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Abstract. We prove the Arad–Herzog conjecture for various families of finite simple
groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class.
We also prove that if G is a finite simple group of Lie type and A and B are nontrivial
conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy
class. We also prove a strong version of the Arad–Herzog conjecture for simple algebraic
groups and in particular show that almost always the product of two conjugacy classes in
a simple algebraic group consists of infinitely many conjugacy classes. As a consequence
we obtain a complete classification of pairs of centralizers in a simple algebraic group
which have dense product. A special case of this has been used by Prasad to prove
a uniqueness result for Tits systems in pseudo-reductive groups. Our final result is a
generalization of the Baer-Suzuki theorem for p-elements with p ≥ 5.

1. Introduction

In [2, p. 3], Arad and Herzog made the following conjecture:

Conjecture A (Arad–Herzog). If S is a finite non-abelian simple group and A and B
are nontrivial conjugacy classes of S, then AB is not a conjugacy class.

In this paper, we prove this conjecture in various cases. We also consider the analogous
problem for simple algebraic groups. Note that the results do not depend on the isogeny
class of the group (allowing the possibility of multiplying a class by a central element)
and so we work with whatever form is more convenient. Moreover, in characteristic 2, we
ignore the groups of type B (the result can be read off from the groups of type C).

Here one can prove much more:

Theorem 1.1. Let G be a simple algebraic group over an algebraically closed field of
characteristic p ≥ 0. Let A and B be non-central conjugacy classes of G. Then AB can
never constitute a single conjugacy class. In fact, either AB is the union of infinitely
many conjugacy classes, or (up to interchanging A and B and up to an isogeny for G)
one of the following holds:
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(1) G = G2, A consists of long root elements and B consists of elements of order 3. If
p = 3, B consists of short root elements and if p 6= 3, B consists of elements with
centralizer isomorphic to SL3.

(2) G = F4, A consists of long root elements and B consists of involutions. If p = 2, B
consists of short root elements and if p 6= 2, B consists of involutions with centralizer
isomorphic to B4.

(3) G = Sp2n = Sp(V ), n ≥ 2, ±A consists of long root elements and B consists of
involutions; when p = 2 then the involutions b ∈ B moreover satisfy (bv, v) = 0 for
all v ∈ V .

(4) G = SO2n+1, n ≥ 2, p 6= 2, A consists of elements which are the negative of a reflection
and B consists of unipotent elements with all Jordan blocks of size at most 2.

The methods rely heavily on closure of unipotent classes. In particular, this gives a
short proof for simple algebraic groups of what is referred to as Szep’s conjecture for the
finite simple groups (proved in [8]) — a finite simple group is not the product of two
subgroups with nontrivial centers.

Corollary 1.2. Let G be a simple algebraic group over an algebraically closed field of
characteristic p ≥ 0. Let a, b be non-central elements of G. Then G 6= CG(a)CG(b).

Indeed, we see that CG(a)CG(b) is rarely dense in G (it only happens in the exceptional
cases in Theorem 1.1) — see Corollary 5.13. In particular, we give a very short proof of:

Corollary 1.3. If G is a simple algebraic group and x is a non-central element of G,
then for any g ∈ G, CG(x)gCG(x) is not dense in G. In particular, |CG(x)\G/CG(x)| is
infinite.

This was proved independently for unipotent elements by Liebeck and Seitz [25, Chap-
ter 1]. The previous result was used by Prasad [35, Thm. B] to show that any Tits system
for a pseudo-reductive group satisfying some natural conditions is a standard Tits system
(see [35] for more details).

Conjecture A is open only for the simple groups of Lie type, where it was known to be
true for certain families (cf. [34]), but not for any family of arbitrary rank and field size.
Our idea is to show that we can find a small set of irreducible characters Γ of S so that
for any pair of nontrivial classes A,B ⊂ S there is χ ∈ Γ which is not constant on AB
(and so obviously AB is not a conjugacy class).

For An and Sn, the conjecture was proved by Fisman and Arad [8, 3.1]; see also Adan-
Bante and Verrill [1]. In Section 2 we give a very short proof of the slightly stronger
result:

Theorem 1.4. Let H := An and G := Sn with n ≥ 5. For nontrivial elements a, b ∈ G,
set A := aH and B := bH . For g ∈ G, let f(g) denote the number of fixed points of g in
the natural permutation representation of G. Then f is not constant on AB.

Similarly, we show:

Theorem 1.5. Let S = Ld(q) = L(V ) be simple. Let f(g) be the number of fixed one-
spaces of g ∈ S on V . If A and B are nontrivial conjugacy classes of S, then f is not
constant on AB (in particular, AB is not a conjugacy class).
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As noted above this is the first family of groups of Lie type including both unbounded
rank and field size for which the conjecture is now established.

For arbitrary groups of Lie type using Lemma 2.2, the fact that the Steinberg character
is nonzero on semisimple elements only and the result that the product of centralizers of
two non-central semisimple elements in a simple algebraic group is not dense (cf. Corollary
5.13), we can show:

Theorem 1.6. Let G be a finite simple group of Lie type, and let St denote the Steinberg
character of G. If a, b ∈ G\{1} are semisimple elements, then St is not constant on aGbG.

