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Abstract. We discuss the reliability and reproducibility of much of the in-
formation contained in the ATLAS of Finite Groups.

1. Introduction

The ATLAS of Finite Groups [8], published in 1985, contains a wealth of in-
formation on the sporadic simple groups, their covering groups and automorphism
groups, as well as on numerous other finite simple groups of small order. It has
become an indispensable tool for researchers not only in finite group theory but in
many other areas where finite groups play a role. In a recent letter, Jean-Pierre
Serre stated that he “can’t think of any other book published in the last 50 years
which had such an impact”, while Benedict Gross is cited as saying that if ever
the university library caught fire and one could save just one book, the obvious
choice would be the ATLAS. In view of this, the question of reliability and re-
producibility of the results stated there is of considerable importance, particularly
since the ATLAS does not contain proofs of the information it records, although
for the sporadic groups it gives a list of references from which some of the stated
results are taken.

In the intervening thirty years, some misprints and errors have been found in
the ATLAS. Corrections and improvements known at the time of publication of
the Atlas of Brauer Characters [12] are listed in an appendix [6] to that book; the
website [16] reports those found later. No corrections have been added since 2002.

Few of these concern the actual character tables; apart from the misprints, only
three cases are known in which the printed tables contain mathematical mistakes
not arising simply from inconsistencies concerning irrationalities and power maps;
these concern the nearly simple groups 2.L4(3).23, U3(11).2 and 2.U6(2).2; see the
more detailed comments in Section 3.1.

Our purpose is to provide references for some of the cited results; to report
on the independent reconstruction of most of the character table information (see
Theorem 1.1) and on the methods used to do so; and to describe how such a check
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could be carried out independently by anyone having available sufficient computing
power.

Note that all the character tables contained in the ATLAS, incorporating the
corrections, and many more, are stored electronically in the character table library
[3] of the computer algebra system GAP [24]. Our verification is with respect to
these electronic tables.

The ATLAS contains two essential pieces of information about each simple
group S it lists: the ordinary character tables of all (or most) bicyclic extensions
M.S.A of S, and all (or most) of the maximal subgroups of all subgroups S.A of
the automorphism group of S that contain S. We discuss only these two pieces of
data, and do not consider the other information also given in the ATLAS, such as
constructions of the groups and their presentations, since we consider these two as
the information most widely used. As we explain below, the situation for published
proofs and references for maximal subgroups is very satisfactory, so we mostly deal
with the question of (re)constructing the ordinary character tables.

We summarise our main result (but see also our results on the groups J4,
2.2E6(2), 2.2E6(2).2, and 2.B discussed in Section 3.5).

Theorem 1.1. Let G be a bicyclic extension of a simple group whose character
table is given in the ATLAS, and different from J4, 2.2E6(2), 2.2E6(2).2, B, 2.B
and M . The character table of G has been automatically recomputed and found to
agree with the one stored in the character table library of GAP.

For the complete list of groups to which this theorem applies, see [5]. Here, we
do not follow the original proofs but rather give a modern approach, which builds
on the use of computer programs and is highly automatic (and so, we claim, is
much more reliable than hand calculations).

More precisely, we apply the algorithm of Unger [25] which takes as input a
faithful permutation or matrix representation of a finite group G and computes
its character table. In summary, the algorithm proceeds as follows. First, a large
supply of characters is obtained by inducing characters of elementary subgroups;
Brauer’s induction theorem guarantees that every irreducible character is obtained
in this way. Next, a basis for the Z-module of generalised characters is constructed
by applying LLL lattice basis reduction to the induced characters. Finally, those
characters of norm one are extracted from the Z-module, thus giving the irreducible
characters of the group. This algorithm does not use any information about G apart
from the given representation; in particular, it uses no precomputed tables and does
not rely on ATLAS bounds or data. Using Unger’s implementation in Magma [1],
we check for all but six of the ATLAS tables that each is a character table of a
finite group. Assuming the classification of finite simple groups, we then conclude
that the ATLAS tables are the character tables of the stated finite groups (see
Theorem 1.1).

