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ABSTRACT. We show that Brauer’s height zero conjecture holds for blocks of finite quasi-
simple groups. This result is used in Navarro—Spath’s reduction of this conjecture for
general groups to the inductive Alperin-McKay condition for simple groups.

1. INTRODUCTION

In this paper we verify that the open direction of Richard Brauer’s 1955 height zero
conjecture (BHZ) holds for blocks of finite quasi-simple groups:

Main Theorem. Let S be a finite quasi-simple group, ¢ a prime and B an £-block of S.
Then B has abelian defect groups if and only if all x € Irr(B) have height zero.

The proof of one direction of Brauer’s height zero conjecture, that blocks with abelian
defect groups only contain characters of height zero, was completed in [15]. Subsequently
it was shown by Gabriel Navarro and Britta Spath [22] that the other direction of (BHZ)
can be reduced to proving the following for all finite quasi-simple groups S:

(1) (BHZ) holds for S, and
(2) the inductive form of the Alperin-McKay conjecture holds for S/Z(S).

Here, we show that the first statement holds. The main case, when S is quasi-simple of
Lie type, is treated in Section 2, and then the proof of the Main Theorem is completed
in Section 3.

2. BRAUER’S HEIGHT ZERO CONJECTURE FOR GROUPS OF LIE TYPE

In this section we show that (BHZ) holds for quasi-simple groups of Lie type. This
constitutes the central part of the proof of our Main Theorem.

Throughout, we work with the following setting. We let G be a connected reductive
linear algebraic group over an algebraic closure of a finite field of characteristic p, and
F : G — G a Steinberg endomorphism with finite group of fixed points G¥. It is well-
known that apart from finitely many exceptions, all finite quasi-simple groups of Lie type
can be obtained as G /Z for some central subgroup Z < G! by choosing G simple of
simply connected type.
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We let G* be dual to G, with compatible Steinberg endomorphism again denoted F'.
Recall that by the results of Lusztig the set Irr(G!") of complex irreducible characters of
G is a disjoint union of rational Lusztig series £(G'', s), where s runs over the semisimple
elements of G*!" up to conjugation.

2.1. Groups of Lie type in their defining characteristic. We first consider the easier
case of groups of Lie type in their defining characteristic, where we need the following:

Lemma 2.1. Let G be simple, not of type A1, with Frobenius endomorphism F : G — G.
Then every coset of [GF', G| in GI" contains a (semisimple) element centralising a root
subgroup of G

Proof. First note that by inspection any of the rank 2 groups L3(¢), Us(q), and S4(q) (and
hence also Uy(g)) contains a root subgroup U = [ all of whose non-identity elements are
conjugate under a maximally split torus. Now if G is not of type A; with [GF, G'] < GF
then it contains an F-stable Levi subgroup H of type Ay, Bs, or Az, and thus G contains
a root subgroup U all of whose non-trivial elements are conjugate under the maximally
split torus of [H HY] < [GF,GF]. But GI' = [GF, GF]TT for any F-stable maximal
torus T of G (see [21, Ex. 30.13]). Thus any coset of [G'', G'] in G*' contains semisimple
elements which centralise U. U

Now let G be simple with dual group G*, let 7 : G — G,q be the adjoint quotient
and 7 : G, — G* its dual. Let ' : G — G be a Frobenius map with dual lifted to G
also denoted F. Let s € G*I be semisimple. Then the character formula [10, Prop. 12.2]
shows that the restriction of any Deligne-Lusztig character Rp«(s) lies above a unique
character § of Z(G"'), whence all characters in £(G'", s) lie above 3.

Lemma 2.2. Let 5,5 € G*F semisimple. Then § = s' if and only if s's' € 7*(GzF).

Proof. Let z € Z(G*). Then z lies in any F-stable maximal torus T of G, hence it
induces a character 2 € Irr(T*F"). As z is central, any root of G relative to T vanishes
on z, so Z is trivial on the subgroup generated by the F-fixed points of the images of the
coroots in T*. But these are just the images 7*(T:") in G*I'| so, as GI" is generated by
its maximal tori, £ is trivial on 7*(Gz") NT*.

Now by the character formula the central character associated to Rr«(s) is z — §(2) =
2(s), hence it is constant on cosets of 7*(G:F). As clearly above any central character
there is some irreducible character xy of G¥', this map from cosets to central characters
is surjective. It is injective as Z(G!) = ker(n) and G*¥'/7*(G:I') = coker(r*) have the
same order by duality. O

Proposition 2.3. Let G be simple, simply connected, not of type Ay, and Z < G be
a central subgroup such that S = GY'/Z is quasi-simple of Lie type in characteristic p.
Then any p-block of S of positive defect contains characters of positive height.

Proof. By assumption, S/Z(S) % La(q). By the result of Humphreys [14, Concluding
Remarks], the p-blocks of GI* of positive defect are in bijection with Irr(Z(G*)) and are
of full defect. The principal block of G contains all the unipotent characters of G*,
hence a character of positive height e.g. by [20, Thm. 6.8] (except when S = S4(2) = &¢
where the statement can be checked directly).
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Now assume that Z(G) # 1, and B is the p-block of G lying over a non-trivial
character A € Irr(Z(GF)). As G*F'/7*(GzF) is abelian, according to Lemma 2.2 there
is a coset of 7*(GZI") in G*" such that for any s in that coset all characters of £(GF', s)
lie over A, hence in B. Now by Lemma 2.1 this coset contains a semisimple element sy
centralising a root subgroup of G*!'. Then Cg+r(s)) contains a root subgroup, hence has
semisimple rank at least 1. By Lusztig’s Jordan decomposition of characters, the regular
character in £(GY, s,) corresponds to the Steinberg character of Cg+r(sy), so has positive
p-height, and it lies in B. 0

2.2. Unipotent pairs and e-cuspidality. We now turn to the investigation of /-blocks
for primes ¢ # p, which is considerably more involved. For the rest of this section we
assume that ' : G — G is a Frobenius morphism with respect to some [ -structure on
G. Let £ be a prime not dividing g and let e = e,(q), where e,(q) is the order of ¢ modulo
¢ if £ is odd and is the order of ¢ modulo 4 if ¢ = 2.