This implies immediately:

Corollary 1.7. Let G be a finite simple group of Lie type and a, b, c ∈ G \ {1} such that
aGbG = cG. Then neither c is semisimple, nor are both a, b.

Using Deligne–Lusztig theory, we can similarly show:

Theorem 1.8. Let G be a finite simple group of Lie type and a, b, c ∈ G \ {1} such that
aGbG = cG. Then c is not unipotent and so neither are both a and b.

Recall that the Baer–Suzuki theorem states that if G is a finite group, p a prime and
x ∈ G is such that 〈x, xg〉 is a p-group for all g ∈ G, then the normal closure of x in G is
a p-group. One step in the proof of Theorem 1.8 is an analog of Theorem 1.1 for pairs of
p-elements of finite groups. This leads to a generalization of the Baer–Suzuki theorem (for
primes at least 5) by considering two possibly distinct conjugacy classes of p-elements.

Theorem 1.9. Let G be a finite group, p ≥ 5 prime, and let C and D be normal subsets
of G with H := 〈C〉 = 〈D〉. Suppose that for every pair (c, d) ∈ C×D, 〈c, d〉 is a p-group.
Then H is a p-group.

The Baer–Suzuki theorem (for p-elements with p ≥ 5) is the special case C = D.
Example 7.3 shows that we cannot drop the assumption that 〈C〉 = 〈D〉. The examples
in Section 6 show that we must also require that p ≥ 5.

See Theorems 8.4 and 8.8 for other variants.

This paper is organized as follows. In Section 2 we write down a variant of the character-
theoretic condition for a product of conjugacy classes to be a conjugacy class in a finite
group, and then use it to give short proofs of Conjecture A for An and Ld(q). In Sections 3
and 4, we show that the conjecture holds for low rank classical and exceptional groups,
and prove Theorems 1.6 and 1.8.

In Section 5, we consider algebraic groups and prove Theorem 1.1. We also establish
Corollary 1.2, and classify in Corollary 5.13 the cases when products of centralizers in
a simple algebraic group over an algebraically closed field are dense. We then discuss
in Section 6 the special cases listed in Theorem 1.1 in detail. These two sections are
essentially independent of the rest of the paper (only Corollary 5.13 is used to prove
Theorem 1.6 for the finite groups of Lie type).

In the next section, we use our results on semisimple elements to give a relatively quick
proof of Szep’s conjecture and also provide some examples which show that the simplicity
hypothesis in both Conjecture A and Szep’s conjecture cannot be weakened much.

In the last section, we prove variants of Theorem 1.9.
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In order to prove Conjecture A for the remaining open cases, one will have to work
much harder. The short proofs for the alternating groups and linear groups used the fact
that the groups had doubly transitive permutation representations (however, the proof
does not work for all doubly transitive simple groups). There are a few other special cases
where the existence of a special character makes the proofs relatively straightforward.
The conjecture can be checked easily for the finite groups of Lie type of small rank using
Chevie. In a sequel, employing more sophisticated tools from the representation theory of
finite groups of Lie type, we hope to establish Conjecture A. We have proved the result
for several families of classical groups – in particular the conjecture holds for symplectic
groups (at this point the proof of this case is roughly 40 pages long). The methods here
depend upon proving some new results about character values for these groups.

Remark 1.10. A dual problem to considering products of conjugacy classes would be to
consider tensor products of irreducible representations. See [3, 4, 28, 29, 41] for some
partial results.

Acknowledgements: It is a pleasure to thank Ross Lawther for writing his interesting
paper [23] at our request and also for allowing us to include his result, Lemma 4.5. We
also thank Tim Burness and Gopal Prasad for some helpful comments.

2. Sn, An, and Projective Linear Groups

We start by proving Theorem 1.4 which we restate below:

Theorem 2.1. Let a, b ∈ Sn\{1} with n ≥ 5 and set A := aAn and B := bAn. For g ∈ Sn,
let f(g) be the number of fixed points of g in the natural permutation representation. Then
f is not constant on AB.

The proof uses the following easy lemma.

Lemma 2.2. Let G be a finite group with H a subgroup of G. Let a, b ∈ G and set c = ab,
A = aH and B = bH . Let V be an irreducible CG-module that remains irreducible for H.
If χ is the character of V and χ is constant on AB, then χ(a)χ(b) = χ(c)χ(1).

Proof. For X ⊆ G, let θ(X) =
∑

x∈X x ∈ ZG. Write θ(A)θ(B) =
∑
eiθ(Ci) where Ci are

the H-orbits of elements in AB. Let ρ : G→ GL(V ) denote the representation of G on
V . Since H acts irreducibly on V , it follows that if D = dH for some d ∈ G, then ρ(θ(D))
acts as a scalar on V . Computing traces, we see that the scalar is given by

|D|χ(d)

χ(1)
.

Thus,
|A||B|χ(a)χ(b)

χ(1)2
= (

∑
i

ei|Ci|)
χ(c)

χ(1)
.

