
ON BLOCKS WITH ONE MODULAR CHARACTER

GUNTER MALLE, GABRIEL NAVARRO, AND BRITTA SPÄTH

Abstract. Suppose that B is a Brauer p-block of a finite group G with a unique
modular character ϕ. We prove that ϕ is liftable to an ordinary character of G (which
moreover is p-rational for odd p). This confirms the basic set conjecture for these blocks.

1. Introduction

Let G be a finite group and let p be a prime. While the Brauer p-blocks of G consisting
of one ordinary irreducible character were understood by Richard Brauer himself a long
time ago, the blocks containing just one modular character are still a mystery. The study
of the Broué–Puig nilpotent blocks [3] (a canonical example of blocks with one modular
character and, in some sense, the easiest) is already quite complicated. But not every
block with one modular character is nilpotent (except possibly in quasi-simple groups.)

From the point of view of algebras, blocks with one modular character are the most
natural. If F is an algebraically closed field of characteristic p, and B is a p-block of G
(that is, an indecomposable two-sided ideal of the group algebra FG), then the algebra B
has a unique irreducible F -representation if and only if B/J(B) is a matrix algebra, where
J(B) is the Jacobson radical of B. We see that from several perspectives, the blocks with
one modular character constitute a fundamental object that deserves study.

If B has a unique irreducible modular character, say ϕ, then the decomposition numbers
of the algebra B are simply the numbers χ(1)/ϕ(1), where χ runs over the irreducible
complex characters in B. No general interpretation of these numbers is known. (If B is
nilpotent, for instance, these are the irreducible character degrees of any defect group of
B, see [3, Thm. 1.2(2)].) Our main result is that one of these numbers should always be
1. In other words, ϕ should always lift to an ordinary (complex) character of G.

Main Theorem. Let G be a finite group and let p be a prime. Assume that B is a p-block
of G and IBr(B) = {ϕ}. Then there exists χ ∈ Irr(B) such that χ(1) = ϕ(1). If p 6= 2, χ
can be chosen to be p-rational.

Our Main Theorem was known for nilpotent blocks (by the work of Broué–Puig [3]).
It is also known for p-solvable groups by the celebrated Fong–Swan Theorem (while the
p-rationality part follows from a classical theorem of M. Isaacs [13]). Our proof of the
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general case uses the Classification of Finite Simple Groups, and the main obstacle is to
understand the p-blocks B of quasi-simple groups G such that IBr(B) is contained in a
single Aut(G)-orbit. We believe that their classification will turn out to be fundamental
when further studying blocks with one modular character.

This work started from an observation by R. Kessar and M. Linckelmann. Recall that
the basic set conjecture asserts that for every block B of a finite group G, there exists
a subset B of Irr(G) such that the set B0 of their restrictions to p-regular elements is a
Z-basis of the ring Z[IBr(B)] of generalized Brauer characters of B. (See for instance [9].)
In the case where IBr(B) = {ϕ}, as pointed out by Kessar and Linckelmann, the basic
set conjecture is equivalent to proving that ϕ is liftable, which is our Main Theorem.

This liftability of ϕ in our main result is, once again, a shadow of some deeper, structural
conjecture that R. Kessar and M. Linckelmann have proposed: every block with one
modular irreducible character is Morita equivalent over the ring of p-adics to a block of
a p-solvable group. (This is consistent with their results in [17] and [18], and it would
imply the liftability statement in our Main Theorem, using the Fong–Swan Theorem and
the fact that blocks which are Morita equivalent over the ring of p-adics have the same
decomposition matrix, see [1, Sect. 2.2, Ex. 3].) This deeper conjecture, however, seems
out of reach with the present methods.

Finally, for p odd, we show that in the situation of the Main Theorem one can also choose
the lift χ to be p-rational. Nevertheless we can’t answer the question of G. R. Robinson
whether this p-rational lift is unique, although we believe that this is the case. None of
this seems to be implied by the general Kessar–Linckelmann conjecture.

2. A result on simple groups

In this section and the following we start our investigation of blocks of finite quasi-
simple groups all of whose irreducible Brauer characters lie in a single orbit under the
automorphism group. In Section 5 it will turn out that exactly those blocks are relevant for
our inductive proof. One can see the importance of those blocks already in the following
situation: assume that in the situation of the Main Theorem there exists a quasi-simple
normal subgroup X of G. Then the blocks of X covered by a block of G with one Brauer
character have the above mentioned property.

Let p be a prime. Our notation for blocks and characters of finite groups follows [24].
Hence we have fixed a maximal ideal M of the ring of algebraic integers containing p with
respect to which Brauer characters of finite groups are constructed.

Theorem 2.1. Suppose that G is a quasi-simple group, p is a prime with p - |Z(G)|, and
B is a p-block of G. Let A = Aut(G). If IBr(B) consists of A-conjugates of ϕ, then there
exists some χ ∈ Irr(G) such that

(1) χ0 = ϕ;
(2) χ is p-rational if p 6= 2;
(3) the stabilisers IA(χ) = IA(ϕ) =: I coincide; and
(4) for P ∈ Sylp(I), the character χ extends to some χ̃ ∈ Irr(G o P ) with p -

|CGoP (G) : ker(χ̃|CGoP (G))|.

The proof will be given in this section and the next, based on the classification of
finite simple groups. Assertions (3) and (4) will be crucial in our inductive approach to
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arbitrary groups. Note that assertion (2) implies the statement in (4) in case of odd p by
[14, Thm. (6.30)].

2.1. General Observations. We start by collecting some general observations, relating
to our Theorem 2.1, as well as about nilpotent blocks and their characters.

Lemma 2.2. Suppose that E / G. Let P be a p-subgroup of G such that P ∩ E = Q ∈
Sylp(E), and assume that CP (E) = 1. Let θ ∈ Irr(E) be P -invariant. Then θ extends to

EP if and only if θ has an extension θ̃ to H := EoP such that p - |CH(E) : ker(θ̃|CH(E))|.

Proof. Since E is normal, P acts on E as automorphisms by conjugation. Let H = EoP
be the corresponding semidirect product, and view E and P as subgroups of H. Now, the
map f : H → EP given by f(e, x) = ex is a surjective group homomorphism with kernel
∆Q = {(x, x−1) |x ∈ Q}, a normal p-subgroup of H isomorphic to Q, which intersects
trivially with both E and P . In particular, ∆Q ⊆ CH(E). By orders, (∆Q)P is a Sylow
p-subgroup of H and (∆Q)P ∩ CH(E) = (∆Q)CP (E) = ∆Q, so we see that ∆Q is a
Sylow p-subgroup of CH(E). Using that f induces an isomorphism H/∆Q → EP , we

easily see that θ extends to EP if and only if θ has an extension θ̃ to H that contains ∆Q
in its kernel. Since ∆Q ∈ Sylp(CH(E)), the rest of the claim easily follows. �

Before considering the blocks of specific simple groups we prove that Theorem 2.1 holds
whenever B is nilpotent or is covered by a nilpotent block (in a specific situation).

Proposition 2.3. Let G be a finite group, NCG and B be a G-invariant nilpotent p-block
of N . Then for the unique ϕ ∈ IBr(B) there exists some G-invariant ψ ∈ Irr(B) with
ψ0 = ϕ such that ψ extends to Q, where Q/N is a Sylow p-subgroup of G/N . Moreover
if p 6= 2, ψ can be chosen to be p-rational.

Proof. By the characterisation of characters in nilpotent p-blocks when p > 2 there is a
unique character ψ ∈ Irr(B) that is p-rational, see [3, Thm. 1.2]. This character has the
claimed properties according to [15, Thm. (6.30)].

When p = 2 we use the following considerations: Let D be a defect group of B and
B′ the Brauer correspondent of B in NN(D). Let ψ′ ∈ Irr(B′) be the unique character
with D ⊆ ker(ψ′). Hence ψ′ is H := NG(D)-invariant. Note that ψ′ extends to NQ(D)
since ψ′ corresponds to a defect zero character of NN(D)/D that extends to NQ(D)/D
according to [24, Ex. (3.10)]. According to the proof of [24, Thm. (8.28)] there exists

a central extension Ĥ of H by a p′-group U with NN(D) C Ĥ such that ψ′ extends to

some ψ̃′ ∈ Irr(Ĥ). Using the cocycle defining Ĥ as central extension of NG(D) by U we

define Ĝ as a central extension of G such that N C Ĝ and Ĥ ⊆ Ĝ. Moreover let O be
the complete discrete valuation ring of a p-modular system (that is big enough), e ∈ ON
and e′ ∈ ONN(D) be the central-primitive idempotents of B and B′. According to [21,

1.20.3] the algebras OĜe and ONĜ(D)e′ are Morita equivalent.
Since the irreducible module affording ψ′ has multiplicity one in ONĜ(D)e′ and di-

mension ψ′(1)2 there exists a character ψ̃ ∈ Irr(Ĝ) afforded by a submodule of OĜe that

has multiplicity one in OĜe. Hence ψ := ψ̃N is irreducible, G-invariant and ψ0 = ϕ. It

remains to prove that ψ extends to Q, but by the construction Ĝ is a central extension
of G by a p′-group, hence Q is (isomorphic to) a subgroup of Ĝ and ψ extends to Q. �



4 GUNTER MALLE, GABRIEL NAVARRO, AND BRITTA SPÄTH

Proposition 2.4. Let A be a finite group with normal subgroups GC G̃. Let p be an odd
prime, B a p-block of G covered by a nilpotent block of G̃. Suppose that every ordinary
character of G extends to its inertia group in G̃ and that G̃/G is abelian with p - |G̃ :
GCG̃(G)|. Let ϕ ∈ IBr(B). Then there exists some p-rational Aϕ-invariant ψ ∈ Irr(B)
with ψ0 = ϕ.