The ATLAS tables in GAP’s character table library have been constructed from
the data files (in the so-called “Cambridge format”) which were used also to create
the printed ATLAS; hence the ordering of rows and columns in the GAP tables
coincides with the ATLAS ordering. We do not know how far the old “Cambridge
format” files represent exactly the contents of the printed ATLAS. It might be
possible to scan the printed ATLAS and to turn the result into GAP files; these could
then be compared with the GAP tables; but we did not consider worthwhile following
this cumbersome procedure here. So for this practical reason all statements on
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accuracy and consistency are relative to the electronic GAP versions of the ATLAS,
and we make no claim on their agreement with the original printed version.

The same data format has been used for the Brauer character tables in [12]:
the information in [12] depends on the ATLAS, the Brauer character tables can
be understood only relative to the ordinary ATLAS character tables. When the
Brauer character tables in [12] were prepared for both the printed version and their
inclusion in GAP’s character table library, the ordinary ATLAS tables were already
checked systematically, and many of the errors listed in [6] were found by these
checks.

After completing this work, we learned of another verification project by Can-
non and Unger; see [7] for details.

Acknowledgement: We thank Jean-Pierre Serre for raising the question of relia-
bility of ATLAS information, which led to the current paper, and for comments on
a preliminary version.

2. Maximal subgroups

We begin by discussing the information in the ATLAS concerning maximal
subgroups of simple groups and of their automorphism groups. The situation here
is rather favourable, in the sense that published proofs for all of the lists of maxi-
mal subgroups as printed in the ATLAS (modulo the corrections listed in [16]) are
available. For the sporadic simple groups and their automorphism groups, refer-
ences for the stated results are already given in the original version of the ATLAS,
and new information obtained since then is referenced in [16]. See [27] for a survey
of this topic.

As for the alternating groups An, n ≤ 13, the question clearly is about their
primitive (maximal) subgroups, and these are well-known, see e.g. [15] for a classical
reference, or [22]. The simple groups of Lie type in the ATLAS are of small Lie
rank, and most are of classical type. For the latter, much information on maximal
subgroups had already been accumulated in pre-ATLAS time, starting with the
work of Galois; the recent book by Bray, Holt and Roney-Dougal [2] gives complete
proofs of the lists of maximal subgroups, and does not rely on the ATLAS lists. For
the series of exceptional groups of types 2B2, 2G2, G2 and 3D4, there exist published
proofs [13, 14, 23]; for 2F4(2)′ and F4(2) proofs can be found in [17, 26]. Finally,
for 2E6(2) the ATLAS does not claim to give complete information.

Thus, complete independent proofs for the maximal subgroup information in
the ATLAS are now available in the literature.

3. Character tables

We now turn to the more problematic question of character tables and their
correctness.

The tables for alternating groups, symmetric groups and their covering groups
are known by published classical work of Frobenius and Schur (see [20] and the
references therein).

For many of the sporadic groups the ATLAS references published proofs, for
example a paper of Frobenius [9] for the Mathieu groups. (As Serre pointed out
to us, while Frobenius sketched how the character tables were constructed, he said
nothing about conjugacy classes. This is interesting, because even the existence of
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M24 was not completely clear at that time.) However, such references do not exist
for all of the sporadic groups.

For the groups of Lie type, the situation is even more opaque. No references
are given in the ATLAS. While there are published tables for some series of groups
(for example for SL2(q) by Schur [19], for 2B2(q2) by Suzuki [23], and for SL3(q)
and SU3(q) by Simpson and Frame [21], to mention just a few), most of the tables
for the groups of larger rank and in particular for their decorations were computed
using ad hoc techniques by the ATLAS authors. Even today, the representation
theory of finite groups of Lie type, despite the tremendous achievements of George
Lusztig, is not capable of predicting the complete character tables of all the groups
listed in the ATLAS, in fact not even the character degrees in all cases.