By a unipotent pair for G’ we mean a pair (L, \), where L is an F-stable Levi subgroup
of G and X € £(L¥,1). If L is d-split in G, then (L, \) is said to be a unipotent d-pair
and if in addition X is a unipotent d-cuspidal character of L, then (L, \) is said to be a
unipotent d-cuspidal pair.

Recall that if L is an F-stable Levi subgroup of G, then L := L/Z(G) is an F-stable
Levi subgroup of G/Z(G) and Ly := LN[G, G] is an F-stable Levi subgroup of [G, GJ; the
maps L — L and L — L give bijections between the sets of F-stable Levi subgroups of G
and of G/Z(G) and between the sets of F-stable Levi subgroups of G and of [G, G]. Also
recall that the natural maps L — L/Z(G) and L N [G, G] — L induce degree preserving
bijections between &(LF, 1), £(L¥,1) and £(LL,1). Hence there are natural bijections
between the sets of unipotent pairs of G, (G/Z(G))!" and of [G, G} and these preserve
the properties of being d-split and of being d-cuspidal (see [6, Sec. 3]).

Lemma 2.4. Let (L, )\), (Lo, \o) and (L, ) be corresponding unipotent pairs for GI,
(G, G| and (G/Z(G))F. Then,

Wia.qr (Lo, Ao) = War (L, ) = Wi zq)r (L, A).

Proof. Let G = G/Z(G). The canonical map G — G induces an injective map from
Wear(L, \) into Wgr (L, A). Conversely, let # € G be such that its image 7 € G is in
Ngr(L,)). Then z normalises L as well as L' and stablises A. Further, by the Lang-
Steinberg theorem, 2t € G for some ¢ lying in an F-stable maximal torus T of L. Since
Nr(LF) stabilises A, we have that zt € Ngr(L, ). Further, since # € G, £ € L, and
hence 2tL¥ +— L under the inclusion of Wgr (L, \) in Wgr (L, X). The proof for the
isomorphism
W[G,G}F(Lm )\0) = WGF (L, )\)

is similar. ([l
Next, we note the following consequence of [6, Prop. 1.3].

Lemma 2.5. Suppose that G = [G, G| is simply connected. Let Gy, ..., G, be a set of
representatives for the F-orbits on the set of simple components of G and for each i let
d; denote the length of the F-orbit of G;. For a Levi subgroup L of G, let L; = LN G;.



4 RADHA KESSAR AND GUNTER MALLE

Then L is F-stable if and only if L; is F%-stable for all i and in this case
L= (L F(Ly)--- FOY (L)) - (L F(L,) - - FYY(L,).
Further, projecting onto the G; component in each F-orbit induces an isomorphism
LY~ L .o x L
If, under the above isomorphism, A € E(LY 1) corresponds to Ay x -+ x X\, with \; €
E(LFdi, 1), then (L, \) is an e-cuspidal pair for GE' if and only if (Lfdi,)\i) is an eg(q%)-
cuspidal pair for Gfdi for each 1.

Lemma 2.6. Suppose that either ¢ is odd or that G has no components of classical type
A,B,C, or D. Let (L, \) be a unipotent e-cuspidal pair of G¥. Then, L = C&(Z(L)F).

Proof. We claim that it suffices to prove the result in the case that G is semisimple.
Indeed, let Gy = [G,G], Ly = LN Gy and Ay be the restriction of A\ to L{. Then,
(Lo, Ao) is a unipotent e-cuspidal pair of G{'. Suppose that Ly = C& (Z(Lo); ). Since
G = Z°(G)Gy, we have that
Ca(Z(Lo)i) = 2°(G)Cay(Z(Lo)r ),

hence

C&(Z(Lo);) = 2°(G)Cg,(Z(Lo); ) = Z°(G)Lo = L.
Here the first equality holds since Ca(Z(Lo){)/Z°(G)Cg,(Z(Lo){) is a surjective image
of Cay(Z(Lo);)/C&,(Z(Lp); ) and hence is finite. On the other hand, we have that
Z(Lo)} < Z(L)f whence Cq(Z(L)f) < Ca(Z(Lo){) and the claim follows.

We assume from now on that G = [G, G]. We claim that it suffices to prove the result
in the case that G is simply connected. Indeed, let G — G be an F-compatible simply
connected covering of G, with finite central kernel, say Z. Let L be the inverse image of
L in G and let Ay € Irr(LF) be the (unipotent) inflation of . By Lemma 2.4 (L, \) is
an e-cuspidal unipotent pair of L¥. Let A = Z(L)F and suppose that Cé(fl) — L. Let
A= AZ/Z and let C be the inverse image in G of Cq(A). Then Cg(A) = Cg(AZ) is a
normal subgroup of C and C/ CG(A) is isomorphic to a subgroup of the automorphism
group of AZ. Since AZ is finite, it follows that C/Cg(A) is finite and hence Cg(A)/Z
has finite index in C/Z = Cg(A). On the other hand, A < Z(L)F, hence Cg(A)/Z has
finite index in Cq(Z(L)F). So,

C&(Z(L)}) < (Cg(A)/2)° = Cg(A)/Z2 =L/Z =L

which proves the claim.

Thus, we may assume that G = [G, G| is simply connected. By [15, Lemma 7.1] and
Lemma 2.5 we may assume that G is simple. If ¢ is good for G and odd, then the result
is contained in [6, Prop. 3.3(ii)]. If G is of exceptional type and ¢ is bad for G then the
result is proved case by case in [11]. O
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2.3. On heights of unipotent characters. We now collect some results on heights of
unipotent characters. We first need the following observation:

Lemma 2.7. Let { be a prime and n > /.

(a) The symmetric group S,, has an irreducible character of degree divisible by ¢ unless
n=1{¢c{2,3}.

(b) The complex reflection group G(2e,1,n) = Cs 1 &, and its normal subgroup
G(2e,2,n) of index 2 (with e > 1 if n < 4) have an irreducible character of
degree divisible by (.

