.2(b) if e > 1. For e = 1 we have
r = 0, n = 2 and S =

(
0 1
2

)
. Here ρS(1) = q(q2 + 1)/2 ≡ 2q + 1 (mod (q + 1)2) is not congruent to ±1

modulo the `-part of the group order.
For G = Sp2n(q) or G = Spin2n+1(q) it remains to consider the unipotent characters listed in Theo-

rem 4.2(8) and (9). (Note that the group Sp4(2) was excluded.) In case (8) we have q = d = 2, so ` = 3.
The listed symbol parameterises a unipotent character of degree 7, its Alvis-Curtis dual has degree 56,
both incongruent ±1 (mod 33). Finally in case (9), `|(q2 + 1) = 5. The second symbol belongs to a
character of degree 119, its Alvis–Curtis dual has degree 30464, both incongruent to ±1 (mod 52), so
this gives no example. But the 51-dimensional simple unipotent module for Sp8(2) labelled by

(
0 1
4

)
is

irreducible and endotrivial in characteristic ` = 5. Indeed, the restriction of the corresponding irreducible
character to the subgroup O+

8 (2) contains the trivial character once and all other constituents are of 5-
defect zero, hence projective modulo 5. Its Alvis–Curtis dual has degree 13056 ≡ 6 (mod 52), so cannot
lead to an example.

Next consider the case that G = Spin+
2n(q). Let ρ = ρS be unipotent with S as in Theorem 4.2(3). So

d is odd and n = 2d+r with 0 ≤ r ≤ d−1. Then ρ lies in the principal series and is parameterised by the
character of the Weyl group W (Dn) labelled by the pair of partitions (λ, µ) = ((d+r, r+1, 1d−r−1),−) `
2d + r. By Proposition 5.3(a), the corresponding character χλ,µ of the Hecke algebra Hn of type Bn is
reducible modulo ` for r 6= d− 1. Since λ 6= µ, χλ,µ restricts irreducibly to the Hecke algebra H′

n of type
Dn (of index 2) and thus is also reducible as a character of H′

n modulo `. Using that the decomposition
matrix of the Hecke algebra of W (Dn) embeds into that of G, this shows that ρS is reducible modulo `,
so does not give an example. The same argument applies to the Alvis–Curtis dual characters. In the
remaining case r = d − 1, Proposition 5.1 shows that the corresponding unipotent character does not
satisfy the degree congruence.

Now assume that ρS is as in Theorem 4.2(4), so d = 2e is even and n = 2e+ r with 0 ≤ r ≤ e. Again,
ρ lies in the principal series and is labelled by the pair of partitions ((e + r, 1e−r), (r)) ` 2e + r. By
Proposition 5.3(b) the corresponding character of the Hecke algebra of type Bn is reducible modulo ` if
r < e and e > 1, and so as before the same holds for the character of the Hecke subalgebra of type Dn,
whence ρS is reducible modulo ` for e > 1. Note that e = 1 is excluded since then n = 2e = 2. The case
when r = e does not satisfy the degree congruence by Proposition 5.1.

Similarly, in the case thatG = Spin−2n(q) the characters of the principal series Hecke algebraHn−1(q, q2)
labelled by (λ, µ) as in Theorem 4.2(5) and (6) are reducible modulo ` by Proposition 5.3(c) and (d),
so the same holds for the unipotent characters parameterised by these pairs, unless r = d. The latter
character again does not belong to an endotrivial module by Proposition 5.1. In the exceptional case
(e, r) = (2, 1) of Proposition 5.3(d) we have n = 2e + r = 5 and ρS(1) + 1 ≡ 4(q2 + 1) (mod (q2 + 1)2),
hence the necessary degree congruence is not satisfied for ρS .

Finally, the character listed in Theorem 4.2(10) takes value 2 on some `-singular classes, by the final
statement in that result, so again cannot be endotrivial. �

The endotrivial characters of Sp4(2) ∼= S6 and its covers have been described in [11, Thm. 4.9].
As pointed out before the simple endotrivial modules of linear and unitary groups have already been

determined in [10, Thm. 3.10 and 4.5].