3.1. Known mistakes. Let us start by discussing the nature of known mis-
takes: there are 142 entries marked as errors (indicated by three stars) in [6], and
17 such entries in [16]. Many of the errors affect the descriptions of group con-
structions or maximal subgroups, or indicator signs or power maps, and 27 concern
character values. Some of them could be fixed also by just changing power maps
and some can be detected by testing orthogonality relations — for example, five
columns of the character table of 6.F i22.2 were not printed, and a character value
−1 of G2(4) was listed as 1. Some errors concern inconsistencies among several
characters. Consider for example the error on page 128 (the group in question is
the sporadic group Suz): the improvements list states “Change sign of i3 in χ7,
χ8, χ18, χ19, χ21, χ22 on 6B, 6C”. For the simple group, one could keep the char-
acter values, and adjust the power maps instead. However, then one would have
to change character values in central extensions of Suz. For G = 3.U3(8).31 and
G = 3.U3(8).32, the problem was the consistent choice of irrationalities in the faith-
ful characters on the outer classes — extensions to G of some faithful irreducible
characters of the derived subgroup were multiplied by 9-th roots of unity, thus each
of the shown characters exists for a suitable group of the given structure but they do
not fit to the same isomorphism type. But there are tables of (non-simple) groups
which are wrong in a more serious way, in the sense that characters were listed
that cannot exist. A wrong splitting of classes is shown for 2.L4(3).23; for both
G = U3(11).2 and G = 2.U6(2).2, the extensions to G of two irreducible characters
of different degree of the derived subgroup were interchanged. These mistakes are
consistent with the orthogonality relations and so are much harder to spot.

3.2. Recomputing tables automatically. We now propose our approach to
reconstructing most of the character tables in the (electronic version of the) ATLAS
in a reproducible and essentially automatic way. It relies on a powerful algorithm
by Unger [25]; we use his implementation which is available in Magma[1]. In the
current version of GAP [24], the standard method to compute a character table is
the less powerful Dixon–Schneider algorithm [18]. Both take as input a faithful
representation of a finite group, either as a permutation group or as a matrix group
over some finite field, and automatically compute the ordinary character table of
that group, including in particular the list of conjugacy classes, their sizes and the
power map on the classes.

Now assume that we want to reconstruct the character table information for a
finite simple group S appearing in the ATLAS. We proceed as follows. First, the
size and structure of the automorphism group Aut(S), the Schur multiplier M(S),
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and the action of the first on the second are well-known; see, for example, [10].
From this it is possible to compile a list of all bicyclic extensions G = M.S.A for S
as considered in the ATLAS: namely, both M ≤ M(S) and A ≤ Out(S) are cyclic
and G is an extension by A of the central extension M.S of S.

3.3. Enumerating bicyclic extension. Let G be a group that contains nor-
mal subgroups M < N , and consider the set of subquotients of the form U/K with
the property that N ≤ U , K ≤ M , K is normal in U , and both U/N and M/K
are cyclic. The group G/N acts on this set by conjugation, and a set of class repre-
sentatives under this action contains all bicyclic extensions of N/M that occur as
subquotients of G, up to isomorphism. (Some representatives may in fact be iso-
morphic; if we are interested in representatives up to isomorphism, we must check
this case by case.)

If N is a Schur cover of a finite simple group S, so M is the Schur multiplier
of S, and G/M is isomorphic to the automorphism group of S, then a set of class
representatives yields all bicyclic extensions of S, up to isoclinism. (Again, the set
may be too large.) We discuss the three most complicated cases occurring in the
ATLAS in more detail.