Since |A||B| =
∑
ei|Ci|, the result follows. �

Proof of Theorem 1.4. For n = 5, one checks directly. So assume the theorem is false for
some n > 5. Let a ∈ A, b ∈ B and c ∈ AB. Note that χ := f − 1 is an irreducible
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character of both Sn and An. If a and b each have a fixed point, then the result follows
by induction.

So we may assume that f(a) = 0, i.e., χ(a) = −1. Since χ(a)χ(b) = (n − 1)χ(c)
by Lemma 2.2, χ(c) 6= 0 implies that b = 1, a contradiction. So χ(b) = 0 = χ(c). In
particular, c has a unique fixed point.

Suppose that neither a nor b is an involution. Then a and b both contain cycles of
length at least r ≥ 3. We can then replace b by a conjugate so that ab has at least
r − 1 ≥ 2 fixed points, a contradiction.

Suppose that either b has a cycle of length 4 or at least 2 nontrivial cycles. Thus,
arguing as above, if a is not an involution (in the first case) or of order 2 or 3 (in the
second case), we can arrange for ab to have at least 2 fixed points, a contradiction.

If a is a a fixed point free involution, we can reduce to the case that b is an n−1-cycle on
n points. Then ab can be an n-cycle or can have fixed points, a contradiction. Similarly if
a is fixed point free of order three, we can reduce to the case b is an n−1-cycle on n points.
Again, we can arrange for ab either to have fixed points or not, a contradiction. �

We next consider Ld(q). We first note a much stronger result for d = 2.

Lemma 2.3. Let a, b ∈ GL2(q), q > 3 with a, b both non-central. Set A = aH and B = bH

where H = SL2(q).

(a) There exist (ui, vi) ∈ A×B, i = 1, 2 such that u1v1 fixes a line and u2v2 does not.
(b) If a and b are semisimple elements with an eigenvalue in Fq, then |{tr(uv) | (u, v) ∈

A×B}| = q.

Proof. This is a straightforward computation. See also Macbeath [27]. �

For the rest of this section, we fix a prime power q. Let S = Ld(q) ≤ H ≤ G = PGLd(q)
with d ≥ 3. Let V be the natural module for the lift of G to GLd(q). Let f(g) denote
the number of fixed 1-spaces of an element g ∈ G. Let χ = f − 1 and note that χ is an
irreducible character of G (and S).

Lemma 2.4. Let a, b be nontrivial elements of G and set A = aH , B = bH and c = ab.
If f is constant on AB, then f(a), f(b), and f(c) are each at least 2.

Proof. Lift a and b to elements in GLd(q) = GL(V ) (we abuse notation and still denote
them by a and b). Note that |χ(g)| ≥ 1 if χ(g) 6= 0.

If f(a) = 0, then −χ(b) = χ(1)χ(c) by Lemma 2.2, whence χ(c) = χ(b) = 0 and so
each of b and c fixes a unique line. Similarly, if f(a) = 1, then χ(a) = 0, whence χ(c) = 0
and so a and c each fix a unique line. So we may assume that a and c each fix a unique
line (interchanging a and b if necessary).

By scaling we may assume that the unique eigenvalue of a in Fq is 1. Note that if both
a and b have cyclic submodules of dimension at least 3, then there are u ∈ A and v ∈ B
with uv fixing at least two lines. (Indeed, let e1, e2, e3 be part of a basis. Then we can
choose u sending ei to ei+1 for i = 1, 2 and v sending 〈ei〉Fq to 〈ei−1〉Fq for i = 2, 3.) Then
f(uv) > 1 = f(c), a contradiction.

So one of a or b has a quadratic minimal polynomial. Note that a cannot have a
quadratic minimal polynomial, since its minimal polynomial has a linear factor and it
fixes a unique line. So b has a quadratic minimal polynomial. Note that as long as
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d > 3, a will either contain a 4-dimensional cyclic submodule or a direct sum of two cyclic
submodules of dimension at least 2. Thus, if b has a 4-dimensional submodule that is a
direct sum of two 2-dimensional cyclic modules, as above we can arrange that there are
conjugates u, v with f(uv) > 1. So b has no submodule that is the direct sum of two
cyclic submodules of dimension 2. This forces b to be (up to scaling) either a transvection
or a pseudoreflection for d > 3. The same is true for d = 3.

So assume that this is the case. Suppose that a is not unipotent. Write a = a1 ⊕ a2

where a1 is a single Jordan block and a2 fixes no lines. Conjugate b so that we may write
b = b1⊕ b2 where b2 is not a scalar and b1 is 1 (and ai has the same size as bi). Then since
b2 has a 2 dimensional cyclic submodule as does a2, we can arrange that a2b2 fixes a line.
Thus, f(ab) > 1, a contradiction.

So we may assume that a is a single Jordan block. If b is a transvection, then we can
conjugate such that ab is a unipotent element with 2 blocks, a contradiction.

The remaining case is where a is a single Jordan block and b is a pseudoreflection.
So we may assume that a is upper triangular and b is diagonal. Then ab will have two
distinct eigenvalues in Fq, whence f(ab) > 1, a contradiction. �

We now prove the main result of this section.

Theorem 2.5. Let H = Ld(q) ≤ G = PGLd(q) with d ≥ 3. If a, b are nontrivial elements
of G, then f is not constant on aHbH .