6. Zeroes of characters of quasi-simple groups

Together with our previous work [10, 11] with C. Lassueur and E. Schulte our results allow us to
guarantee the existence of zeroes of characters of quasi-simple groups on `-singular elements once the
`-rank is at least 3, as claimed in Theorem 1 which we restate:

Theorem 6.1. Let ` > 2 be a prime and G a finite quasi-simple group of `-rank at least 3. Then for any
non-trivial character χ ∈ Irr(G) there exists an `-singular element g ∈ G with χ(g) = 0, unless one of:
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(1) G is of Lie type in characteristic `;
(2) ` = 5, G = L5(q) with 5||(q − 1) and χ is unipotent of degree χ(1) = q2Φ5;
(3) ` = 5, G = U5(q) with 5||(q + 1) and χ is unipotent of degree χ(1) = q2Φ10; or
(4) ` = 5, G = Ly and χ(1) ∈ {48174, 11834746}; or
(5) G = E8(q) with q odd, d`(q) = 4 and χ is the semisimple character with label ((0), (8)) in the

unique Lusztig-series of type D8.

Proof. For G a covering group of a sporadic simple group, an easy check of the known character tables
shows that only case (4) arises. For alternating groups and their covering groups the claim is contained
in the proof of [11, Prop. 4.2 and Thm. 4.5]. If G is a covering group of a special linear or unitary group
then [10, Thm. 1.3] shows that only the cases in (1), (2) and (3) can arise.

For the remaining groups of Lie type first note that the Steinberg character vanishes on the product
of any `-element with a unipotent element in its centraliser, so can be discarded from our discussion. We
now first consider groups G of exceptional Lie type. Since the `-rank of G is at least 3, it must be of
type F4, E6,

2E6, E7 or E8. For these it is shown in the proof of [11, Thm. 6.11] that their irreducible
characters χ vanish on some `-singular element unless either χ is unipotent or `|(q2 + 1) in G = E8(q)
and χ lies in the Lusztig series of an isolated element with centraliser D8(q). We deal with these cases in
turn.

We begin with G = E8(q). Since G has `-rank at least 3 we must have d = d`(q) ∈ {1, 2, 3, 4, 6}.
First assume that d = 1. There exist maximal tori of orders divisible by Φ1Φ7, Φ1Φ9 and Φ1Φ14, hence
G contains semisimple `-singular elements of order divisible by a Zsigmondy prime divisor r of Φ7,Φ9

and Φ14. All non-trivial unipotent characters apart from φ8,1, φ8,91 and the Steinberg character are of
defect zero for one of these three primes, hence vanish on any r-singular element. For the remaining two
characters, direct calculation with the character formula shows that they vanish on elements of order
Φ1Φ4. Very similar considerations apply to the remaining cases d ∈ {2, 3, 4, 6}. If d = 4 and χ lies in the
Lusztig series of an isolated element with centraliser D8(q), the same argument using Zsigmondy prime
divisors of Φ5, Φ8, Φ10 and Φ12 only leaves the four characters in that series, those with label

(
0
8

)
and

(
01
18

)
and their duals. Three of them are zero on suitable products of an ` element with a unipotent element.

The arguments for the unipotent characters of the remaining exceptional groups are similar and easier.
Finally, let us suppose that G is of classical Lie type. By Theorem 4.1 the claim holds if χ is not

unipotent. For unipotent characters χ, the claim follows from Theorem 4.2, since all exceptions listed
there have `-rank two, including those in cases (4) and (5) with n = 3e respectively n = 3d. �

Remark 6.2. (a) Let p be a prime and f ≥ 1. Then G = SL2(pf ) has p-rank f , but its irreducible
characters of degree q ± 1 do not vanish on any p-singular elements of G. Similarly, there exist such
characters for SL3(pf ), SU3(pf ) and 2G3(32f+1). This shows that Case (1) in Theorem 6.1 is a true
exception. Also, Ly has characters of degrees 48174 and 11834746 which do not vanish on 5-singular
elements. (It is well-known that the Lyons group behaves like a characteristic 5 group in many respects,
see e.g. [14].) It can be checked that the unipotent characters of L5(q) and U5(q) listed in Cases (2)
and (3) are also true exceptions.