3.3.1. Case 1: S = L3(4). The Schur multiplier M and the outer automorphism
group A of S have the structures 3×42 and D12 (the dihedral group of order twelve),
respectively. A group G of the structure M.S.A as mentioned above exists. Since
the subgroups M1 and M2 of order three and 16 in M are characteristic in G, we
may consider the bicyclic extensions of S that occur as subquotients of G/M1 and
G/M2, and then get the general bicyclic extensions of S that occur as subquotients
of M as subdirect products.

First we fix the notation for the cyclic subgroups of G/N . The unique cyclic
subgroup of order six is called 6 by the ATLAS, its subgroups of order two (the
centre of the dihedral group) and three are called 21 and 3, respectively, and rep-
resentatives of the other conjugacy classes of subgroups of order two are called 22

and 23.
• The group G/M1 has the structure 42.S.D12. Let M/M1 be generated

by commuting elements a, b of order four, and let c = (ab)−1. As stated
in [8, p. 23], the outer automorphism group G/N of S acts as follows on
M/M1:

6 : a 7→ b3, b 7→ c3, c 7→ a3

22 : a 7→ a, b 7→ c, c 7→ b
23 : a 7→ a3, b 7→ c3, c 7→ b3

The three subgroups of index two in M/M1 are 〈a, b2〉, 〈b, c2〉, and 〈c, a2〉.
Their normalisers in G/N are the three Sylow 2-subgroups. One of them
contains the involutions 21, 22, 23, thus we get the bicyclic extensions 2.S,
2.S.21, 2.S.22, and 2.S.23.

(The other two Sylow 2-subgroups of G/N contain 21 and conjugates
of 22 and 23. Thus we get conjugate bicyclic extensions 2′.S.21, 2′.S.2′2,
2′.S.2′3, 2′′.S.21, 2′′.S.2′′2 , and 2′′.S.2′′3 .)

The group G/N has the two orbits

{〈a〉, 〈b〉, 〈c〉} ,
{
〈ab2〉, 〈bc2〉, 〈ca2〉

}
on the six cyclic subgroups of order four in M/M1. We get two noniso-
morphic central extensions of S by a cyclic group of order four. Both
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extensions are normalised but not centralised by 21, which inverts all ele-
ments in M/M1.

The second one, (N/M1)/〈ab2〉, is called 41.S by the ATLAS; it is
centralised by 23, its normaliser in G/N is the elementary abelian group
generated by 21 and 23. This yields the extensions 41.S, 41.S.21, 41.S.22,
and 41.S.23.

The first one, (N/M1)/〈a〉, is called 42.S by the ATLAS; it is cen-
tralised by 22, its normaliser is the elementary abelian group generated
by 21 and 22. This yields the extensions 42.S, 42.S.21, 42.S.22, and 42.S.23.

(In both cases, the other two orbit points are stabilised by the other
two Sylow 2-subgroups of G/M1, which yields the conjugate bicyclic exten-
sions 4′1.S.21, 4′1.S.2′2, 4′1.S.2′3, 4′′1 .S.21, 4′′1 .S.2′′2 , 4′′1 .S.2′′3 , 4′2.S.21, 4′2.S.2′2,
4′2.S.2′3, 4′′2 .S.21, 4′′2 .S.2′′2 , and 4′′2 .S.2′′3 .)

• The group G/M2 has the structure 3.S.D12; the centraliser of M/M2

in G/N is the cyclic subgroup of order six, conjugation with the other
elements of G/N inverts M/M2.

Thus we get the bicyclic extensions 3.S, 3.S.21, 3.S.3, 3.S.6, 3.S.22,
and 3.S.23, and their factor groups S, S.21, S.3, S.6, S.22, S.23.

• Putting the pieces together, we get also bicyclic extensions in which the
cyclic normal subgroup has order 6 or 12. Each of the above extensions
with normal cyclic subgroup of order two or four and commutator factor
group acting like one of the seven involutions can be combined with an
extension with normal cyclic subgroup of order three and the same action
of the commutator factor group.