Proof. Let m(a) and m(b) denote the dimensions of the largest eigenspaces (with eigen-
value in Fq) for a and b, respectively. Assume that m(a) ≥ m(b), and set c := ab.

If f is constant on aHbH , then χ(a)χ(b) = χ(1)χ(c). We know that χ(a), χ(b) and χ(c)
are all positive by the previous lemma.

Note that m(c) ≥ m(b) (since we can conjugate and assume that the largest eigenspace
of b is contained in that of a). Note also that χ(a) ≤ qd−2 + . . .+1 (with equality precisely
when a is essentially a pseudoreflection). Thus, χ(a) ≤ χ(1)/q.

First assume that m(b) > 1. Then χ(b) < qm(b)−1 and χ(c) ≥ qm(b)−1+. . .+q > χ(b)/q,
whence χ(a)χ(b) < χ(1)χ(c), a contradiction. If m(b) = 1, then χ(b) ≤ q−1 and χ(c) ≥ 1
(by the previous lemma) and we have the same contradiction. �

3. Classical and low rank exceptional type groups

We first prove the Arad–Herzog conjecture for some low rank classical groups.

Proposition 3.1. Conjecture A holds for Un(q) with 3 ≤ n ≤ 6, (n, q) 6= (3, 2).

Proof. The values of the unipotent characters of GUn(q), 3 ≤ n ≤ 6, are contained in
Chevie [9]. Now unipotent characters restrict irreducibly to the derived group SUn(q),
and are trivial on the center, so can be regarded as characters of the simple group Un(q).
It turns out that for a, b, c ∈ GUn(q) non-central the equation χ(a)χ(b) = χ(1)χ(c) is
only satisfied for all unipotent χ ∈ Irr(GUn(q)) when either c is regular unipotent, or a is
unipotent with one Jordan block of size n− 1, b is semisimple with centralizer GUn−1(q)
(in Un(q)) and c = xy is a commuting product with x conjugate to a and y conjugate to
b. In particular, in the latter case all three classes have representatives in GUn−1(q), and
it is straightforward to see that the product hits more than one class. The situation of
the former case is ruled out by Theorem 1.8 (which does not rely on this result). �
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Proposition 3.2. Conjecture A holds for S4(q), S6(q), O+
8 (q) and O−

8 (q).

Proof. The values of the unipotent characters of the conformal symplectic group CSp2n(q),
n = 2, 3, of the conformal spin group CSpin+

8 (q) and of a group of type 2D4(q) are
available in [9]. As before, unipotent characters restrict irreducibly to the derived group
and are trivial on the center, so can be regarded as characters of the simple group S2n(q)
respectively O±

8 (q). Again, for given non-central elements a, b, c the equation χ(a)χ(b) =
χ(1)χ(c) fails for at least one unipotent character χ, unless either c is regular unipotent,
which by Theorem 1.8 does not give rise to an example, or n = 2, q is odd and one of a,
b is an element with centralizer SL2(q

2). But Sp4(q) does not contain such elements. �

Unfortunately, Chevie does not contain the unipotent characters of any group related
to O7(q).

Next we prove the Arad-Herzog conjecture for the low rank exceptional type groups.

Proposition 3.3. Conjecture A holds for the groups
2B2(2

2f+1) (f ≥ 1), 2G2(3
2f+1) (f ≥ 1), G2(q) (q ≥ 3), 3D4(q),

2F4(2
2f+1) (f ≥ 1).

Proof. The generic character tables of all of the above groups G are available in the Chevie
system [9], respectively, the values of all unipotent characters in the case of 2F4(2

2f+1). It
can be checked easily that the equation χ(a)χ(b) = χ(c)χ(1) is not satisfied simultaneously
for all unipotent characters χ of G, for any choice of a, b, c 6= 1; except when

(1) G = 2G2(q
2) with b, c of order dividing q2 − 1;

(2) G = G2(q), gcd(q, 6) = 1, with b, c regular unipotent; or
(3) G = 3D4(q), q odd, with b, c regular unipotent.

In the latter three cases, the required equality fails on some of the two, respectively four,
irreducible characters lying in Lusztig series parametrized by an involution in the dual
group. �

In fact, one does not even need all the characters mentioned in the above proof: in all
cases just four of them will do. We also note that the cases of L3(q), U3(q),

2G2(q) and
S4(q) are handled in [34] using available character tables but somewhat more elaborate
arguments.

In the next three results, by a finite classical group we mean any non-solvable group
of the form SL(V ), SU(V ), Sp(V ), or SO(V ), where V is a finite vector space. First we
note (see also [23]):

Lemma 3.4. Let G be a finite classical group with natural module V of dimension d over
the finite field Fq. Assume that G has rank at least 2 and that dimV ≥ 6 if G is an
orthogonal group. Let x ∈ G be a nontrivial unipotent element of G.

(a) Let P be the stabilizer of a singular 1-space with Q the unipotent radical of P . If
xG ∩ P ⊆ Q, then either G = Sp4(q) with q even and x is a short root element, or
G = SU4(q).