Proof. (a) By the hook formula for the character degrees of &, it suffices to produce a
partition A F n with no ¢-hook, for ¢ <n < 2¢ — 1. For ¢ > 5 the partition (£ —2,2) - ¢
and suitable hook partitions for £ < n < 2¢ — 1 are as claimed. For ¢ < 3 the symmetric
groups G,,, £ +1 < m < 2/, have suitable characters.

For (b) note that both G(2e¢,1,n) and G(2e,2,n) have &,, as a factor group, so we are
done by (a) unless n = ¢ € {2,3}. In the latter two cases the claim is easily checked. [

Recall that an irreducible character y of a finite group G is said to be of central (-defect
if the /-block of G containing y has a defect group contained in the centre of GG; in this
case we say that the pair (G, x) is of central ¢-defect.

Lemma 2.8. Let (L, \) be a unipotent e-cuspidal pair of G of central (-defect, where
e = ey(q). Suppose that |Wgr(L,\)|, # 1 and all irreducible characters of Wgr (L, A)
are of degree prime to £. Then, { < 3. Suppose in addition that G is simple and simply
connected. Then Wgr(L,\) = &, and the following holds:
(a) If € = 3, then either GI' = SLs(q) with 3|(q — 1) or SUs(q) with 3|(q+ 1) or G is
of type Eg and (L, \) corresponds to Line 8 of the Eg-tables of [11, pp. 351, 354].
(b) Ifl = 2, then either G is of classical type, or G is of type E; and (L, \) corresponds
to one of Lines 3 or 7 of the Eq-table of [11, p. 354].

Proof. The first statement easily reduces to the case that G is simple, which we will assume
from now on. We go through the various cases. First assume that G is of exceptional
type, or that GI" = 3D,(q). The relative Weyl groups Wgr (L, \) of unipotent e-cuspidal
pairs are listed in [3, Table 1], and an easy check shows that they possess characters of
degree divisible by ¢ whenever ¢ divides |Wgr(L, )|, unless either £ = 3, G is of type
Eg and we are in case (a), or { = 2 and Wgr(L,\) = Cs in G of type Es, E; or Eg.
According to the tables in [11, pp. 351, 354, 358], the only case with A of central ¢-defect
is in E; with L of type Eg and X one of the two cuspidal characters as in (b).

Next assume that G is of type A. The relative Weyl groups have the form C, 1 &,
for some a > 1. By definition, e < ¢, so if ¢ divides |Wgr(L, A)| then ¢ < a. Then by
Lemma 2.7 we arrive at either (a) or (b) of the conclusion. If G is a unitary group,
the same argument applies, except that here the relative Weyl groups have the form
Cy 16, with d = e;(—q). For G of type B or C, the relative Weyl groups have the form
Ca16,, with d € {e,2e} even, and again by Lemma 2.7 no exceptions arise. The relative
Weyl groups have the same structure for G of type D, unless G’ is untwisted and \ is
parametrised by a degenerate symbol, and either e € {1,2}, A =1, Wgr(L,A\) = W and
so is of type D,, with n > 4, or Wgr(L, \) = G(2d,2,n) with d > 2, so again we are done
by Lemma 2.7. 0
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Recall that by [11, Thm. A] if (L, \) is a unipotent e-cuspidal pair of G, then all
irreducible constituents of R () lie in the same ¢-block, say bgr (L, \) of GF.

Lemma 2.9. Let (L,)\) be a unipotent e-cuspidal pair of G and let B = bgr (L, \).
Suppose that X is of central (-defect and that L = C(Z(L)I'). If B has non-abelian
defect groups, then |Wqr (L, \)| is divisible by ¢.

Proof. Let Z = Z(L)F and let b be the block of L containing A. Since L = C&(Z),
and Z is an ¢-subgroup of L contained in a maximal torus of G, Cg(Z)/L is an ¢-group.
Hence, L is a normal subgroup of Cgr(Z) of {-power index and consequently, there is a
unique block, say b of Cgr(Z) covering b. Further, by [15, Props. 2.12, 2.13(1), 2.15] and
3, Thm. 3.2], (Z,b) is a B-Brauer pair.

Since ICGF(Z)()\)/LF < Wer(L, \) and since Cgr(Z) /L is an f-group, we may assume
by way of contradiction that Ic_,.( 7)(A) < LF. Further, since A is of central ¢-defect in L,
A is the unique character of b with Z in its kernel. Thus, Ic_,(z)(0) = Ic_p(2)(A) < |
Consequently, Z is a defect group of b. Now the defect groups of B are non-abelian,
whereas Z is abelian. Hence Ngr(Z,b)/Cgr(Z) is not an £'-group. On the other hand,
Ngr(Z, l~)) normalises L and therefore acts by conjugation on the set of ¢-blocks of L
covered by b. Since Cgr(Z) acts transitively on the set of the ¢-blocks of L covered by
b, by the Frattini argument, Ngr(Z, b) = Cgr(Z)Ngr(Z,b). Hence,

Ner(Z,b)/LE = Ngr(Z,0)/(Ngr(Z,0) N Car(Z)) = Ngr(Z,b)/Cqr(Z)
is not an ¢’ group. But again since A is of central ¢ defect, Ngr(Z,b) < Ngr(L,\). Hence

Ngr (L, \)/L¥ is not an ¢ group, contradicting our assumption. O

Recall that by the fundamental result of e-Harish-Chandra theory [3, Thm. 3.2], for
any unipotent e-cuspidal pair (L, ) of G there is a bijection

pLy E(GE (L, N) =5 Irr(Wer (L, A))

between the set £(GF, (L, \)) of irreducible constituents of RE(\) and Irr(Wgr (L, \)).
Moreover we have the following relationship between the degrees of corresponding char-
acters.

Lemma 2.10. Let (L, \) be a unipotent e-cuspidal pair of G' and let x € E(GT, (L, \)).