In summary, we obtain the following twelve bicyclic extensions: 6.S,
6.S.21, 6.S.22, 6.S.23, 121.S, 121.S.21, 121.S.22, 121.S.23, 122.S, 122.S.21,
122.S.22, 122.S.23.

Lemma 3.1. The 36 pairwise nonisoclinic bicyclic extensions of S = L3(4)
are the following: S, S.21, S.3, S.6, S.22, S.23, 2.S, 2.S.21, 2.S.22, 2.S.23, 41.S,
41.S.21, 41.S.22, 41.S.23, 42.S, 42.S.21, 42.S.22, 42.S.23, 3.S, 3.S.21, 3.S.3, 3.S.6,
3.S.22, 3.S.23, 6.S, 6.S.21, 6.S.22, 6.S.23, 121.S, 121.S.21, 121.S.22, 121.S.23,
122.S, 122.S.21, 122.S.22, 122.S.23.

3.3.2. Case 2: S = U4(3). The Schur multiplier M and the outer automor-
phism group A of S have the structures 32× 4 and D8 (the dihedral group of order
eight), respectively. A group G of the structure M.S.A as mentioned above exists.
Since the subgroups M1 and M2 of order four and nine in M are characteristic
in G, we may consider the bicyclic extensions of S that occur as subquotients of
G/M1 and G/M2, and then get the general bicyclic extensions of S that occur as
subquotients of M as subdirect products.

First we fix the notation for the cyclic subgroups of G/N . The unique cyclic
subgroup of order four is called 4 by the ATLAS, its subgroup of order two (the
centre of the dihedral group) is called 21, and representatives of the other conjugacy
classes of involutions are called 22 and 23.

• The group G/M1 has the structure 32.S.D8. We identify M/M1 with a
2-dimensional vector space over F3. The action of G/N on this vector
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space is given by the matrices[
−1 0

0 1

]
,

[
0 1
1 0

]
for the involutions from 22 and 23, respectively. The action of 21 is given
by the square of their product, which is the negative of the identity matrix;
thus 21 inverts all elements in M/M1. The group G/N has the two orbits

{±[1, 0],±[0, 1]} , {±[1, 1],±[1,−1]}

on the nonidentity elements of M/M1. We get two nonisomorphic central
extensions of S by a cyclic group of order three.

The first one, (N/M1)/〈[1, 0]〉, is called 31.S by the ATLAS; it is cen-
tralised by 22 and normalised by the elementary abelian group generated
by 21 and 22. The third subgroup of order two in this subgroup is called
2′2, it centralises the conjugate extension (N/M1)/〈[0, 1]〉, which is called
3′1.S.

The second one, (N/M1)/〈[1, 1]〉, is called 32.S by the ATLAS; it is
centralised by 23 and normalised by the elementary abelian group gener-
ated by 21 and 23. The third subgroup of order two in this subgroup is
called 2′3, it centralises the conjugate extension (N/M1)/〈[1,−1]〉, which
is called 3′2.S.

Thus we get the following bicyclic extensions: 31.S, 31.S.21, 31.S.22,
31.S.2′2, 32.S, 32.S.21, 32.S.23 and 32.S.2′3.

(Note that the centre of the groups 31.S.22 and 32.S.23 has order
three, the other four non-perfect groups have trivial centre. Analogously,
the conjugate bicyclic extensions 3′1.S.2′2 and 3′2.S.2′3 have centres of order
three, and the centres of 3′1.S.21, 3′1.S.22, 3′2.S.21, and 3′2.S.23 are trivial.)

• The group G/M2 has the structure 4.S.D8; the centraliser of M/M2 in
G/N is the cyclic subgroup of order four, conjugation with the other
elements of G/N inverts M/M2.

Thus we get the bicyclic extensions 4.S, 4.S.21, 4.S.4, 4.S.22, and
4.S.23, and their factor groups 2.S, 2.S.21, 2.S.4, 2.S.22, 2.S.23, S, S.21,
S.4, S.22, S.23.