(b) If d = 2m and either G = Spd(q) with q even or G = SUd(q), and P is the stabilizer of
a maximal totally isotropic subspace with Q the unipotent radical of P and xG∩P ⊆ Q,
then x is a long root element.
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Proof. Consider (a). By assumption x is conjugate to an element of Q. If G = SLd(q), this
forces x to be a transvection and the result is clear. Otherwise, we have dim(x−1)V ≤ 2.

If d ≤ 4, this is a straightforward computation (in particular, for q even, all short root
elements in P are contained in Q).

If d > 4, then x will act trivially on a nondegenerate space. Thus, if G = SUd(q), it
suffices to show the claim for d = 5, 6 and this is a straightforward computation. In all
other cases, it follows by the results for d ≤ 4 noting that if x is a short root element,
then clearly x is conjugate to an element in a Levi subgroup of P .

Now consider (b) with G = Spd(q). Again, we may assume that x ∈ Q and x is not a
transvection. We can identify Q with the set of symmetric matrices of size m. Since x is
not a transvection, x corresponds to a symmetric matrix of rank at least 2. If x corresponds
to a skew symmetric matrix, then we see that V = V1 ⊥ V2 where V1 is 4-dimensional and
x is a short root element on V1 and the result follows by induction. If x does not correspond
to a skew symmetric matrix, we may conjugate x so that it corresponds to a diagonal
matrix of rank at least 2, whence we see that V = V1 ⊥ V2 where V1 is 4-dimensional
and x has two Jordan blocks on V1 each nondegenerate. A straightforward computation
shows that x stabilizes and acts nontrivially on a 2-dimensional totally singular subspace
of V1 and so also on V .

If G = SUd(q), we can identify Q with Hermitian m×m matrices and every element of
Q is conjugate to a diagonal element. Since g ∈ Q is nontrivial and not a transvection, it
corresponds to an element of rank at least 2 in Q and a straightforward computation in
SU4 gives the result. �

We can use this to prove the following result about pairs of unipotent elements in
classical groups.

Theorem 3.5. Let G be a finite classical group with natural module V of dimension d ≥ 2
over the finite field Fq. Let x, y ∈ G be nontrivial unipotent elements of G. Then one of
the following holds:

(1) xGyG does not consist of unipotent elements; or
(2) G = Spd(q) = Sp(V ), d ≥ 4, with q even and (up to order) x is a long root element

and y is an involution such that (yv, v) = 0 for all v ∈ V .

Proof. For the moment exclude the case that G = Spd(q), d ≥ 4, with q even or G =
SUd(q) with d ≥ 4 even. Let P be the stabilizer of a singular 1-space. By (a) of the
previous result and induction, we are reduced to considering G = SL2(q) and G = SU3(q).
We can then apply Lemma 2.3 (and just compute to see that this is still true for q ≤ 3)
and similarly for SU3(q).

Next consider G = Spd(q) with q even. Suppose that neither x nor y is a long root
element. By applying (b) of the previous lemma, we are reduced to the case of SLm(q)
where d = 2m. If x and y are both long root elements, the result is clear (even for q = 2)
by reducing to the case of SL2. So we may assume that x is a long root element and that
y is either not an involution or (yv, v) 6= 0 for some v ∈ V . Indeed, in either case there
exists v ∈ V with (yv, v) 6= 0. By replacing x by a conjugate, we may assume that x leaves
W := 〈v, yv〉 invariant and acts nontrivially. Writing V = W ⊕W⊥ and conjugating x on
W as necessary, it is an easy linear algebra computation to see that we can arrange for
tr(xy) 6= d, whence xy is not unipotent.
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Finally, consider G = SUd(q) with d even. If d = 2, then the result follows by the case
of SL2(q). By applying (b) of the previous lemma, we see that we may assume that x is
a long root element. By applying (a) of the previous lemma, we are reduced to the case
of SU4(q) and a straightforward computation completes the proof. �

Note that, by choosing x, y in the same Sylow subgroup of G, we see that xGyG always
contains unipotent elements. Furthermore, in (2) above, xGyG will in fact consist of
unipotent elements (since y acts trivially on a maximal totally singular space, we see that
x and y always act trivially on a common totally singular space U of dimension d/2− 1
and y will act trivially on the two-dimensional space U⊥/U , whence xy is unipotent). On
the other hand, it is also straightforward to compute that xy can be an involution or an
element of order 4, whence xGyG is not a single conjugacy class. Thus:

Corollary 3.6. Let G be a finite classical group with natural module V of dimension
d ≥ 2 over the finite field Fq. Let H be the derived subgroup of G/Z(G). Let x, y ∈ H be
nontrivial unipotent elements of H. Then xHyH is not a single conjugacy class of H.

4. Semisimple and unipotent classes

In this section we prove Theorem 1.6 (assuming a result on algebraic groups, Corollary
5.13, which is independent of this section), and complete the proof of Theorem 1.8.

First we set up some notation. Throughout this section, let G be a connected reductive
algebraic group in characteristic p > 0 and F : G → G a Steinberg endomorphism of G,
with (finite) group of fixed points G := GF . Note that if G is simple of adjoint type then
S = Op′(G) is almost always simple. We may abuse notation and write G = G(q) where
q is the power of p (always integral unless G is a Suzuki or Ree group; in the latter case
we write G(q2) instead) such that F acts as qφ on the character group of an F -stable
maximal torus of G, with φ of finite order. Note that if a ∈ G is semisimple, then aG = aS

(see [36, 2.12]).