(b) We expect the exceptions in Case (1) to only occur for groups of Lie type in characteristic ` of
small Lie rank.

(c) The results of [11], [10] and of the present paper show that even for `-rank 2 there exist only
relatively few irreducible characters of quasi-simple groups not vanishing on some `-singular element.
Nevertheless we refrain from attempting to give an explicit list in that case.

7. An application to small 1-PIMs

Our results so far may also be used in order to investigate the first Cartan invariant of finite simple
classical groups. In their recent paper [9], Koshitani, Külshammer and Sambale raised the question
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to understand simple groups with non-cyclic Sylow `-subgroup for which the first Cartan invariant c11
equals 2.

Theorem 7.1. Let G be a finite simple group of classical Lie type Bn, Cn, Dn or 2Dn. Let ` > 2 be a
prime for which Sylow `-subgroups of G are non-cyclic. Then the `-modular projective cover of the trivial
character of G has at least three ordinary constituents. In particular c11 ≥ 3.

Proof. For ` the defining characteristic of G, this was already shown in [9]. Now assume that ` 6= 2 is
different from the defining characteristic of G. Assume that the character of the `-modular projective
cover of the trivial G module has the form 1G + χ, with χ ∈ Irr(G). Since projective characters vanish
on all `-singular elements, this implies that χ(g) = −1 on all elements g ∈ G of order divisible by `.

We now use our results on zeroes of characters. By Theorem 4.1 any non-unipotent character of
G vanishes on some `-singular element. (Again note that Sp4(2) ∼= S6 is not simple.) So χ must be
unipotent. In this case, Theorem 4.2 again shows that most unipotent characters also vanish on some
`-singular element. It remains to consider the listed exceptions.

The trivial character never has value −1. To rule out the Steinberg character we use that there is
always a non-regular element s ∈ G of order `, hence there is a unipotent element u 6= 1 in the centraliser
of s. The Steinberg character vanishes on the non-semisimple element su. For the small cases listed
in 4.2(7) to (10) and their Alvis–Curtis duals we just check that there is always an `-singular regular
semisimple element on which the character has value 6= −1.

It remains to consider the unipotent characters corresponding to symbols in Theorem 4.2(1) to (6)
and their duals. We have mentioned that the values of these characters on `-singular regular semisimple
classes are ±1. We give for each case a pair of parameters of maximal tori on which character values have
opposite signs. This is easy to compute with the Murnaghan–Nakayama formula 3.3 using the definitions
of the signs occurring there. It turns out that in each case the same pair of tori works for the symbol
and its dual. The dual symbols and the pairs of tori are as follows:

(1) S∨ =
( d+r

d+r\0\d∪2d

)
, tori ((d), (d+ r)) and ((2d), (r)),

(2) S∨ =
(e+r\0∪2e

e+r\e

)
, tori ((2e), (r)) and ((e+ r), (e)),

(3) S∨ =
( d+r−1

d+r\0\d∪2d

)
, tori ((d, d+r),−) (or ((d, d−2), (1, 1) if r = 0) and ((2d, r),−) (or ((2d), (1, 1)

if r = 2),
(4) S∨ =

(e+r−1\0∪2e

e+r\e

)
, tori ((2e),−) and ((e− 1), (e, 1)) if r = 0 (use ((1), (3, 2)) for d = n = 6) and

in case r > 0 tori (−, (e+ r, e)) and ((2e, r),−) (if r 6= 2) or ((2e), (1, 1)) (if r = 2),
(5) S∨ =

( d+r

d+r−1\0\d∪2d

)
, tori ((d), (d+ r)) and ((2d), (r)),

(6) S∨ =
(e+r\0∪2e

e+r−1\e

)
, tori ((e+ r), (e)) and ((2e), (r)).

The only cases which are not covered by this argument because one of the given tori has no regular
element are: Sp4(2) with d = 2 (` = 3) and Sp8(2) with d = 4 (` = 5). The first group is not simple, and
for the second the claim can be checked from its character table. �
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