Proof. Let B̃ be a nilpotent block of G̃ covering B. Let ϕ̃ ∈ IBr(B̃) and ψ̃ ∈ Irr(B̃) be

p-rational with ψ̃0 = ϕ̃ from Proposition 2.3. Now any ϕ ∈ IBr(B) is a constituent of ϕ̃G.
Note that ϕ extends to its inertia group in G̃: let ψ ∈ Irr(B) such that ψ is a constituent

of ψ̃G and ϕ is a constituent of ψ0. Let G̃1 be the maximal subgroup of G̃ such that G̃1

has p-index in G̃ and G̃1/G is a p′-group. Then ϕ̃G̃1
and hence ψ̃G̃1

is irreducible. Since

ψ extends to its inertia group in G̃1 the character ψ̃G̃1
has multiplicity 1 in ψG̃1 . Hence

ϕ̃G̃1
has multiplicity 1 in (ψG̃1)0 and ϕ extends to its inertia group in G̃.

Since all ordinary characters of G extend to their inertia group in G̃ and G̃/G is abelian

the number of constituents of ψ̃G coincides with the number of linear characters µ of G̃/G

with ψ̃µ = ψ̃. Analogously the number of constituents of ϕ̃G coincides with the number
of linear Brauer characters µ of G̃/G with ϕ̃µ = ϕ̃ because p - |G̃ : GCG̃(G)|. Every

constituent of ϕ̃G lifts to a unique constituent of ψ̃G since both characters have the same

number of constituents. Let ψ ∈ Irr(B) be the constituent of ψ̃G with ψ0 = ϕ.

For every a ∈ Aϕ we see that ψ̃a is a p-rational character of the block B̃a. Note that

B̃a is nilpotent as well and contains a p-rational character µψ̃ for some linear p-rational
character µ of G̃/G. Since in a nilpotent block there exists a unique p-rational character,

we see ψ̃a = µψ̃. Then ψa is a constituent of ψ̃G = (µψ̃)G. This implies ψa = ψ.

Note that since ψ̃ is p-rational, ψ is p-rational according to the definition. �

To finish this paragraph let us point out nilpotent blocks are not the only ones con-
taining just one modular character:

Remark 2.5. A typical way of constructing blocks with one modular character which are
not nilpotent is the following. Let H be a p′-group of central type (that is, H is a group
possessing λ ∈ Irr(Z(H)) such that λH = eθ for some θ ∈ Irr(H) and e ≥ 1). Suppose
that H/Z(H) 6= 1 acts faithfully on a p-group V . Then the semidirect product V H has
a unique (non-nilpotent) block covering λ with a unique modular character.

2.2. Blocks of sporadic groups. We now start our investigation of p-blocks of finite
quasi-simple groups all of whose irreducible Brauer characters lie in a single orbit under
the automorphism group. For groups not of Lie type in cross characteristic we obtain a
full classification.

Proposition 2.6. Let G be quasi-simple such that G/Z(G) is a sporadic simple group or
the Tits group 2F4(2)′. Let p be a prime and B a p-block of G, not of central defect, such
that IBr(B) is a single orbit under Aut(G)B. Then B has defect 1 and the degrees of its
irreducible Brauer characters are as given in Table 1.

Proof. From the known character tables of covering groups of sporadic simple groups it is
easy to determine the block distribution and the number of modular Brauer characters in
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Table 1. Blocks in sporadic groups

G p IBr(B) G p IBr(B)
J1 2 76 Co3 2 129536

2.J2 3 126, 126 Fi22 2 2555904
M23 3 231 Ly 3 18395586

2.HS 3 924, 924 Fi23 2 73531392
McL 2 3520 2.Co1 3 59153976

3.McL (2×) 2 6336 J4 3 786127419

each p-block. If B is a block of defect zero, or if l(B) := |IBr(B)| is larger than |Out(G)B|,
the block can be discarded. Also, for many of the smaller groups, the Brauer character
tables are available in GAP [30]. This leaves only the cases in Table 1, and a 5-block B
of Fi′24 of defect 1 with l(B) = 2. But the block B′ of Fi′24.2 covering B has l(B′) = 4,
so this does not give an example. �

Inspection of the known character tables for the groups in Table 1 shows:

Corollary 2.7. In the situation of Proposition 2.6 every ϕ ∈ IBr(B) is liftable to an
Aut(G)ϕ-invariant character in Irr(G), and either ϕ has a unique lift, which then is p-
rational, or p = 3, there are exactly three distinct lifts two of which are algebraically
conjugate, or p = 2 and ϕ has exactly two lifts.

2.3. Blocks of alternating groups. We next consider covering groups of alternating
groups.

Theorem 2.8. Let G be a covering group of an alternating group An, n ≥ 5. Let p be
a prime and B a p-block of G of weight w, not of central defect, such that IBr(B) is a
single orbit under Aut(G)B. Then B has defect one and one of the following occurs:

(1) G = An, p = 3, w = 1, l(B) = 1 and B is self-conjugate;
(2) G = 2.An, p = 3, w = 1, l(B) ≤ 2;
(3) G = 2.A6, p = 5, w = 1, l(B) = 2, {ϕ(1) | ϕ ∈ IBr(B)} = {4}; or
(4) G = 6.A6, p = 5, l(B) = 2, {ϕ(1) | ϕ ∈ IBr(B)} = {6} (two blocks).

Proof. For n ≤ 7 we consult the known Brauer character tables. Thus we may assume
that n ≥ 8, the full covering group of An has center of order 2, and |Out(An)| = 2. We use
the description of p-blocks of alternating groups and their covering groups in [28]. First
consider B a p-block of An. Then B corresponds to a p-core partition µ of an integer
n− wp, where w is called the weight of the block. A core and its conjugate parametrise
the same p-block. First assume that p is odd. Then there are two blocks of Sn above any
non self-conjugate block of An, and there is one above each self-conjugate one. By [28,
Prop. 12.8],

l(B) =

{
k(p− 1, w) if B is not self-conjugate,
1
2
(k(p− 1, w) + 3ks(p− 1, w)) else,
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where k(a, w) denotes the number of a-tuples of partions of w, and ks(a, w) is the number
of symmetric a-quotients. When w = 0 then B is of defect zero. For p = 3 and w ≥ 2 we
have

l(B) ≥ min{k(2, 2),
1

2
(k(2, 2) + 3ks(2, 2))} = min{5, 4} = 4,

which is larger than |Out(An)| as n ≥ 8. When w = 1 and B is not self-conjugate, then
l(B) = 2, hence this gives no example. For B self-conjugate and p ≥ 5 we find

l(B) ≥ min{k(4, 1),
1

2
(k(4, 1) + 3ks(4, 1))} = min{4, 2} = 2,

and equality only holds when p = 5, w = 1. But in that case the block B′ of Sn above B
has l(B′) = 4 by [28, Prop. 11.4]. This leaves only case (1).

When p = 2, note that 2-cores are triangular partitions and thus always self-conjugate.
In this case there is a unique 2-block of Sn above each 2-block of An. Also, blocks of
weight 0 or 1 are of defect 0. By [28, Prop. 12.9] we have

l(B) =

{
p(w) if w is odd,

p(w) + p(w/2) if w is even,

where p(w) = k(1, w) denotes the number of partitions of w. Thus, for w ≥ 2 we have
l(B) ≥ 3 > |Out(An)|, and no further example arises.