• Putting the pieces together, we get also bicyclic extensions in which the
cyclic normal subgroup has order 6 or 12. Each of the above extensions
with normal cyclic subgroup of order three and commutator factor group
acting like one of the five involutions can be combined with an extension
with normal cyclic subgroup of order two or four and the same action of
the commutator factor group.

In summary, we get the following bicyclic extensions: 61.S, 61.S.21,
61.S.22, 61.S.2′2, 62.S, 62.S.21, 62.S.23, 62.S.2′3, 121.S, 121.S.21, 121.S.22,
121.S.2′2, 122.S, 122.S.21, 122.S.23, 122.S.2′3.

Lemma 3.2. The 39 pairwise nonisoclinic bicyclic extensions of S = U4(3)
are the following: S, S.21, S.4, S.22, S.23, 2.S, 2.S.21, 2.S.4, 2.S.22, 2.S.23, 4.S,
4.S.21, 4.S.4, 4.S.22, 4.S.23, 31.S, 31.S.21, 31.S.22, 31.S.2′2, 61.S, 61.S.21, 61.S.22,
61.S.2′2, 121.S, 121.S.21, 121.S.22, 121.S.2′2, 32.S, 32.S.21, 32.S.23, 32.S.2′3, 62.S,
62.S.21, 62.S.23, 62.S.2′3, 122.S, 122.S.21, 122.S.23, 122.S.2′3.
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The tables of 121.S.2′2 and 122.S.2′3 will be available in the next public release
of [3].

3.3.3. Case 3: S = U3(8).
• The outer automorphism group A of S has the structure 3 × S3. The

ATLAS notation for the four subgroups of order three in A is 31 for the
central one, 32 for the noncentral normal one, and 33 and 3′3 for the
remaining two, which are conjugate in A. In addition, A contains cyclic
subgroups of order two and six, in each case three conjugates called 2, 2′,
2′′ and 6, 6′, 6′′, respectively. This yields the automorphic extensions S,
S.31, S.32, S.33, S.2, and S.6.

• The Schur multiplier M of S has order three, and a group of the structure
M.S.S3 exists. (There is no group of the structure M.S.A.) This yields
the bicyclic extensions 3.S, 3.S.31, and 3.S.2; the latter is conjugate and
thus isomorphic to 3.S.2′ and 3.S.2′′. Also a group of the structure 3.S.32

exists. Concerning groups of the structure 3.S.6, there is one such group
that contains a given 3.S.31 type group as a subgroup of index two. As
stated in [6], the groups 3.S.6′ and 3.S.6′′, whose existence is claimed
in [8, p. 66], are the extensions of the isoclinic variants of 3.S.31 by their
unique outer automorphisms of order two. Thus 3.S.6′ and 3.S.6′′ are
not isomorphic and in particular not conjugate to 3.S.6 in some larger
group. We can, however, ignore them since we are interested in the bicyclic
extensions only up to isoclinism.

Lemma 3.3. The 11 pairwise nonisoclinic bicyclic extensions of S = U3(8) are
the following: S, S.31, S.32, S.33, S.2, S.6, 3.S, 3.S.31, 3.S.32, 3.S.2, 3.S.6.

3.4. Our algorithm. For each bicyclic extension G of a simple ATLAS group
S, we proceed as follows:

(1) We construct, or find in an existing database, a faithful representation
H of G. For groups of Lie type, it is often easy to construct such a
representation from its very definition; both GAP and Magma provide
access to natural representations. Most of the representations are also
available via the Atlas website [28]; if so, then we used these descriptions
via its GAP interface, the AtlasRep package [29].

(2) We give this representation H to the character table algorithm in the
computer algebra system of our choice (in our case Magma) and compute
its character table.

(3) It is then an easy computer algebra problem to check whether this newly
computed table is permutation isomorphic to the stored ATLAS table for
a group with this name, including the stored power map.