Then
- |G| A (1),
X(l)ﬁ - |LF‘E . ’WGF(La)\)IE (pL«\(X))(l)f

In particular, there exist x1,x2 € E(GF, (L, \)) with x1(1)¢ # x2(1)e if and only if there
exists an irreducible character of Wgr (L, X) with degree divisible by (.

Proof. This follows from [20, Thm. 4.2 and Cor. 6.3]. O

Lemma 2.11. Let G be connected reductive and let B be a unipotent (-block of GF'. Then
B has an irreducible unipotent character of height zero.

Proof. We may assume that G = [G, G|. Indeed, set Gy = [G,G] and let By be the
unipotent block of G{' covered by B. Then the degrees in Irr(B) NE(GT, 1) are the same
as the degrees in Irr(By) N E(GY,1). On the other hand, if x € Irr(By) and X' € Irr(B)
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covers X, then x/(1) is divisible by x(1). Since every x’ € Irr(B) covers some x € Irr(By)
and vice versa (see for example [25, Ch. 5, Lemmas 5.7, 5.8]), we may assume that
G = Gy.

We next claim that we may assume that G is simple. Indeed, let G = G/Z(G) and B
the block of GF dominated by B. Let H = G /Z(GF) be the image of G in G under
the canonical map from G to G and let C' be the block of H dominated by B. Then H
is normal in G and C' is covered by B. The degrees in Irr(B) N £(GF, 1) are the same
as the degrees in Irr(B) NE(G!, 1) and by the same arguments as above every irreducible
character degree of B is divisible by an irreducible character degree of C' and the set of
irreducible character degrees of C' is contained in the set of irreducible character degrees
of B. Thus, if the result is true for B, it holds for B. So, we may assume that G = [G, G]
is simply connected, and hence also that G is simple.

If G is of type A and / is odd and divides the order of Z(G!), then by [6, Theorem,
Prop. 3.3] B is the principal block and the result holds. If £ = 2 and G is of classical type,
then by [4, Thm. 13] again B is the principal block. In the remaining cases by the results
of [6] and [11] there exists an e-cuspidal pair (L, A) for B such that A is of central ¢-defect
and a defect group of B is an extension of Z(L%), by a Sylow f-subgroup of Wgr (L, \)
(see [15, Thm. 7.12(a) and (d)]). Now the result follows from Lemma 2.10 by considering
the character in £(GY, (L, \)) corresponding to the trivial character of Wgr (L, ). O

Lemma 2.12. Suppose that G is simple and let X be a unipotent e-cuspidal character of
GT' of central (-defect. Then X is of (-defect zero. Moreover, any diagonal automorphism
of GF' of l-power order is an inner automorphism of GF'.

Proof. Let G — G be a regular embedding and set G := G/Z(G). If £ is odd, good for
G and ¢ # 3 if G =3D4(q), then by [6, Prop. 4.3], every unipotent e-cuspidal character
of GF and of GF is of central (-defect. The first assertion follows since G¥ has trivial
center and since G and G have the same order. For the second assertion, note the
central (-defect property of A as a character of G and G¥ implies that |GF : Z(GF)|, =
|GT : Z(GF)],, hence Z(GF)GF is of £-index in GF, thus proving the result.

If £ =2 and G is of classical type A, B, C or D then by [4, Thm. 13] the principal
block of G¥ is the only unipotent block of G', and the Sylow 2-subgroups of G¥ are
non-abelian, hence G has no unipotent character of central 2-defect. If ¢ is bad for G
and G is of exceptional type, or if £ = 3 and G = 3Dy4(q), then the result follows by
inspecting the tables in [11]. The last assertion follows as in type Fg the outer diagonal
automorphism is of order 3, but there are no unipotent e-cuspidals of central 3-defect,
and similarly in type Er, the outer diagonal automorphism has order 2, but there are no
unipotent e-cuspidals of central 2-defect. O

2.4. Some special blocks. Here we investigate in some detail certain unipotent blocks
for ¢ < 3 related to the exceptions in Lemma 2.8.

Lemma 2.13. Let G = SL3(q), 3|(¢ — 1), and let B be the principal 3-block of GF'.
(a) There exists an irreducible character of positive 3-height in B. This contains
Z(GY) in its kernel when ¢ =1 (mod 9).
(b) If ¢ £ 1 (mod 9), then there exists an irreducible character in B with Z(GY) in
its kernel and which is not stable under the outer diagonal automorphism of G,
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The analogous result holds for G = SUs(q) with 3 dividing q + 1.

Proof. Let G be simple, simply connected of type A, such that G = SL3(q) with 3|(g—1).
Then the Sylow 3-subgroups of G are non-abelian and if ¢ = 1 (mod 9), then the Sylow
3-subgroups of G /Z(G!) are non-abelian, hence (a) is a consequence of [1]. So we
may assume that ¢ # 1 (mod 9). Let n be a primitive third root of unity in F, and
let t € G*f = PGL3(q) be the image of diag(1,n,7%) under the canonical surjection of
GL;3(q) onto PGL3(g). So, C&.(t) is a maximal torus of G* and |Cg-(t)/C&.(t)| = 3.
Let T be an F-stable maximal torus of G in duality with Cg&.(¢) and let £ be the linear
character of T* in duality with ¢. Let ¢ be an irreducible constituent of RS (f). Then,
1 is not stable under the outer diagonal automorphism of G¥. Further, v € Irr(B) as t
is a 3-element and the principal block of G is the only unipotent block of G". Finally,
Z(GT) is contained in the kernel of ¢ as t € [G*F, G*F']. The proof for the unitary case
is entirely similar. 0

Lemma 2.14. Let G be simple, simply connected of type Es, GI' = FEg(q), 3|(¢—1), and
let (L, \) be a unipotent 1-cuspidal pair corresponding to Line 8 of the Eg-table in [11].
(a) There exists an irreducible character of positive 3-height in B = bgr (L, X). This
contains Z(G*) in its kernel when ¢ =1 (mod 9).
(b) If ¢ £ 1 (mod 9), then there exists an irreducible character in B with Z(GF) in
its kernel and which is not stable under the outer diagonal automorphism of G,

An analogous result holds for GI" = 2Eg(q) with 3 dividing q + 1.