Now we turn to spin blocks, that is, faithful blocks of the 2-fold covering G = 2.An,
with p > 2. Any such block B is covered by a unique p-block B′ of 2.Sn, and l(B) =
ln(B′) + 2ls(B′) by [28, Prop. 13.19], where ln(B′), ls(B′) denote the number of pairs of
not self-conjugate Brauer characters in B, respectively the number of self-conjugate ones.
A straightforward calculation shows that l(B) ≤ 2 implies that either p = 3, w ≤ 2, or
p = 5, w = 1, l(B) = 2. In the latter case the block B′ of 2.Sn, n ≥ 8, above B has
l(B′) = 4, and the same holds if p = 3 and w = 2. In the case p = 3 and w = 1, l(B) = 1
if the sign of the block B is +1, and l(B) = 2 if it has sign −1. In either case, IBr(B) is
an orbit under Aut(G). So we reach the conclusion in case (2). �

Note that 2.A6
∼= SL2(9) is a group of Lie type, and the example (3) in the preceding

result forms part of an infinite series of cases.

Corollary 2.9. In the situation of Theorem 2.8 all ϕ ∈ IBr(B) are liftable to an Aut(G)ϕ-
invariant character in Irr(G), and either ϕ has a unique lift, which is p-rational, or p = 3
and there are exactly three distinct lifts two of which are algebraically conjugate.

Note that in all cases of Theorem 2.8, p is prime to |Out(G)|.

Remark 2.10. The generating function for the number of symmetric 3-cores is known (see
for example [28, Prop. 9.13]). From this it can be seen that blocks as in conclusion (1) of
Theorem 2.8 are rather rare; the first few occur in degrees n = 8, 11, 19, 24. Similarly, it
can be computed from the generating function in [28, Prop. 9.9] that the first instances
for case (2) occur for n = 5, 8, 10, 15, 18, with l(B) = 1 only when n = 18.

Proposition 2.11. Let G be an exceptional covering group of a finite simple group of
Lie type. Let p be a prime and B a faithful p-block of G, not of central defect, such that
IBr(B) is a single orbit under Aut(G)B. Then G = 2.G2(4), p = 3, B has defect 1 and
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is as in Table 2. Every ϕ ∈ IBr(B) is liftable to a unique Aut(G)ϕ-invariant character in
Irr(G), which is 3-rational.

Table 2. Blocks in exceptional covering groups

G p IBr(B)
2.G2(4) 3 1800, 1800
2.G2(4) 3 3744, 3744

Proof. As in the proof of Proposition 2.6 this can be checked from the known ordinary
character tables. Apart from the cases listed in the table, there exist 5-blocks of 121.L3(4),
of 62.U4(3), of 2.2E6(2) and of 6.2E6(2) of defect 1 with two or four irreducible Brauer
characters. But from the shapes of their Brauer trees it is immediate that they cannot
lead to examples. �

Remark 2.12. For all quasi-simple groups discussed in this section the blocks with one
orbit of Brauer characters have defect 1. Note that blocks with cyclic defect group con-
taining just one modular irreducible character have trivial inertial quotient and hence are
nilpotent.

3. The simple groups of Lie type

In this section we deal with the groups of Lie type by considering them as subgroups
of simple linear algebraic groups. For consistency with the cited literature we prefer to
denote our chosen prime by ` and denote by p the characteristic of the underlying field.

We consider the following setup: G is a simple linear algebraic group of simply con-
nected type over an algebraic closure of a finite field Fp, and F : G → G is a Stein-
berg endomorphism with finite group of fixed points G = GF . It is well-known that all
quasi-simple groups of Lie type, apart from exceptional covering groups as considered in
Proposition 2.11, and apart from 2F4(2)′ which was already dealt with in Proposition 2.6,
can be obtained as central quotients of groups G as above. In particular, any block of a
covering group S of a simple group of Lie type is also a block of such a group G.

3.1. The defining characteristic case. We first consider the case when ` = p.

Proposition 3.1. Let S be a covering group of a simple group of Lie type, and ` = p the
defining characteristic of S. Let B be an `-block of S, not of central defect. Then IBr(B)
is not a single orbit under Aut(S)B.

Proof. All exceptional covering groups S have a center of order divisible by p, so we may
assume that S is a non-exceptional covering. In particular, it is a central quotient of a
finite reductive group G = GF , with G of simply connected type and F : G → G as
above. Denote by δ the smallest integer such that F δ acts trivially on the Weyl group of
G and let qδ denote the unique eigenvalue of F δ on the character group of an F -stable
maximal torus of G. By a result of Humphreys, the p-blocks of Irr(G) of non-zero defect
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are given by Irr(G | λ) for λ running over Irr(Z(G)). Since p divides |G| and G is perfect,
the principal p-block of G certainly contains Brauer characters of distinct degrees.

Thus now we may assume that B is a block of G with non-trivial corresponding cen-
tral character λ ∈ Irr(Z(G)). Then IBr(B) is parametrised by qδ-restricted F -invariant
weights of G whose restriction to Z(G) is a multiple of λ, and Aut(G) acts on the charac-
ters as it does on the weights. If δ = 1, so F is split, then there are qr−1 weights different
from the Steinberg weight that are q-restricted, where r is the rank of G. Thus, there are
at least two not Aut(G)-conjugate weights for every λ ∈ Irr(Z(G)) if qr − 1 > 2|Z(G)|. It
is easily seen that this inequality holds unless r = 1 and q ≤ 3, in which case G = SL2(q)
is solvable. A very similar discussion deals with the groups of twisted type. (Note that
here we need not consider the very twisted groups, since their center is trivial.) �

3.2. Non-defining characteristic. We now turn to the case of non-defining characteris-
tic. We suspect that most of the blocks considered in Theorem 3.4 satisfy the assumptions
from Proposition 2.4, but don’t see how to prove that. In our considerations we will make
use of the following simple observation where for any set of characters X of a finite group
G we denote by X0 := {χ0 | χ ∈ X} the multi-set of restrictions to the `′-elements of G.

Lemma 3.2. Let B be an `-block of a finite group G, and assume that X ⊂ ZIrr(B) is an
Aut(G)B-invariant subset such that X0 is linearly independent. If Aut(G)B has at least
two orbits on X, then IBr(B) is not a single Aut(G)B-orbit.

Proof. By assumption, the A := Aut(G)B-permutation module U := CX0 is a submodule
of the A-permutation module V := CIBr(B). Since A is not transitive on the basis X0 of
U , the A-permutation module V must a fortiori be intransitive. �

For example this criterion applies if X is an Aut(G)B-invariant basic set for the block
B which is not a single Aut(G)B-orbit. The second situation we will consider is when
X = {χ1, χ2}, where χ1, χ2 are sums over Aut(G)B-orbits of irreducible characters in
Irr(B), such that χ0

1 and χ0
2 are not multiples of one another.

We will also need the following observations pertaining to Lusztig induction:

Proposition 3.3. Let G be connected reductive with Frobenius map F , and ` not the
defining prime for G.

(a) Let L ≤ G be an F -stable Levi subgroup. If λ ∈ Irr(LF ) is `-rational, then so is
RG

L (λ).
(b) Let s ∈ G∗F be a semisimple `′-element. Then E(GF , s) is Gal(Q|GF |/Q|GF |`′ )-

stable.

Proof. The character formula [7, Prop. 12.2] expresses RG
L (λ)(g), g ∈ GF , as a linear

combination of values λ(l), l ∈ LF , with integral coefficients (for this note that the 2-
variable Green functions are integral valued by [7, Def. 12.1]). Claim (a) follows.

The characters in E(GF , s) are by definition the constituents of the various RG
T (θ),

where (T, θ) lies in the geometric conjugacy class of s. In particular, all such θ have
`′-order. The second assertion is then immediate from part (a). �

We will show the following slightly more general result than Theorem 2.1 which is better
adapted to our inductive argument:



BLOCKS WITH ONE MODULAR CHARACTER 9

Theorem 3.4. Let G be an F -stable Levi subgroup of a simple algebraic group H of
simply connected type with a Steinberg endomorphism F : H → H. Let ` be a prime
different from the defining characteristic of H. If B is an `-block of G = GF such that
IBr(B) is one Aut(G)B-orbit, then any ϕ ∈ IBr(B) lifts to some `-rational χ ∈ E(G, `′)
such that χ, ϕ have the same stabiliser in Aut(G)B.

The parts (1)–(3) of Theorem 2.1 for the quasi-simple groups S = HF/Z, with Z ≤
Z(HF ) and ` 6= p now follow from this by taking G = H.

We will give the proof of Theorem 3.4 in several steps. We begin by recalling some
known facts about `-blocks of finite reductive groups. Let ` 6= p and let B be an `-
block of G = GF . By the result of Broué and Michel (see [5, Thm. 9.12]) there exists a
semisimple `′-element s in the dual group G∗ = G∗F such that Irr(B) is contained in the
union

E`(G, s) =
∐

t

E(G, st)

of Lusztig series, where t runs over a system of representatives of conjugacy classes of
`-elements in CG∗(s). We say that B is quasi-isolated if the centraliser CG∗(s) is not
contained in any proper F -stable Levi subgroup of G∗.