Once we compute the character table of H, we can readily confirm that H is
isomorphic to G: we can read off its composition factors, assuming the classification
of finite simple groups, its derived subgroup and the centre of that subgroup. The
very few cases of simple groups of identical order can readily be distinguished using
additional information on centraliser orders, for example.

We were able to apply this strategy to all but four simple groups S contained
in the ATLAS and found no discrepancy with the stored tables.

Details of the computations underpinning Theorem 1.1 can be found at [5], in-
cluding the group generators that were used. The character tables were computed
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using Magma 2.21-4 on a 2.9GHz machine with 1TB Ram. Most of the construc-
tions were routine and used few resources, both in time and memory; those with
composition factors 2E6(2), F3 and Th were challenging, the last taking 988 923
seconds.

3.5. J4, 2.2E6(2), 2.2E6(2).2, and 2.B. We were able to compute the charac-
ter tables of J4, 2.2E6(2), and 2.2E6(2).2 using a combination of standard character
theoretic methods (induction from subgroups, LLL reduction, and the enumeration
of orthogonal embeddings); published information about conjugacy classes and sub-
groups; and character tables verified in Theorem 1.1 for particular subgroups and
factor groups. If one assumes that the ATLAS character table of B is correct then
the same method can be used to compute the character table of 2.B. These cal-
culations are described in full in [4]. Specifically, the following information suffices
for the computations.

J4: The description of conjugacy classes of J4 as given in [11]; the character
table of the subgroup of type 211 :M24; this subgroup is the unique primi-
tive permutation group on 211 points of that order that can be embedded
into J4.

2.2E6(2): The outer automorphism group of 2E6(2), a symmetric group on three
points, acts faithfully on the classes of 2E6(2); and 2.2E6(2) contains sub-
groups of type 2.F4(2); and 2E6(2) contains subgroups of types F4(2),
Fi22, 3×U6(2), and O−

10(2); the character tables of the preimages of these
subgroups under the natural epimorphism from 2.2E6(2), and the charac-
ter table of the factor group 2E6(2).

2.2E6(2).2: The character tables of subgroups of types 2.2E6(2), 2 × F4(2) × 2, and
3× 2.U6(2).2, and the character table of the factor group 2E6(2).2.

2.B: The character tables of subgroups of types 2.2E6(2).2 and 2×Th, and the
character table of the factor group B.

The four character tables agree with the corresponding tables in GAP’s character
table library.

3.6. B, 2.B and M . The tables of the remaining three groups excluded in
the theorem are out of reach to our methods; their verification will be considered
by others.

Remark 3.4. Note that the Frobenius–Schur indicators of characters are not
stored in the GAP tables, but recomputed when needed. But the indicators con-
tained in the “Cambridge format” files were checked at the time of their conversion
into GAP and so no undocumented errors should exist.

Remark 3.5. The ATLAS contains all bicyclic extensions of simple groups of
Lie type possessing an exceptional Schur multiplier, with the sole exception of some
extensions of 2E6(2). More precisely, none of the bicyclic extensions with one of the
extensions being of degree 3 are given. For many applications, it is useful to know
those character tables as well.

To our knowledge, the current status for S = 2E6(2) is as follows. Frank
Lübeck has computed the character table of 3.S using character theoretic methods:
Deligne–Lusztig theory contributes some information about faithful characters, and
this suffices for completing the whole character table. The table of 6.S can be
computed from the tables of 2.S and 3.S automatically; the usual heuristics — form



10 THOMAS BREUER, GUNTER MALLE, AND E.A. O’BRIEN

tensor products and apply LLL reduction — is surprisingly successful. Computing
the tables of 3.S.2 and 6.S.2 is even easier since the outer automorphism acts
nontrivially on the centre. The tables of 2.S, 6.S, 3.S.2, and 6.S.2 are available
in [3].
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