Proof. There exists t € GiF' such that M* := Cg+(#) is a 1-split Levi subgroup of G* of
type Djs containing L*, which is contained in [G*/, G*'] if and only if g = 1 (mod 9), see
e.g. [17]. Denoting by M > L an F-stable Levi subgroup of G in duality with M* and by
t the linear character of M* corresponding to ¢ we thus have that Z(G*) is contained in
the kernel of £ if ¢ = 1 (mod 9). Moreover there is an irreducible constituent 1 of RM(\)

such that 1 := epeq RS (1n) has ¥(1)3 > x(1)3 for any x € £(GF, 1) NTrr(B). Now
"G () = £ (R (in)) = £R5(d"™ () = R (™M () = d"S" (Rip(n))-

Since 7 is a constituent of RM()\) and M is 1-split in G, the positivity of 1-Harish-
Chandra theory yields that every constituent of R$i(n) is a constituent of RE(\) and
hence in particular ¢ is in Irr(B), proving (a).

Now assume that ¢ 1 (mod 9). Again by [17] there is ¢’ € G5 such that Cg. (') =
L*, and |Cg-(t")/C&.(t')| = 3. Let ¢’ be an irreducible constituent of RE(#'\) for A €
E(LF,1) and £ in duality with ¢. Then ¢ is not stable under the diagonal automorphism
of GF', and it lies in B by the same argument as for ¢. The arguments for 2Es(q) are
entirely similar. 0

Lemma 2.15. Let G = SLy(q) with q odd. The principal 2-block B of G contains
an irreducible character of even degree. If ¢ =1 mod 4, then there exists an irreducible
character of even degree in B which contains Z(GT) in its kernel. If ¢ =3 mod 4 then
there exists an irreducible character in B which contains Z(GT) in its kernel and which
is not stable under the outer diagonal automorphism of G

Proof. This follows the lines of the proof of Lemma 2.13. OJ
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Lemma 2.16. Let G be simple, simply connected of type Ez7, 4[(¢ — 1), and let (L, \) be
a unipotent 1-cuspidal pair corresponding to Line 3 of the Er-table in [11].

(a) There exists an irreducible character of positive 2-height in B = bgr (L, \). This
contains Z(GT) in its kernel when ¢ =1 (mod 8).

(b) If ¢ £ 1 (mod 8), then there exists an irreducible character in B with Z(GY) in
its kernel and which is not stable under the outer diagonal automorphism of GF'.

An analogous result holds when 4|(q + 1) and (L, \) is a unipotent 2-cuspidal pair corre-
sponding to Line 7 of the E,-table in [11].

Proof. There exists t € G3" of order 4 such that M* := Cg-(t) is a 1-split Levi subgroup
of G* of type Ej containing L*, which is contained in [G*', G*F'] if and only if ¢ = 1
(mod 8). As in the proof of Lemma 2.14, this gives rise to a character as in (a). For (b),
consider the involution ¢ € L*f" with C&.(¢') = L* and |Cg-(¥')/C&.(t')| = 2. This lies
in [G*', G*F'] (see [17]), and thus again arguing as before we find v’ € Irr(B) as in (b).
The arguments for 4|(q + 1) are entirely similar. O

2.5. The height zero conjecture for unipotent blocks. We need the following gen-
eral observation on covering blocks.

Lemma 2.17. Let G be a finite group, b an (-block of G, H a normal subgroup of G and
¢ a block of H covered by b.

(a) Suppose H has ('-index in G. Then a defect group of ¢ is a defect group of b.
Further, ¢ has irreducible character degrees with different £-height if and only if b
does.

(b) Suppose that H = XY where X andY are commuting normal subgroups such that
X NY s a central V'-subgroup of H. Let cx be the block of X covered by ¢ and
let cy be the block of Y covered by ¢, Dx a defect group of ¢, and Dy a defect
group of cy. Then Dx Dy 1is a defect group of c. In particular, D is non-abelian
if and only if at least one of Dx or Dy is non-abelian. Further, ¢ has irreducible
character degrees with different £-height if and only if one of cx or cy does.

(¢c) Suppose G = HU where U is a central {-subgroup of G. Then b has abelian defect
groups if and only if ¢ has abelian defect groups and b has irreducible characters
of different (-height if and only if ¢ does.

Proof. Part (a) follows from the Clifford theory of characters and blocks (see for instance
[25, Ch. 5, Thm. 5.10, Lem. 5.7 and 5.8]). Part (b) is immediate from the fact that
H = XY is a quotient of X x Y by a central ¢-subgroup. In (c), every irreducible
character of H extends to a character of GG, ¢ is G-stable and b is the unique block of G
covering ¢, and if D is a defect group of ¢, then DU is a defect group of b. O

Theorem 2.18. Let Z be a central subgroup of Gli and let B be a block of GF'/Z domi-
nated by a unipotent block B of G Suppose that B has non-abelian defect groups. Then
B has irreducible characters of different height.

Proof. By Lemma 2.11, B has a unipotent character of height zero. Since Z is contained
in the kernel of every unipotent character of G¥ it suffices to prove that there exists an
irreducible character in Irr(B) of positive height and containing Z in its kernel.
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By [11, Thm. A] there exists a unipotent e-cuspidal pair (L, \) of G such that B =
ber (L, \) with A of central (-defect, unique up to G’-conjugacy. Here note that the
existence of such a pair for bad primes is only proved for G simple and simply connected
n [11], but by Lemma 2.12, the conclusion carries over to arbitrary G. Suppose first that
¢ > 5. By Lemmas 2.6 and 2.9, Wgr (L, \) is not an ¢-group. Thus, by Lemmas 2.10
and 2.8 there are irreducible unipotent characters of different height in £(GF, (L, \)).
This proves the claim as Z is in the kernel of all unipotent characters.