4.1. Proof of Theorem 1.6. Theorem 1.6 follows from the following, slightly more
general result:

Proposition 4.1. Let S ≤ H ≤ G. Let a, b ∈ H be nontrivial semisimple elements.
Then the Steinberg character is not constant on aSbS. In particular, aHbH 6= cH for any
c ∈ H.

Proof. Let St denote the Steinberg character of G. Note that St restricts irreducibly to
S unless G = 2G2(3), G2(2), Sp4(2) or 2F4(2). In those cases, one can verify the result
directly (in the last case, we could use the two “half-Steinberg” representations). Note
that if g ∈ G, then

St(g) =

{
±|CG(g)|p = ±qm(g) if g is semisimple,

0 else,

where m(g) is the dimension of a maximal unipotent subgroup of CG(g) (see for example
[7, Thm. 6.4.7]). In particular, St(1) = qN where N is the number of positive roots of G.



10 ROBERT GURALNICK, GUNTER MALLE, AND PHAM HUU TIEP

Suppose that a and b are nontrivial semisimple elements and St is constant on aHbH .
Then St(a)St(b) = St(c)St(1) for c := ab, by Lemma 2.2. In particular, St(c) 6= 0, whence
c is also semisimple. This in turn implies that m(a) +m(b) = m(c) +N .

Since CG(a) is reductive and contains a maximal torus of G, we see that dimCG(a) =
2m(a) + r where r is the rank of G (and similarly for b and c). Thus,

dimCG(a) + dimCG(b) = 2(m(a) +m(b)) + 2r = 2r + 2m(c) + 2N

= (r + 2N) + (r + 2m(c)) = dimG + dimCG(c).

Let f : CG(a)×CG(b) → G be the multiplication map. Note that each fiber has dimension
equal to dim(CG(a) ∩ CG(b)) which is at most dimCG(c) as c = ab. It follows that

dimCG(a)CG(b) = dimCG(a) + dimCG(b)− dim(CG(a) ∩ CG(b))

≥ dimCG(a) + dimCG(b)− dimCG(c) = dimG.

Thus, CG(a)CG(b) is dense in G. By Corollary 5.13 (below) this cannot occur, so St
cannot be constant on aSbS. �

4.2. Proof of Theorem 1.8. For any F -stable maximal torus T of G and any θ ∈
Irr(TF ), Deligne and Lusztig defined a generalized character RG

T,θ of G = GF . Its restric-

tion QG
T := RG

T,θ|Gu to the set Gu of unipotent elements of G is independent of θ, rational
valued, and called the Green function corresponding to T (see for instance [7, §§7.2, 7.6]).

The following is an easy consequence of Deligne–Lusztig’s character formula for RG
T,θ:

Proposition 4.2. Let G, F be as above. Let x ∈ G, with Jordan decomposition x = su,
where s ∈ G is semisimple, u is unipotent. Let T ≤ G be an F -stable maximal torus with
s /∈ Tg for all g ∈ G. Then RG

T,θ(x) = 0 for any θ ∈ Irr(TF ).

Proof. By [7, Thm. 7.2.8] we have

RG
T,θ(x) =

1

|CF |
∑

g∈G : sg∈TF

θ(sg)QC
gT(u),

where C = C◦
G(s). Clearly, this shows that RG

T,θ(x) = 0 unless s ∈ gTF for some
g ∈ G. �

Now assume that S = G/Z(G) is a finite simple group (which usually happens when
G is simple of simply connected type).

Proposition 4.3. In the above setting, let c ∈ S be unipotent and suppose that there are
a, b ∈ S with aSbS = cS. Then for any F -stable maximal torus T ≤ G such that T = TF

has a character θ in general position with θ|Z(G) = 1 we have:

(a) the semisimple parts as, bs of a, b are conjugate to elements of T , and
(b) |CG(a)| |CG(b)| ≥ |G : T |2p′.

Proof. As θ is in general position, RG
T,θ is an irreducible character of G up to sign, say χ,

by [7, Cor. 7.3.5]. Since θ|Z(G) = 1 we also have χ|Z(G) = 1 by the character formula [7,
Thm. 7.2.8], so χ can be considered as an irreducible character of S = G/Z(G). Moreover,
since QG

T is rational valued we have

RG
T,θ(c) = QG

T (c) ≡ QG
T (1) = RG

T,θ(1) = ±|G : T |p′ ≡ ±1 (mod p).
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(Here, the first congruence holds for any generalized character of the cyclic p-group 〈c〉,
and the second congruence holds since it is true for cyclotomic polynomials in q.) In
particular, χ(c) is a nonzero integer. Thus, by Lemma 2.2, we also have χ(a)χ(b) =
χ(1)χ(c) 6= 0. By Proposition 4.2 this gives (a), and moreover

|CG(a)| · |CG(b)| ≥ |χ(a)|2 · |χ(b)|2 ≥ χ(1)2 = |G : T |2p′ .
�

Proposition 4.4. Let S be a simple group of Lie type, and a, b, c ∈ S \ {1} such that
aSbS = cS. Then c is unipotent if and only if both a and b are.