Let G∗
1 be the minimal F -stable Levi subgroup of G∗ (and hence of H∗) with CG∗(s) ≤

G∗
1. Note that this is uniquely determined by s , since the intersection of any two Levi

subgroups containing CG∗(s) (and hence a maximal torus of H∗) is again a Levi subgroup.
Then by construction s is quasi-isolated in G∗

1. Let G1 be an F -stable Levi subgroup of
G in duality with G∗

1 and set G1 := GF
1 . In this situation we have:

Lemma 3.5. Theorem 3.4 holds for a block B in E`(G, s) if it holds for its Jordan corre-
spondent in E`(G1, s).

Proof. According to the theorem of Bonnafé and Rouquier [5, Thm. 10.1] Lusztig in-
duction RG

G1
induces a Morita equivalence between the `-blocks in E`(G1, s) and those

in E`(G, s), which sends Irr(B1) bijectively to Irr(B) for some `-block B1 contained in
E`(G1, s). By the very definition of Lusztig series any automorphism of G either fixes
E(G, s) or sends it to a disjoint series E(G, s′), for s′ ∈ G∗ another semisimple `′-element,
see also [27, Cor. 2.4]. In particular, any automorphism of G stabilising B will also sta-
bilise E(G, s). Following the argument of Bonnafé [27, Sect. 2] any σ ∈ Aut(G)B induces
an automorphism σ∗ of (G∗)F unique up to inner automorphisms of (G∗)F . Since σ∗

stabilizes the (G∗)F -class containing s, we may assume σ to stabilise G1. This implies
Aut(G)B = Inn(G)Aut(G)G1,B.

Now the Lusztig functor RG
G1

inducing the Bonnafé–Rouquier Morita equivalence be-
tween B1 and B is an isometry by the definition of G1, and by [7, Rem. 13.28] it
is independent of the choice of parabolic subgroup containing G1 as Levi subgroup.
Hence [27, Cor. 2.3] implies that RG

G1
is Aut(G)G1,B-equivariant. So if IBr(B) is one

orbit under Aut(G)B = Inn(G)Aut(G)G1,B, then IBr(B1) is one Aut(G1)B1-orbit. Thus,
if the assertion of Theorem 3.4 holds for B1, then every ϕ1 ∈ IBr(B1) lifts to some
χ1 ∈ Irr(B1) ∩ E(G1, `

′) with the same stabiliser in Aut(G1)B1 . This shows that any
ϕ ∈ IBr(B) lifts to some χ ∈ Irr(B) ∩ E(G, `′) with the same stabiliser in Aut(G)B. As
this bijection is given by RG

G1
the `-rationality properties are also preserved by Proposi-

tion 3.3(a). �
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Lemma 3.6. Theorem 3.4 holds whenever B lies in a Lusztig series E`(G, s) such that
E(G, s) is a basic set for E`(G, s).

Proof. Let B be as in the assertion. By assumption the set X := Irr(B) ∩ E(G, s) is a
basic set for B, and Aut(G)B-invariant by the remarks in the proof of Lemma 3.5. Thus,
if Aut(G)B has more than one orbit on X, then by Lemma 3.2 it necessarily has more
than one orbit on IBr(B). So, if IBr(B) is a single Aut(G)B-orbit, then all elements in X
are Aut(G)B-conjugate and in particular have the same degree d, say. But since X is a
basic set, then all elements of IBr(B) must have this degree d, hence IBr(B) consists of
the Brauer characters of the `-modular reductions of the characters in X. In particular,
they are all liftable to elements of E(G, `′) under preservation of stabiliser in Aut(G)B,
and these lifts have to be `-rational by Proposition 3.3. �

Before we continue, we need to recall an auxiliary result about the existence of ordinary
basic sets:

Lemma 3.7. Let G be connected reductive with a Steinberg endomorphism F . Let
s ∈ G∗F be a semisimple `′-element, and G1 ≤ G an F -stable Levi subgroup such
that G∗

1 contains CG∗(s)F . Assume that ` is good for G1 and prime to the order of
(Z(G1)/Z

◦(G1))
F . Then E(GF , s) is a basic set for the blocks in E`(G

F , s).

Proof. By the theorem of Geck and Hiss [5, Thm. 14.4] the assumptions made on G1

ensure that E(GF
1 , s) is a basic set for the blocks in E`(G

F
1 , s). Now by [5, Thm. 10.1]

Lusztig induction RG
G1

induces a Morita equivalence between the `-blocks in E`(G
F
1 , s) and

those in E`(G
F , s), which sends E(GF

1 , s) bijectively to E(GF , s). The claim follows. �

Corollary 3.8. Let G be simple of type G2, F4 or E6 and ` = 3, or of type E8 and ` = 5.
Then E(GF , s) is a basic set for the `-blocks in E`(G

F , s) unless s ∈ G∗F is quasi-isolated
(and hence of order at most 2 if G does not have type E8).

Proof. In all listed cases, the prime ` is good for any proper Levi subgroup of G. Unless
G is of type E6, G has trivial center, so all assumptions of Lemma 3.7 are satisfied as
soon as CG∗(s)F is contained in a proper Levi subgroup of G. In type E6 it is readily
checked that any proper Levi subgroup has connected center. �

Proposition 3.9. Theorem 3.4 holds when H is of type A.

Proof. Note that any prime ` is good for H, hence for G. If ` does not divide |Z(G)F |
then E(G, s) is a basic set for all blocks in E`(G, s) by Lemma 3.7, and the claim follows
from Lemma 3.6.

Now first assume that HF = SLn(q). As |Z(H)F | = gcd(n, q − 1) we may assume that
`|(q − 1). Let B be an `-block of G = GF in E`(G, s). Then by [20, Thm. A(a)] there
exists a 1-cuspidal pair (L, λ) with a 1-split Levi subgroup L ≤ G such Irr(B) contains

all constituents of RG
L (λ). Consider a regular embedding G ↪→ G̃ and let s̃ ∈ G̃∗F be a

preimage of s under the induced map G̃∗ → G∗ of dual groups. Then E(G̃, s̃) is a single

1-Harish-Chandra series, for a 1-cuspidal character λ̃ lying above λ of the Levi subgroup
L̃ of G̃ with L̃ ∩G = LF . Now let χ1, χ2 be constituents of RG

L (λ) below the semisimple

and the regular character of E(G̃, s̃), respectively.
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First assume that χ1(1) 6= χ2(1). As ` is good for G, E(G, s)0 is linearly independent
by [5, Thm. 14.6], hence the Aut(G)B-orbit sums of χ1, χ2 satisfy the assumptions of
Lemma 3.2, and IBr(B) cannot be a single Aut(G)B-orbit. Thus we have χ1(1) = χ2(1).
But these correspond, under Jordan decomposition, to the trivial and the Steinberg char-
acter of C◦

G∗(s)F , whence C◦
G∗(s) is a torus. Then so is CG̃∗(s̃), and hence E(G̃, s̃) = {χ̃}

has just one element, and since G̃ has connected center and ` is good for G̃, {χ̃} is a
basic set for the block B̃ of G̃ covering B containing χ̃. In particular IBr(B̃) = {χ̃0}, and
χ̃, χ̃0 are invariant under the same automorphisms of G̃.

Since E(G, s)0 is linearly independent (again by [5, Thm. 14.6]), all elements of Irr(B)∩
E(G, s) must have the same degree d, say. Now clearly CG∗(st) ≤ CG∗(s) for all `-
elements t ∈ CG∗(s), so all characters in E`(G, s) have degree divisible by d by the Jordan
decomposition of characters. Thus all elements of IBr(B) have degree divisible by d.
By what we said before, then certainly E(G, s)0 ⊆ IBr(B). On the other hand, since
E(G̃, s̃) = {χ̃} and IBr(B̃) = {χ̃0}, we must actually have E(G, s)0 = IBr(B). Then
clearly B satisfies the conclusion of Theorem 3.4.

If HF = SUn(q), then necessarily ` divides q + 1, and we can argue entirely similarly,
with 1-cuspidal and 1-series replaced by 2-cuspidal and 2-series. �

Proposition 3.10. Theorem 3.4 holds if all components of G are of classical type A, B,
C or D and moreover ` 6= 2 if GF has a component of type 3D4.

Proof. By Lemma 3.9 we may assume that H is not of type A. We claim that Z(G)/Z◦(G)
is of 2-power order. Indeed, if H is not of type E6, then Z(H) has 2-power order and the
claim follows. If H is of type E6, then it is easily verified that all proper Levi subgroups
have connected center (in fact, this is only an issue for those having a factor A5 or A2).