We assume from now on that ¢ < 3. Without loss of generality, we may assume that
Z is an f-group. We let G be a counter-example to the theorem of minimal semisimple
rank. Let X be the product of an F-orbit of simple components of [G, G|, and Y be the
product of the remaining components of [G, G] (if any) with Z°(G). Then G = XY and
XFYT is a normal subgroup of G” of index | X N Y| = |Z(X¥) N Z(YT)|. Denote by
Bx the unique block (also unipotent) of X covered by B and let By be defined similarly.
Let Bx be the block of X¥'Z/Z = X¥ /(Z N XF) dominated by Bx and let By be defined
similarly.

Let n € Irr(Bx) with Z N X < ker(n). We claim that 7 is G¥-stable and is of height
zero in Bx. Indeed, let 7x € Irr(Bx)NE(XF, 1) and 7y € Irr(By)NE(YT, 1) be of height
zero (see Lemma 2.11) and let 7 € Trr(B) N E(G', 1) be the unique unipotent extension
of 7xTy to GI'. Since Z is central, n extends to an irreducible character, say 7 of X¥'Z
with Z in its kernel. Since Z is an f-group, there is a unique block of X' Z covering Bx,
and this block is necessarily covered by B. Let ¥ be an irreducible character of B lying
above 7). Then Z < ker()). Any irreducible constituent of the restriction of 1 to XY
is of the form 77/, with ' € By and

Y(1) = a|lG" : Igr () |n(1)y'(1)

for some integer a (in fact @ = 1 but we will not use this here). Since ¥(1), = 7(1), =
7x(1)¢7y (1), and since 7x and 7y are of height zero, it follows from the above that 7 is of
height zero and that |G : Igr(nn')| is not divisible by £. But |GY : Igr(nn')| is divisible
by |GY : Igr(n)| and the latter index is a power of ¢ since n € & (X 1). Thus, 7 is
G -stable as claimed. Similarly, one sees that if ¢ € Irr(By) with ZNY" < ker(¢), then
(¢ is GF-stable and is of height zero in By. In particular, all elements of Irr(Bx) and of
Irr(By) are of height zero.

Suppose that ¢ = 3. By Lemma 2.6 and 2.9, Wgr (L, \) has order divisible by 3. Thus,
by Lemma 2.4, there exists X such that |[Wxr(Lx, Ax)| is divisible by 3 where (Lx, Ax)
is the unipotent e-cuspidal pair of X corresponding to (L, \) by Lemmas 2.4 and 2.5,
necessarily of central (-defect. By Lemma 2.8, Wxr(Lx, A\x) & &3, |Z(X)]| is divisible
by 3 and either the components of X are of type Ay or of type Eg. Without loss of
generality, we may assume that X is simple. Suppose first that X is simple of type A,.
By Lemma 2.8, X = X, in the notation of [6]. Hence, by [4, Thm. 13], B is the principal
block of Bx. As has been shown above, every irreducible character of X" which contains
X NZ in its kernel has height zero and is stable under G¥'. By Lemma 2.13 it follows that
ZNXE £1,3||(g—1) (respectively 3||(g+ 1)) and that G” induces inner automorphisms
of X¥'| that is G = XFYFU for some central subgroup U of G¥. Since Z N X # 1,
XE/(ZNXE) 2 13(q) (respectively Uz(q)) and X' /(Z NXT) is a direct factor of G /Z.
Further, X' /(ZNX’) has abelian Sylow 3-subgroups. Since U is central in G, it follows
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by Lemma 2.17 that the block By of Y¥'/(ZNYT) has non-abelian defect groups. On the
other hand, it has been shown above that all irreducible characters of By are of height
zero. Hence, Y¥'/(Z N'YT) is a counter-example to the theorem. But the semisimple
rank of Y is strictly smaller than that of G, a contradiction. Exactly the same argument
works for the case that the components of X are of type Fg by replacing Lemma 2.13
with Lemma 2.14.

Suppose now that £ = 2 and that the components of X are of classical type. Then X*
has a unique unipotent 2-block, namely the principal block and it follows by the above
that all unipotent character degrees of X¥ are odd. Thus, the components of X are of
type Ai, so XF is either PGLy(q?) or SLy(q?) for some d. Again we are done by the
same arguments as above using Lemma 2.15. Thus, we may assume that all components
of G are of exceptional type. By Lemmas 2.6 and 2.9, Wgr(L, \) has even order and
by Lemma 2.4, there exists X such that |[Wxr(Lx, Ax)| is divisible by 2 where (Lx, Ax)
is the unipotent e-cuspidal pair of X" corresponding to (L, \) necessarily of central /-
defect. Since X is of exceptional type, Lemma 2.8(b) gives that Lx is of type Eg and Ax
corresponds to either line 3 or 7 of the Er-table of [11, p. 354]. Then we are done by the
same arguments as above using Lemma 2.16. [

2.6. General blocks. We also need to deal with the so-called quasi-isolated blocks of
exceptional groups of Lie type.

Proposition 2.19. Assume that G is of exceptional Lie type and ¢ is a bad prime
different from the defining characteristic. Let Z be a central subgroup of Gt and let B be
an (-block of G /Z dominated by a quasi-isolated non-unipotent block B of G¥'. If B has

non-abelian defect groups, then Irr(B) contains characters of positive height.

Proof. We first deal with the case that Z = 1, so B = B. Here, the quasi-isolated
blocks for bad primes were classified in [15, Thm. 1.2]. Any such block is of the form
B = bgr (L, \) for a suitable e-cuspidal pair (L, \) in G, in such a way that all constituents
of RE(N) lie in bgr(L, ), and the defect groups are abelian if and only if the relative
Weyl group Wgr (L, ) has order prime to /.