Proof. Let G be a simple, simply connected algebraic group over an algebraic closure of
Fp and F : G → G a Steinberg endomorphism whose group of fixed points G = GF

satisfies S = G/Z(G). This is possible unless S = 2F4(2)′, for which the claim is easily
checked directly. If S is of exceptional type and twisted Lie rank at most 2, the claim
has already been proved in Proposition 3.3. For all other types we have given in Tables 1
and 2 two maximal tori of G (see [31, Tables 5.2 and 5.8]), with the following properties:
in the exceptional types always, and in the classical types whenever the corresponding
Zsigmondy primes `i exist, the dual tori contain regular elements of order this Zsigmondy
prime (by [31, Lemmas 5.3 and 5.9]) and with connected centralizer in the dual group.
Note that `i is coprime to |Z(G)|, so both tori have characters θi in general position with
the center in their kernel.

Now let ã, b̃ be preimages of a, b respectively in G. Assume that c̃ ∈ G is unipotent,
with image c in S. Then Proposition 4.3 applies to say that ãs is conjugate to elements of
both T1, T2. But in all cases the intersection of T1 with any conjugate of T2 lies in Z(G),
so a is unipotent, and similarly for b.

We now consider the classical groups for which not both Zsigmondy primes exist. The
groups L2(q), L3(q), L6(2), L7(2) are handled in Lemma 2.3 and Theorem 2.5. For the
unitary groups U3(q) and the symplectic groups S4(q) as well as for the groups U6(2),
S6(2), O+

8 (2), O−
8 (2), the claim follows by Propositions 3.1 and 3.2 while for the groups

U7(2), S8(2) it can be checked directly using the character tables in GAP.
Conversely, if a, b are unipotent then without loss they lie in a common Sylow p-

subgroup of S, and hence so does c, whence it is unipotent. �

Table 1. Two tori and Zsigmondy primes in exceptional groups

G |T1| |T2| `1 `2
F4(q) Φ8 Φ12 l(8) l(12)
E6(q) Φ9 Φ1Φ2Φ8 l(9) l(8)
2E6(q) Φ18 Φ1Φ2Φ8 l(18) l(8)
E7(q) Φ2Φ18 Φ1Φ7 l(18) l(7)
E8(q) Φ30 Φ24 l(30) l(24)

Together with Corollary 3.6 this establishes Theorem 1.8 for classical groups. To com-
plete the proof of Theorem 1.8 for exceptional groups, we need the following result of
Lawther:
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Table 2. Two tori and Zsigmondy primes in classical groups

G |T1| |T2| `1 `2
An (qn+1 − 1)/(q − 1) qn − 1 l(n+ 1) l(n)
2An (n ≥ 2 even) (qn+1 + 1)/(q + 1) qn − 1 l(2n+ 2) l(n)
2An (n ≥ 3 odd) (qn+1 − 1)/(q + 1) qn + 1 l(n+ 1) l(2n)

Bn, Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) l(2n) l(2n− 2)
Bn, Cn (n ≥ 3 odd) qn + 1 qn − 1 l(2n) l(n)

Dn (n ≥ 4 even) (qn−1 − 1)(q − 1) (qn−1 + 1)(q + 1) l(n− 1) l(2n− 2)
Dn (n ≥ 5 odd) qn − 1 (qn−1 + 1)(q + 1) l(n) l(2n− 2)
2Dn (n ≥ 4) qn + 1 (qn−1 + 1)(q − 1) l(2n) l(2n− 2)

Lemma 4.5 (Lawther). Let G = F4(q) with q even. Let P = QL be a maximal end
node parabolic with unipotent radical Q and Levi subgroup L ∼= C3(q)T1. If u ∈ G is a
nontrivial unipotent element such that uG ∩ P ⊂ sQ ∪ Q where s is a long root element
in L, then u is a long root element.

Proof. The proof is a case by case analysis. Write roots in F4 as linear combinations of
simple roots, so that for example the highest root is denoted 2342. Write wi for the Weyl
group reflection corresponding to the ith simple root.

Let us say that if x is a product of positive root elements, at least one of whose roots is
in {0010, 0001, 0011}, then x has property (*). Observe that if x has property (*), then x
mod Q is neither the identity nor a long root element of L. Now note that Shinoda [37,
p. 130] has listed unipotent class representatives x0, x1, . . . , x34 of G. Recall that x0 = 1
and x2 is a long root element. Thus it suffices to observe that for i = 1, 3, 4, . . . , 34 there
is a gi ∈ G so that g−1

i xigi ∈ P has property (*).
If i = 1, 3, 4, take gi = w4w3w2w1w3w2. If 5 ≤ i ≤ 16, take gi = w1w2. If 19 ≤ i ≤ 21,

take gi = w2. In the remaining cases, xiQ is neither trivial nor a long root element. The
result follows. �

Now we can use our methods together with another result of Lawther [23] to obtain
the following:

Theorem 4.6. Let G be a finite simple group of Lie type in characteristic p. Let u,w be
nontrivial unipotent elements of G. Then uGwG is not a single conjugacy class. If uwg is
unipotent for all g ∈ G, then p ≤ 3 and (up to order) one the following holds:

(1) G = Sp2n(q), p = 2, u is a long root element and w is an involution (which satisfies
(wv, v) = 0 for all v ∈ V , the natural module);

(2) G = F4(q), p = 2, u is a long root element and w is a short root element; or
(3) G = G2(q), p = 3, u is a long root element and w is a short root element.