Now first assume that ` > 2. Let B be an `-block of G, lying in series s ∈ G∗F . By
our previous observation |Z(G)F/Z◦(G)F | is prime to `, and as ` ≥ 3 is good for G,
Lemma 3.7 applies to B to yield that Irr(B) ∩ E(G, s) is a basic set for B. Thus, we
conclude by Lemma 3.6.

We are left to consider the case ` = 2. Let s ∈ G∗ be a semisimple 2′-element such
that Irr(B) ⊂ E`(G, s). Recall that G has no component of type 3D4. Then by a result of
Enguehard (see e.g. [20, Lemma 3.3]) we have that Irr(B) = E`(G, s). Since Z(G)/Z◦(G)
is a 2-group and s has odd order, the centraliser CG∗(s) is connected and a Levi subgroup
of G∗. Let G1 ≤ G be an F -stable Levi subgroup dual to CG∗(s). By Lemma 3.5 we may
pass to the Morita equivalent Jordan corresponding block B1 in E(GF

1 , s), which in turn
is Morita equivalent to the principal block of GF

1 as s ∈ Z(G∗F
1 ). The latter obviously

satisfies the assertions of Theorem 3.4. �

Proposition 3.11. Theorem 3.4 holds when GF has a component of exceptional type.

Proof. By Lemma 3.6 in conjunction with Lemma 3.7 we may assume that ` is bad for G.
Moreover, by Lemma 3.5 the block B is quasi-isolated in G. There is no bad non-defining
prime for Suzuki groups. For the Ree groups 2G2(3

2n+1) the only relevant bad prime is
` = 2, and the only quasi-isolated block is the principal block by Ward [31], so we are
done in this case. The only bad prime for 2F4(2

2n+1) is ` = 3, and s = 1 is the only
quasi-isolated semisimple 3′-element. Here the unipotent blocks were determined in [22,
Bem. 1] and the tables in loc. cit. show that in each such block of positive defect there
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are two Aut(G)-invariant unipotent characters with linearly independent restriction to
`′-elements, so Lemma 3.2 allows to conclude.

We are left to consider the exceptional groups of types G2,
3D4, F4, E6,

2E6, E7 and E8.
Assume first that G = H. For these groups the unipotent blocks at bad primes have been
determined by Hiss–Shamash, Deriziotis–Michler and Enguehard (see the tables in [8]),
while their other quasi-isolated blocks can be found in Kessar–Malle [19, Tables 1–8]. It
is easily checked from these sources that each such block of non-zero defect contains two
characters χ1, χ2 with different a-values ai = a(χi) (in the sense of [10, §3B]), with a1 < a2

say. It then follows by [10, Thm. 3.7] that there exists an F -stable unipotent conjugacy
class C ⊂ G such that the variety of Borel subgroups of G containing a given u ∈ C has
dimension a1 with the following property: the average value of χ2 on CF is zero, while it
is non-zero for χ1. Since the unipotent classes of G are invariant under all automorphisms
of G, and thus their F -fixed points CF are invariant under all automorphisms of G, the
orbit sums ψ1, ψ2 of χ1 and χ2 under Aut(G)B still have the same vanishing respectively
non-vanishing property on CF . In particular ψ0

1, ψ
0
2 are linearly independent. Thus, by

Lemma 3.2 there are at least two orbits of Aut(G)B on IBr(B). (For example, in many
cases, we can take for χ1 the semisimple character and for χ2 the regular character in
E(G, s).)

Finally assume that [G,G] is not simple, but has some exceptional component or a
component with F -fixed points of type 3D4. In the latter case, since 3D4(q) has trivial
Schur multiplier, G splits into a direct product, and since the claim holds for the factors,
it clearly also holds for G. The only possibility in the former case is that G has type
E6 + A1 inside E8, and ` ∈ {2, 3}. Note that then G has connected center, so the quasi-
isolated elements are just the isolated elements in the component of type E6. For those we
had already argued that all `-blocks B not of defect zero contain at least two Aut(G)B-
orbits on Irr(B) with linearly independent restrictions to `′-classes, so we can conclude as
before. �

Together, Propositions 3.9–3.11 cover all cases and thus the proof of Theorem 3.4 is
complete. Note that here we find examples of blocks of arbitrarily high defect. Indeed, if
s ∈ G∗ is a regular semisimple `′-element lying in the unique maximal torus T ∗ then the
block containing the corresponding Deligne–Lusztig character is covered by a nilpotent
block of G̃ and has defect at least |T ∗|`, which can be an arbitarily high power of `.

3.3. Extendibility. We now turn to the proof of Theorem 2.1(4) in our situation and

assume in the following that ` = 2. Let G be simple, simply connected, and G ↪→ G̃
a regular embedding, so G̃ has connected center and G̃ = Z(G̃)G, with compatible
Frobenius map F . Recall that the automorphism group of G := GF has a subgroup
Diag(G) consisting of automorphism induced by elements of G̃ := G̃F

Proposition 3.12. Let G,B, χ be as in Theorem 3.4, ` = 2, and let P be a Sylow 2-
subgroup of Aut(G)χ. If the Sylow 2-subgroups of Aut(G)χ/Diag(G)χ are cyclic (which is
the case whenever G /∈ {SLn(q), Dn(q), E6(q)}), then χ extends to some χ̃ ∈ Irr(G o P )
such that ker(χCGoP (G)) has odd index in CGoP (G).

Proof. Let A be a Sylow 2-subgroup of G̃F . Now by [4, Prop. 1.3], restriction induces
a bijection between E(GA, 2′) and E(G, 2′). Hence χGA has a unique constituent χ̃ in
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E(GA, 2′), which then must be Aut(G)χ-stable as well, with respect to the natural action
of Aut(G) on GA. By construction ker(χ̃) contains the Sylow 2-subgroup of Z(GA).
Any Sylow 2-subgroup D of Aut(G)χ/Inn(GA) is isomorphic to a group generated by
field and graph automorphisms of G that act faithfully on GA. By our assumption on
Aut(G)χ/Diag(G)χ, D is cyclic. Hence χ̃ extends further to (GA)D. By our construction

C(GA)D(G) is contained in Z(G̃) and the 2-part Z̃ of Z(G̃) is contained in ker(χ̃).
In order to now prove the extendibility of χ to G o P we apply Lemma 2.2: Let

G := G/Z(G)2, where Z(G)2 is the Sylow 2-subgroup of Z(G). Then the above implies
that χ seen as a character of G extends to (GA)D/Z̃. Now the group C(GA)D/Z̃(G) is

an 2′-group, and Lemma 2.2 proves that χ as a character of G extends to G o P . Since
Aut(G) = Aut(G), P naturally acts on G and this implies the extendibility part of the
statement.

Note that sinceD is isomorphic to a group generated by field and graph automorphisms,
D is cyclic if G /∈ {SLn(q), Dn(q), E6(q)}. �

It remains to deal with the small prime cases left open in Proposition 3.12.

Proposition 3.13. Let G,B, χ be as in Theorem 3.4. Assume that ` = 2 and G = SLn(q)
for some n ≥ 3 and some odd prime power q. Let P be a Sylow 2-subgroup of Aut(G)χ.
Then χ extends to some character χ̃ of Go P such that ker(χ̃|CGoP (G)) has odd index in
CGoP (G).

Proof. By Proposition 3.12 we may assume that Aut(G)χ/Diag(G)χ is not cyclic. Hence

we can assume that the G̃F -orbit of χ is invariant under the graph automorphism γ
and a field automorphism of even order. Let D2 be a Sylow 2-subgroup of the stabiliser
of this orbit in the group generated by field automorphisms and γ. Let F0 be a field
automorphism such that D2 = 〈F0, γ〉. According to [6, Thm. 4.1] some character in

the G̃F -orbit of χ is D2-invariant. We may assume that χ is D2-invariant. The character
χ̃ ∈ E(GA, 2′) from Proposition 3.12 extends to G̃F

χ and isD2-invariant. Since the quotient

G̃F
χ /GA has odd order there exists a D2-invariant extension χ̂ of χ̃ to G̃F

χ according to

(some easy application of) [14, Lemma 13.8]. Now χ̂G̃F
extends to G̃FD2, since by

[2, Lemma 4.3.2] there exists an extension ψ of χ̂G̃F
to G̃F 〈F0〉 such that ψ(F0) 6= 0.

Accordingly ψγ = ψ and ψ extends to G̃F 〈F0, γ〉. By considering the degrees this proves

that χ extends to some χ̃ ∈ Irr((G̃FD2)χ) such that ker(χ̃) contains a Sylow 2-subgroup

Z̃ of C(G̃F D2)χ
(G).

Now applying Lemma 2.2 as in the proof of Proposition 3.12 implies the extensibility
part of the statement. �

Alternatively, the previous result could be proved by using Deligne–Lusztig characters
for disconnected groups as introduced by Digne–Michel.