It is easily checked from the tables in [15] that all blocks B occurring in the situation
of [15, Thm. 1.2] have the following property: either the characters in B N E(GY, ) lie
in at least two different e-Harish-Chandra series, above e-cuspidal characters the ¢-part
of whose degrees is different, or the relative Weyl group has an irreducible character
whose degree is divisible by £. In the first case, the claim follows since then by inspection
there are characters in Irr(B) N E(GY, ') the (-part of whose degrees is different. In the
second case, let s € G* be a semisimple (quasi-isolated) ¢’-element such that Irr(B) C
E(GTs). Lusztig’s Jordan decomposition [18, Prop. 5.1] (see also [10, Rem. 13.24])
gives an (-defect preserving bijection from E(G', s) to the unipotent characters of the
(possibly disconnected) centraliser C = Cg+(s) of s. By the results of [15, Thm. 1.2] this
bijection sends BN E(GT, s) to a unipotent e-Harish-Chandra series in £(C*, 1) (see [20,
Thm 4.6] for e-Harish-Chandra series for disconnected groups), and the corresponding
relative Weyl groups are isomorphic. Since the relative Weyl group has a character with
degree divisible by ¢, a straightforward generalisation of the arguments in [20, Cor. 6.6]
shows that the relevant e-Harish-Chandra series in £(C*', 1) contains characters the (-part
of whose degrees is different, and so there also exist characters in B of different height.
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Now assume that Z(G) # 1 and Z = Z(GF), so that G is either of type Fg and
¢ = 3, or of type E; and ¢ = 2. The only quasi-isolated block to consider for type Fj is
the one numbered 13 in [15, Tab. 3], respectively its Ennola dual in ?Es. Since here the
relative Weyl group has an irreducible character of degree divisible by 3, we get characters
of different height in Irr(B) N (G, ¢'), which have the centre in their kernel. Similarly,
the only cases in E7 are the ones numbered 1 and 2 in [15, Tab. 4], for which the same
argument applies. O

We can now show the Main Theorem for quasi-simple groups of Lie type. Let us write
(BHZ2) for the assertion that blocks with all characters of height zero have abelian defect
groups.

Theorem 2.20. Suppose that G is simple and simply connected, not of type A, and ¢ # p.
Then (BHZ2) holds for G /Z for any central subgroup Z of GF.

Proof. We may assume that Z is an ¢-group. The Suzuki groups and the Ree groups
2G5 (¢%) have no non-abelian Sylow subgroups for non-defining primes. The height zero
conjecture for Go(q), Steinberg’s triality groups *D4(q) and the Ree groups %Fy(¢®) has
been checked in [13, 9, 19]. Thus, we will assume that we are not in any of these cases.

Let B be an (-block of G and B the (-block of G'/Z dominated by B. We assume
that B has non-abelian defect groups. Let s € G*F be a semisimple ¢-element such
that Irr(B) C &(GT,s). Let G; be a minimal F-stable Levi subgroup of G such that
Ca+(s) < G, thus s is quasi-isolated in Gi. Let C' be a Bonnafé-Rouquier correspondent
of B in Gf, and C the block of Gf'/Z dominated by C. By [15, Thm. 1.3] Jordan
decomposition induces a defect preserving bijection between Irr(B) and Irr(C) and B
has abelian defect if and only if C' does. Thus it suffices to prove the result for C. In
particular, by Theorem 2.18, we may assume that s is not central in G; and hence that
Cax(s) = Cg-(s) is not a Levi subgroup of G} (nor of G*).

We first consider the case that Z(G)! is an ¢-group. Let G — G be a regular
embedding. If G has connected center we let G = G. Let B be a block of G covering
B and let § € G*F be a semisimple element such that Irr(B) < &(GF,3). Then by
Lemma 2.17 it suffices to prove that B has characters of different ¢-heights (note that
Z =1 here). Further, let Gy be an F-stable Levi subgroup of G containing Cg. (5) such
that § is quasi-isolated in G, and let C' be a Bonnafé-Rouquier correspondent of B in
é‘rf By [15, Thm. 7.12, Prop. 7.13(b)], C has non-abelian defect groups. Hence it suffices
to prove that C has irreducible characters of different (-heights. By the same reasoning
as above, we may assume that s is not central in G; and hence that Ce:(s) = Cg-(s) is

not a Levi subgroup of G¥ (nor of C}*)
If moreover ¢ is odd and good for G, then by [12], there is a defect preserving bijection
between Irr(C') and Irr(Cp) for a unipotent block Cy of C’éi(é)F whose defect groups

are isomorphic to those of C' and the result follows by Theorem 2.18. Enguehard has
informed us that the prime 3 should have been excluded from the results of [12]. However,
for classical groups with connected center Jordan decomposition commutes with Lusztig
induction (see for instance appendix to latest version of [12]) and hence by [5, Thm. 2.5]
and [7, 5.1, 5.2] the prime 3 may be included in the above.
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Thus, we may assume that if £ is odd and Z(G) is an -group, then ¢ is bad for G,
and hence for G and G. We now consider the various cases. Suppose that G is classical
of type B,C, D. If { = 2, then s has odd order and Cg+(s) is a Levi subgroup of G*, a
contradiction. If £ is odd, then ¢ is good for G. On the other hand, Z(G) is a 2-group, a
contradiction.

So, G is of exceptional type. If £ is good for G, then ¢ > 5, and in all cases Z(G) is an
¢'-group, a contradiction. Thus ¢ is bad for G. Then by Proposition 2.19, G; is proper
in G. Suppose that ¢ = 5 and so G is of type Es. Since Z(G) = 1, 5 is bad for G;. Thus
G = G4, a contradiction.

Now assume that ¢ = 3. Suppose that G is of type Fy. Then all components of [G1, G{]
are classical, hence 3 is good for G; and Z(G) is connected, a contradiction.

Suppose G is of type Eg. If all components of Gy are of type A, then Cg T<S) is a
Levi subgroup of G;. On the other hand, Z(G,)/Z°(G1) < Z(G)/Z°(G) is a 3-group,
and s is a 3'-element, hence Cg=(s) is connected. So, Cqx(s) is a Levi subgroup of G7, a
contradiction. Suppose G; has a component, say H of type D, or Ds. So G; = HZ°(Gy).
Since the centre of H is a 2-group, by Lemma 2.17 we may replace GI'/Z with the direct
product of HY and Z°(G;)/Z. Since (BHZ2) has been shown to be true for H above
(here note that H is simply-connected), H* has abelian Sylow 3-subgroups and we are
done.