Proposition 3.14. Let G,B, χ be as in Theorem 3.4. Assume that ` = 2 and G ∈
{Dn(q), E6(q)}. Let P be a Sylow 2-subgroup of Aut(G)χ. Then χ extends to some
χ̃ ∈ Irr(Go P ) such that ker(χ̃|CGoP (G)) has odd index in CGoP (G).
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Proof. First assume that G has type Dn with untwisted Frobenius map. Let s ∈ G∗ be
a semisimple 2′-element with Irr(B) ⊆ E2(G, s). Then as shown in the proof of Propo-
sition 3.10, B is Morita equivalent to the principal block B1 of G1, where G1 is dual
to the Levi subgroup CG∗(s), and E(GF

1 , 1) ⊆ Irr(B1). Thus, B1 contains all unipotent
characters of GF

1 , hence it will satisfy our assumptions only if the trivial character is the
only unipotent character of GF

1 , hence if G1 is a (maximal) torus. Since G1 is abelian,
every block of GF

1 is nilpotent. Accordingly the block B is nilpotent and the statement
follows from Proposition 2.3.

Now let G be of type E6 with untwisted Frobenius map and assume that Proposition
3.12 does not apply. This forces Aut(G)B to contain graph and field automorphisms
of order 2. Let s ∈ G∗ be a semisimple 2′-element with Irr(B) ⊆ E2(G, s). If CG∗(s)
is contained in a proper F -stable Levi subgroup G∗

1, then all components of G1 are of
classical type, the center of G1 is connected, and thus Irr(B) = E2(G, s). We see that then
our assumptions imply that CG∗(s) is a torus. This implies again that B is nilpotent, and
the statement follows from Proposition 2.3.

Thus we may assume that s is quasi-isolated, hence as in [19, Tab. 3]. Inspection
shows that unless B is of defect 0 there always exist characters with distinct a-values in
Irr(B) ∩ E(G, s), and hence B does not satisfy our assumptions. �

This completes the proof of Theorem 2.1.

4. p-rational lifts

From now we (again) consider p-blocks or p-Brauer characters for some odd prime p.
In this section we show in Theorem 4.5 that for an odd prime p in some situations p-
rationality is preserved by isomorphisms of character triples. This ensures that in the
proof of the Main Theorem the lift can be chosen p-rational.

Recall that χ ∈ Irr(G) is p-rational if the values of χ lie in some cyclotomic field
Qm := Q(ζ), for some mth root of unity ζ of order not divisible by p. By elementary
character theory, this happens if the values of χ lie in Q|G|p′ . If χ is p-rational, it is non-

trivial to prove that χ can be afforded by an absolutely irreducible Qm-representation (see
[14, Thm. (10.13)].)

If N / G and θ ∈ Irr(N) is p-rational it is not true in general that there exists a p-
rational irreducible character χ ∈ Irr(G) over θ, even if G/N is a p′-group. We start with
the following.

Theorem 4.1. Suppose that N/G with G/N a p′-group for p odd. Assume that θ ∈ Irr(N)
is p-rational such that θ0 ∈ IBr(N). Then every χ ∈ Irr(G) over θ is p-rational.

Proof. We may assume that θ is G-invariant. Let χ ∈ Irr(G|θ) and x ∈ G. Let m = |G|p′ .
We want to show that χ(x) ∈ Qm. We may assume that G/N is generated by Nx. Hence
χN = θ. Now let σ ∈ Gal(Q|G|/Qm). We have that χσ = λχ, for some λ ∈ Irr(G/N).
Now, (χN)0 = θ0 ∈ IBr(N). Thus χ0 = ϕ ∈ IBr(G), and ϕN = θ0. Now, ϕσ = ϕ. Thus
(χσ)0 = χ0. Hence λ0χ0 = χ0. By Gallagher’s Lemma for Brauer characters, λ0 = 1, and
therefore λ = 1. �

Corollary 4.2. Suppose that G/N has a normal Sylow p-subgroup P/N . Let θ ∈ Irr(N)
be p-rational such that θ0 ∈ IBr(N). Then there exists a p-rational χ ∈ Irr(G|θ).
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Proof. We may assume that θ is G-invariant. Now, θ has a canonical p-rational extension
θ̂ ∈ Irr(P |θ) by [14, Thm. (6.30)]. Since it extends, it lifts an irreducible Brauer character.

Now apply Theorem 4.1 to θ̂. �

Corollary 4.3. Let N be a normal subgroup of G with G/N cyclic and let θ ∈ Irr(N) be
a G-invariant p-rational character of N with θ0 ∈ IBr(N). Then there exists a p-rational
character χ ∈ Irr(G) extending θ.

Proof. This follows from Corollary 4.2. �

In the following we apply a standard construction of ordinary-modular character triples
as developed in [24] taking additionally into account ordinary and modular characters at
the same time as well as fields of values. If N / G and θ ∈ Irr(N) is G-invariant, then we
say that (G,N, θ) is a character triple. The classical theory of projective representations
allows us to replace (G,N, θ) by another triple (Γ,M, ψ) in which M is in the center of
Γ, and the character theory of G over θ is analogous to the character theory of Γ over ψ.
(See Chapter 11 of [14] for details.) Furthermore, if θ0 ∈ IBr(N), then this replacement
can be done in such a way that both the ordinary and the modular character theory are
preserved. (See Problem (8.12) of [24].)

Recall that for the definition of irreducible Brauer characters a maximal ideal M of
the ring of algebraic integers R in C has been chosen, with respect to which Brauer
characters are calculated. As in [24, Sect. 2], let F = R/M be an algebraically closed
field of characteristic p, and ∗ : R → F be the canonical homomorphism. Note that ∗ can
be extended to the localisation S of R at M , and therefore induces a map Matn(S) →
Matn(F ), denoted again by ∗ .

Lemma 4.4. Suppose that N / G and let θ ∈ Irr(N) be a G-invariant p-rational character
with θ0 ∈ IBr(N), where p is odd. Let F = Qm, where m = |G|p′. Then there exists a
projective representation X of G with entries in F∩S and with factor set α satisfying the
following conditions:

(1) XN is an ordinary representation of N affording θ;
(2) X (gn) = X (g)X (n), X (ng) = X (n)X (g) for g ∈ G and n ∈ N ;
(3) α(g, h) ∈ F; and
(4) X ∗ defined as X ∗(g) = X (g)∗ for g ∈ G, is an F -projective representation such that

(X ∗)N affords the Brauer character θ0.

Proof. By [14, Thm. (10.13)] and Problem (2.12) of [24] we know that θ can be afforded
by an absolutely irreducible FN -representation Y with entries in F∩S. Hence Y∗ affords
θ0. For each ḡ = gN ∈ G/N , by using Corollary 4.3, there is a p-rational character ψ
of N〈g〉 = H extending θ. Again ψ can be afforded by an absolutely irreducible FH-
representation Y1 with entries in F ∩ S. Notice that Y∗

1 is irreducible since it affords the
irreducible Brauer character ψ0 (which extends θ0). We would like to choose Y1 such that
it extends Y . We know that (Y1)N and YN are F-similar. By using [24, Lemma (2.5)]
there exists a matrix P with entries in F ∩ S such that (Y1)N = P−1YP , and P ∗ 6= 0.
Thus P ∗((Y1)

∗)N = Y∗P ∗, and so by Schur’s Lemma P ∗ is invertible. Therefore P−1 has
entries in F ∩ S. Hence, Yḡ := PY1P

−1 is an F-representation of 〈N, g〉 with entries in
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F ∩ S extending Y . We define

X (g) = Yḡ(g) for g ∈ G.
By [12, Lemma (2.2)], note that X is a projective representation of G, with factor set
α, say. Also, X (gn) = X (g)Y(n), X (ng) = Y(n)X (g) and X (n) = Y(n) for n ∈ N and
g ∈ G. Furthermore the factor set α of Y satisfies

α(g, h) ∈ F for all g, h ∈ G
by definition. Condition (4) now easily follows from the definition of X . �

Suppose that (G,N, θ) is an ordinary character triple with θ0 ∈ IBr(N). Then we say
that (G,N, θ) is an ordinary-modular character triple. The precise definition of isomor-
phism of ordinary-modular character triples is given in Problem (8.10) of [24].

Theorem 4.5. Suppose that (G,N, θ) is a character triple where θ is a p-rational char-
acter, with p odd, and θ0 ∈ IBr(N). Then there exists an isomorphic ordinary-modular
character triple (Γ,M, ξ) satisfying the following conditions.

(a) M is a central p′-subgroup of Γ.
(b) If N ⊆ U ⊆ G and χ ∈ Irr(U | θ), then χ is p-rational if and only if its correspondent

χ̃ is p-rational.

Proof. We follow the proof of [24, Thm. (8.28)]. Let X be the projective representation of
G with factor set α determined by Corollary 4.4. Then X is a projective representation of
G associated with θ satisfying conditions (a)–(c) of Theorem (11.2) of [14]. In particular,
α(g, n) = α(n, g) = 1 for n ∈ N and g ∈ G and α(gn, hm) = α(g, h) for g, h ∈ G and
n,m ∈ N (see pages 178 and 179 of [14]).

Now, let E be the group of |G|p′-th roots of unity contained in F. Notice that E is a

p′-group. Let G̃ = {(g, ε) | g ∈ G, ε ∈ E} with multiplication

(g1, ε1)(g2, ε2) = (g1g2, α(g1, g2)ε1ε2) .

The fact that α is in Z2(G,C) makes this multiplication associative. Since α(g, 1) =
α(1, g) = α(1, 1) = 1 and α(g, g−1) = α(g−1, g) for g ∈ G (by using that α is a factor
set), it easily follows that (1, 1) is the identity of G̃ and that (g−1, α(g, g−1)−1ε−1) is the
inverse of (g, ε) for g ∈ G and ε ∈ E. Hence, G̃ is a finite group.

Let Ñ = {(n, ε) | n ∈ N, ε ∈ E} ⊆ G̃. Note that

(n1, ε1)(n2, ε2) = (n1n2, ε1ε2)

since α(n1, n2) = 1 for n1, n2 ∈ N . Hence, Ñ = N × E is a subgroup of G̃. To make the
notation easier we identify E with 1×E and N with N ×1 whenever we find it necessary.
If n ∈ N and δ ∈ E, then, by using the fact that α is constant on cosets modulo N , we
easily check that

(g, ε)(n, δ)(g, ε)−1 = (gng−1, δ) for (g, ε) ∈ G̃.
Thus E is a subgroup of Z(G̃) and N and Ñ are normal subgroups of G̃. Define

X̃ (g, ε) := εX (g) .
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It is clear that X̃ is an F-representation of G̃. Call τ its p-rational character. Note that

X̃ (n, ε) = εY(n) for n ∈ N,
and so

τ(n, ε) = εθ(n) .

Now, define θ̃ = θ × 1E ∈ Irr(Ñ) and observe that θ̃N = θ = τN ∈ Irr(N). In particular,

τ ∈ Irr(G̃) and τ 0 ∈ IBr(G̃). Also, note that θ̃ is G̃-invariant because θ is G-invariant.

The map G̃→ G, (g, ε) 7→ g, is an epimorphism with kernel E. Since E ⊆ ker θ̃, by [14,

Lemma (11.26)], we have that (G̃, Ñ , θ̃) and (G,N, θ) are isomorphic character triples.
Moreover, this isomorphism preserves p-rational characters.

Now, define λ ∈ Irr(Ñ) by λ(n, ε) = ε−1, so that λ is a linear character of Ñ with
kerλ = N . Observe that λ is G̃-invariant. Also,

τÑ = λ−1θ̃ .

By the remark after Lemma (11.27) of [14], we have that (G̃, Ñ , λ) and (G̃, Ñ , θ̃) are

isomorphic character triples. The bijection Irr(G̃|λ) → Irr(G̃|θ̃) is given by β 7→ βτ .
Furthermore, if N ⊆ U ⊆ G and χ ∈ Irr(U | θ), then the character corresponding
to χ under the concatenation of the two character triple isomorphisms is a character
β ∈ Irr(Ũ |λ) where U = Z̃/E and βτU is a lift of χ. (The corresponding facts about
Brauer characters are precisely quoted in the proof of [24, Thm. (8.28)].)

Now, if β is p-rational, we have that βτU is p-rational. If βτU is p-rational, and σ ∈
Gal(Q|G|/Q|G|p′ ), then β and βσ have the same image under the bijection β 7→ βτU . Thus

β = βσ, and β is p-rational. Now, (G̃, Ñ , λ) and (G̃/N, Ñ/N, λ) are isomorphic by [14,
Lemma (11.26)] with an isomorphism which preserves p-rationality. Now, write Γ = G̃/N ,
M = Ñ/N and ξ = λ, and observe that M is a central p′-subgroup of Γ. �

5. Proof of the main theorem

In this section we prove the Main Theorem, based on Theorem 2.1 for quasi-simple
groups, shown in Sections 2 and 3. Moreover we apply results of Section 4 for the con-
struction of a p-rational lift.

Let G be a finite group and p be a prime. We first derive some direct consequences of
Theorem 2.1.

Corollary 5.1. Suppose that E is a perfect group such that E/Z(E) is a direct product
of simple groups. Let A = Aut(E). Let p be a prime, and assume that |Z(E)| is prime
to p. Let b be a p-block of E. If IBr(b) consists of A-conjugates of ϕ, then there exists a
χ ∈ Irr(E) such that χ0 = ϕ, the stabilisers IA(χ) = IA(ϕ) =: I coincide, and χ extends to
some χ̃ ∈ Irr(E o P ) for some P ∈ Sylp(I) such that ker(χ̃) contains a Sylow p-subgroup
of CEoP (E). If p 6= 2 then χ can be chosen to be p-rational in addition.

Proof. Write Z = Z(E). By the universal p′-cover of a perfect group S we mean here

the quotient of a universal covering group Ŝ of S by the Sylow p-subgroup of Z(Ŝ). By
the theory of covering groups, there are non-isomorphic simple groups S1, . . . , St with
universal p′-covers Ŝi, integers ni ≥ 1 and an epimorphism

π : G := Ŝ1
n1 × · · · × Ŝt

nt → E,
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with K = ker π ≤ Z(G), and π(Z(G)) = Z(E). Via π the group Aut(E) can be identified
with a subgroup of Aut(G/Z(G)) = Aut(G). Hence, we may work in G, and assume that
G = E.

Now b is a p-block of G, and therefore there are blocks bi,j (1 ≤ j ≤ ni) of Ŝi, and
natural bijections Irr(b1,1)×· · ·×Irr(bt,nt) → Irr(b) and IBr(b1,1)×· · ·×IBr(bt,nt) → IBr(b).

Without loss of generality we may assume that any two Aut(Ŝi)-conjugate blocks bi,j and

bi,j′ are equal. Now, Aut(G) = Aut(Ŝ1) o Sn1 × · · · × Aut(Ŝt) o Snt , and our assumption

forces that all elements of IBr(bi,j) are Aut(Ŝi)bi,j
-conjugate. By Theorem 2.1 there exist

ϕi,j ∈ IBr(bi,j) and χi,j ∈ Irr(bi,j) such that (χi,j)
0 = ϕi,j, and IAut(Ŝi)

(χi,j) = IAut(Ŝi)
(ϕi,j).

Then
χ := χ1,1 × · · · × χt,nt ∈ Irr(G)

is a lift of
ϕ1,1 × · · · × ϕt,nt ∈ IBr(b) .

If p 6= 2 the characters χi,j and hence χ are p-rational and the claim follows from [14,
Thm. (6.30)].

The following considerations prove the statement for p = 2. Let Pi,j be a Sylow p-
subgroup of IAut(Ŝi)

(χi,j). By Theorem 2.1(4) the character χi,j extends to some χ̃i,j ∈
Irr(Ŝi o Pi,j) such that p - |CŜioPi,j

(Ŝi) : ker(χ̃i,j|CŜioPi,j
(Ŝi)

)|.
Without loss of generality we may assume that whenever two characters ϕi,j and ϕi,j′

seen as characters of Ŝi are Aut(Ŝi)-conjugate they are equal, and that the same applies
to the characters χi,j and χi,j′ . This implies that Aut(G)χ is of the form

Aut(G)χ =
(
Aut(Ŝ1)χ1,1 × · · · × Aut(Ŝt)χt,nt

)
o S,

where S is a direct product of symmetric group permuting some isomorphic factors of G.
A Sylow p-subgroup of Go Aut(G)χ is contained in

A :=
(
(Ŝ1 o P1,1)× · · · × (Ŝt o Pt,nt)

)
o S.

Following [11, Thm. 25.6] the character

χ̃1,1 × · · · × χ̃t,nt ∈ Irr((Ŝ1 o P1,1)× · · · × (Ŝt o Pt,nt))

has an extension χ̃ toA with p - |CGoAut(G)χ(G) : ker(χ̃|CGoAut(G)χ (G))| by construction. �

Corollary 5.2. Let G be a finite group and E/ G be perfect with E/Z(E) a direct product
of simple groups. Assume that CG(E) has order prime to p. Let b be a p-block of E, and
assume that IBr(b) consists of G-conjugates of ϕ. Then there exists some χ ∈ Irr(E)
such that χ0 = ϕ, the stabilisers IG(χ) = IG(ϕ) = I coincide, and χ extends to EP for
P ∈ Sylp(I). Moreover, if p 6= 2 the character χ can be chosen to be p-rational.