Suppose G is of type Fr. Then |Z(G)| = 2, hence 3 is bad for G; and it follows that
[G1, G1] is of type Eg (note that if Gy is proper in G then G, is proper in é) Denoting by
5 the image of s in [G1, G;]* and by D a block of [Gy, G1]¥ covered by C, one sees that D
corresponds to one of the lines 13, 14, 15 of Table 3 of [15]. If D corresponds to one of the
lines 13 or 14, there are irreducible characters of different 3-heights in £([Gy, G1]¥,5) N
Irr(D). But since Gy has connected centre, and since Z(|G1, G1])/Z°([G1, G1]) is a 3-
group and s has order prime to 3, all characters in £([G, Gy]", 5) are GI-stable and
extend to irreducible characters of GI" (see [2, Cor. 11.13]). All irreducible characters of
GI" covering the same irreducible character of [G1, G1]¥" have the same degree and every
element of Irr(D) is covered by an element of £(GY, s)NIrr(C). Thus there exist elements
in Irr(C) N E(GY, s) of different 3-heights. If D corresponds to line 15, then 3 does not
divide the order of Z(GI"). Hence, GI' = Z°(GI') x |G, G4]. By [15, Prop. 4.3], D has
abelian defect groups hence so does C' and there is nothing to prove.

If G is of type Eg, then exactly the same arguments as in the E; case apply hence we are
left with one of the following cases: [G1, G1] is of type Eg+ A; or of type E;. In the former
case, by Lemma 2.17 we may assume that the fixed point subgroup of the component of
type A; is a direct factor of GI" and so has abelian Sylow 3-subgroups. Therefore, we
may assume that [Gy, G1] is of type Eg and we are done by the same argument as in the
case that G is of type E;. If [G1, G1] has type F7, then

G [G1,Gi]" Z°(G)"| = [[G1, G]" N Z°(Gy) | = 2,
hence by Lemma 2.17 we may assume that G; is simple of type E7, and we are done by
Proposition 2.19. ~
Finally suppose that ¢ = 2. In case G is of type Eg, we may replace G by G by

Lemma 2.17 and still keep the assumption that G is proper in G. Thus, either Z(QG) is
connected or Z(G)/Z°(G) has order 2 (in case G is of type E;). Consequently, since s
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has odd order, Cg:(s) = Ca-(s) is connected. Thus, if all components of [Gy, G1] are of
classical type, then Cg:(s) is a Levi subgroup of Gj, a contradiction. We are left with
the following cases: G is of type E7 and [Gq, Gq] is of type Eg, or G is of type Fg and
[Gl, Gl] is of type EG, E6 + Al or E7.

Suppose that [G1, G1] is of type FEg. Since Cgs(s) is connected and s is quasi-isolated
in G, Cg:(s) has the same semisimple rank as Gi. Thus, 5 and D correspond to one of
the lines 1, 2, 6, 7, 8 or 12 of Table 3 of [15]. In all of these cases, there are characters
in £([G1, G1]¥,5) NIrr(D) of different 2-heights. Since Z(G)/Z°(G) is a 2-group, every
element of £(|G1, G1]F, 5) NTrr(D) extends to an element of Irr(C) N E(GT, s). Since Z
is in the kernel of all characters in £(GI", s), B has characters of different 2-heights and
we are done.

Suppose G is of type Eg and [Gy, Gq] is of type Eg + A;. Then by Lemma 2.17, we
may assume that GI' = HI x HI'| where HY is isomorphic to Eg(q) or 2Fg(q), Hy has
connected center and [Hy, Hy| has a single component of type A;. Since the block of HY
covered by C' is quasi-isolated, we may assume that C' covers a unipotent (in fact the
principal) block of HE. If HY /Z has non-abelian Sylow 2-subgroups, then we are done
by Theorem 2.18. If the block of HY covered by C has non-abelian defect groups, then
we are done by Proposition 2.19.

Finally, assume that G is of type Eg and [Gq, G4] is of type E;. Since s is not central
in Gy, 1 # 5 is a quasi-isolated element of [Gi, G1]*. By Table 5 of [15] the block D
of [G1, G1]¥ has non-abelian defect groups. Now we are done by the same argument as
given at the end of Proposition 2.19. 0

3. BRAUER’S HEIGHT ZERO CONJECTURE FOR QUASI-SIMPLE GROUPS

Proof of the Main Theorem. We invoke the classification of finite simple groups. One
direction of the assertion has been shown in [15, Thm. 1.1]. So we may now assume that
all x € Irr(B) have height zero. We need to show that B has abelian defect groups. If S is
a covering group of a sporadic simple group or of ?(2)’ it can be checked using the tables
in [8] that the only ¢-blocks with defect groups of order at least 2 and all characters in
Irr(B) of height zero are the principal 2-block of Ji, the principal 3-block of O’N and a
2-block of C'oz with defect groups of order 27. For the first two groups, Sylow /-subgroups
are abelian, and the latter block has elementary abelian defect groups, see [16, §7].

Similarly, if S is an exceptional covering group of a finite simple group of Lie type,
again by [8] there is no such block of positive defect at all.

The height zero conjecture for alternating groups 2A,,, n > 7, and their covering groups
was verified in [24], for example, except for the 2-blocks of the double covering 2.21,,. Since
the height zero conjecture has been checked for the 2-blocks of 2(,, we know that the only
2-blocks of 2.2(,, which could possibly consist of characters of height zero are those whose
defect groups in 2, are abelian. But the latter have defect group of order at most 4, so
the defect groups in 2.2, have order at most 8, and for those the claim is again known
by work of Olsson [23].

Now assume that S is of Lie type. If £ is the defining characteristic of .S, then the result
is contained in Proposition 2.3. We may hence suppose that ¢ is a non-defining prime.
There, Brauer’s height zero conjecture for groups of type A,, has been shown by Blau and
Ellers [1]. For all the other types, the claim is shown in Theorem 2.20. O
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