Proof. We have that G/CG(E) is isomorphic to a subgroup C of A = Aut(E). Now,
IBr(b) consists of A-conjugates of ϕ. Therefore by Corollary 5.1, there exists χ ∈ Irr(E)
such that χ0 = ϕ, IA(χ) = IA(ϕ) and χ extends to some χ̃ ∈ Irr(E o P ) for P ∈ Sylp(I)
such that ker(χ̃) contains a Sylow p-subgroup of CEoP (E). Hence χ and ϕ have the same
stabiliser in C and IG(χ) = IG(ϕ). By Lemma 2.2 we have that χ extends to EP . If
p 6= 2 then χ can be chosen to be p-rational by Corollary 5.1. �
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Lemma 5.3. Suppose that E ≤ L are normal in G, with L/E solvable. Suppose that
χ ∈ Irr(E) is G-invariant, and that χ0 = ϕ ∈ IBr(E). Assume that χ extends to P , where
P/E is a Sylow p-subgroup of G/E. Suppose that η ∈ IBr(L|ϕ) is G-invariant. Then
there exists δ ∈ Irr(L|χ) such that δ0 = η, δ is G-invariant, and δ extends to Q, where
Q/L ∈ Sylp(G/L). Furthermore, if p is odd and χ is p-rational, then δ can be chosen to
be p-rational, too.

Proof. By Problem (8.12) of [24], we may assume that E ≤ Z(G). Using that χ extends
to a Sylow p-subgroup of G, we may assume that E is a p′-group. (Use the ideas of
Problem (8.13) of [24].) We have now that L is p-solvable. In [15], Isaacs constructed
a canonical subset Bp′(L) ⊆ Irr(L) with certain remarkable properties. Among others,
restriction to p-regular elements of L provides a canonical bijection Bp′(L) → IBr(L)
(by [15, Cor. (10.3)]). Also, by definition, characters in Bp′(L) are p-rational. Now, let
δ ∈ Irr(L) be the character in Bp′(L) with δ0 = η. Since E is a p′-group, we have that δ
lies over χ. Since η is G-invariant, then δ is G-invariant (again using [15, Cor. (10.3)]).
Since δ ∈ Bp′(L), then δ extends to Q by [14, Cor. (6.3)]. If p is odd and χ is p-rational,
then we use the same argument as before, but applying Theorem 4.5. �

We are now ready to prove the main theorem, which we restate:

Theorem 5.4. Let G be a finite group and let p be a prime. Assume that B is a p-block
of G with IBr(B) = {ϕ}. Then there exists a character χ ∈ Irr(G) with χ0 = ϕ and χ is
p-rational if p 6= 2.

Proof. We argue by induction on |G : Z(G)|. We may assume that Op(G) = 1 since
Op(G) ⊆ ker(ϕ). By the Fong–Reynolds Theorem [24, Thm. (9.14)]), we may assume
that B is quasi-primitive, i.e. every block of every normal subgroup of G covered by B is
G-invariant.

In particular, when N / G and B covers {θ}, where θ ∈ Irr(N) has defect zero, then θ
is G-invariant. According to Theorem 4.5 we may assume that N is a central p′-subgroup
of G after using ordinary-modular p-rational triples. Thus, if S is the largest solvable
normal subgroup of G, we have that the Fitting subgroup F(S) is central, and therefore
S = Z := Z(G).

Let b be the block of E = E(G), the group of components of G, covered by B. Then
IBr(b) consists of G-conjugates of some θ ∈ IBr(b). Let Z0 := Z(E) = Z ∩ E.

Write E/Z0 = E1/Z0 × · · · ×Et/Z0, where Ei/Z0 is the direct product of G-conjugates
of distinct simple groups Si/Z0 and Ei / G. Recall that [Ei, Ej] = 1 if i 6= j. Let
D be a defect group of b. We claim that ECG(D)/E is solvable. Write DZ0/Z0 =
D1Z0/Z0 × · · · ×DtZ0/Z0, where Di = D ∩ Ei. We have that Di is a defect group of the
G-invariant block bi of Ei / G covered by b. By our assumption, we have that Di > 1 for
every i, since B does not cover defect zero blocks of non-central normal subgroups. Also,
G = EiNG(Di) by the Frattini argument. Let U/Z0 be a simple factor of Ei/Z0, so that

Ei/Z0 = (U/Z0)
x1 × · · · × (U/Z0)

xt ,

for some xi ∈ NG(Di). Now, it is well-known that

Di = (Di ∩ U)x1 · · · (Di ∩ U)xr
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and we see that Di ∩ U > 1. Since x ∈ C := CG(D) ≤ CG(Di) centralises Di ∩ U > 1, it
follows that x normalises U (since G transitively permutes the simple factors of Ei/Z0).
We know that NG(U)/UCG(U) as subgroup of an outer automorphism group of a non-
abelian simple group is solvable (Schreier’s conjecture). Hence UCG(U) ∩ C / C and its
quotient is solvable. Since this is true for all components U of G, we have that

C/(C ∩
⋂
U

UCG(U))

is solvable, where U runs over the components of G. Notice that⋂
U

UCG(U) = F∗(G) ,

as every component commutes with every other component and with every normal solvable
subgroup.

Now, let M = EC = F∗(G)C / G, where M/E is solvable. (Recall that G = ENG(D)
by the Frattini argument.) Let e be the unique block of M covered by B. Let η ∈ IBr(M)
under ϕ, and let θ ∈ IBr(b) under η. Necessarily η ∈ IBr(e). Now, if Q is a defect group
of e, then we may assume that Q contains D, and therefore CG(Q) ≤ CG(D) ≤ M .
Therefore, B is the only block of G covering e by [26, Lemma 3.1].

Now, let T be the stabiliser of η inG, and let I be the stabiliser of θ inG. By the Frattini
argument, we have that T = M(I ∩ T ). Let ν ∈ IBr(T |η) be the Clifford correspondent
of ϕ over η. Now, if δ ∈ IBr(T |η), we have that δG ∈ IBr(G). Notice that δG lies in a
block that covers e by [24, Thm. (9.2)], but this must be B. Hence δG = ϕ by hypothesis,
and we have that δ = ν, by the uniqueness in the Clifford correspondence. Hence, η is
fully ramified in T/M . Now, let ν ′ ∈ IBr(I ∩ T |θ) and η′ ∈ IBr(I ∩M |θ) be the Clifford
correspondents of ν and η over θ, respectively. Then,

(ν(1)/η(1))η = νM = ((ν ′)T )M = ((ν ′)I∩M)M ,

and we deduce that ν ′ is fully ramified with respect to η′.
By hypothesis, all elements in IBr(b) are G-conjugate. Thus, by Corollary 5.2, there are

θ1 ∈ IBr(b) and χ ∈ Irr(b) such that χ0 = θ1, with same stabiliser I1 in G, and such that
χ extends to a Sylow p-subgroup P/E of I1/E. If p 6= 2, χ is in addition p-rational. Since
all elements of IBr(b) are G-conjugate, we may assume that χ0 = θ, that χ is I-invariant,
and that χ extends to P , where P/E ∈ Sylp(I/E).

Now, by Lemma 5.3, there exists η1 ∈ Irr(I ∩M) such that (η1)
0 = η′, η1 is I ∩ T -

invariant, and η1 extends to Q, where Q/(I ∩M) ∈ Sylp((I ∩T )/(I ∩M)). Now, as in the
proof of Lemma 5.3, there exists a group X with a central p′-subgroup Y , with a linear
character λ ∈ Irr(Y ) such that the triples (I∩T, I∩M, η1) and (X, Y, λ) are isomorphic as
ordinary-modular triples. If p 6= 2 the isomorphism of character triples has the properties
from Theorem 4.5. Now, notice that if λX = fδ, with f ≥ 1 and δ ∈ IBr(X), and B′ is
the block of δ, then IBr(B′) = {δ} (see, for instance, the proof of [25, Thm. 2.1]). Since
|X : Z(X)| < |G : Z(G)|, we have that δ is liftable by induction and liftable to a p-rational
character in case of p 6= 2. Hence, we have that ν ′ is liftable, even to a p-rational character
for p 6= 2. Thus, there exists ρ ∈ Irr(I ∩ T ) such that ρ0 = ν ′. Now, (ν ′)T = ν and thus
νG = ϕ, so ν ′G = ϕ, and (ρG)0 = ν ′G = ϕ. We therefore deduce that ρG is a lift of ϕ and
p-rational if p 6= 2. �
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E-mail address: gabriel@uv.es

FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany.
E-mail address: spaeth@mathematik.uni-kl.de