Proof. If G is classical, this follows by Theorem 3.5. If G = 2G2(q
2), 2B2(q

2), 2F4(q
2)′ or

3D4(q), the result follows by a computation using Chevie. If G = En(q), then by [19, §2],
we can assume that u,w are in an end node parabolic subgroup and not in its radical.
The result now follows by induction (since none of the exceptions occur in the inductive
step). If G = 2E6(q), then by Lawther [23], the same argument applies.
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Suppose that G = G2(q). If q = 2, one computes directly. Let Pi, i = 1, 2 denote
the two maximal parabolic subgroups containing a fixed Borel subgroup. Let Qi be the
unipotent radical of Pi. If p 6= 3 and q > 2, it follows by [23] that any unipotent element
is conjugate to an element of P1 \ Q1 and so the result follows by the result for A1. If
p = 3, then also by [23] unless u is a long root element and w is a short root element (or
vice versa), u,w are conjugate to elements in Pi \Qi for i = 1 or 2 and the result follows
by the case of A1. Alternatively, one can compute using Chevie.

It remains to consider G = F4(q). Let P be a maximal parabolic subgroup with Levi
subgroup of type B3(q). By [23], we may assume that u,w are in P and not in the radical
Q of P . Arguing as above, we may reduce to the case of B3(q), whence the result for q
odd. If q is even, the same argument shows that the result holds unless (up to order),
uG ∩P ⊂ Q∪xQ where x is a long root element and wG ∩P ⊂ Q∪ yQ where y is a short
root element. Now Lemma 4.5 forces u to be a long root element. Now replace u and w
by their images u′ and w′ under the graph automorphism. So u′ is a short root element.
As above, this forces w′ to be a long root element, whence w is a short root element.

We now show that uGwG is not a single conjugacy class. If so, then uwg is conjugate
to uw for all g. Of course, uwg may be unipotent. So the result is clear aside from the
three special cases above. In (1), it is straightforward to observe that uwg may have order
either 2 or 4. Consider (2). Since we can choose u,wg ∈ H ≤ F4 with H ∼= Sp4(q),
the result holds. Finally, in (3), it is straightforward to see that uwg can be a regular
unipotent element (and so of order 9). On the other hand, u and w are both conjugate to
central elements in a Sylow 3-subgroup, whence uwg can also be a 3-central element (of
order 3). This completes the proof. �

In fact, we will see (in Examples 6.1, 6.3, and 6.6) that in all the exceptional cases
in the previous result, 〈u,wg〉 is unipotent for all g (even in the corresponding algebraic
group).

Lawther [23] proves much more than we require for the proof of Theorem 4.6. He
determines all pairs of conjugacy classes C of unipotent elements and maximal parabolic
subgroups P of a finite simple group of Lie type such that C ∩ P is contained in the
unipotent radical of P .

Now Theorem 1.8 immediately follows from Proposition 4.4 and Theorem 4.6.

4.3. Some permutation characters. We now prove some results on certain permuta-
tion characters for G2(q) and F4(q) that we will need for our results on algebraic groups.

Lemma 4.7. Let G = G2(q) with (q, 3) = 1. Let a be a long root element and b an element
of order 3 with centralizer SL3(q) or SU3(q) (depending upon whether q ≡ 1 (mod 3) or
not). Let C = CG(a) and D = CG(b). Then the scalar product [1GC , 1

G
D] equals 2. Moreover,

if q ≡ 1 (mod 3), then 〈a, b〉 is contained in a Borel subgroup of G.

Proof. We give the proof for q ≡ 1 (mod 3). Essentially the identical proof works in the
other case. Moreover, for our application to algebraic groups, this case is sufficient.

Note that [1GC , 1
G
D] = |C\G/D| or equivalently the number of orbits of G on Γ := aG×bG

(acting by simultaneous conjugation).
We will produce two distinct G-orbits on Γ and show that the number of elements in

the union of these orbits is |Γ|, whence the result.



14 ROBERT GURALNICK, GUNTER MALLE, AND PHAM HUU TIEP

The first orbit consists of the commuting pairs in Γ. We can conjugate and assume
that the second element is b and so a must be a long root elements in D. We thus see
that this is a single orbit of size q3(q3 + 1)(q + 1)(q3 − 1).

Using Chevie, we see that we may choose (c, d) ∈ Γ such that cd is conjugate to bu with
u a regular unipotent element in D. Thus, CG(c) ∩ CG(d) is isomorphic to a subgroup of
CD(u) which has order 3q2. We claim that CG(c) ∩ CG(d) contains no elements of order
3. This is because the only elements of order 3 in D which are conjugate to b in G are
b and b−1. Since c does not commute with d, it follows that no element of order 3 is in
CG(c) ∩ CG(d). Thus, |CG(c) ∩ CG(d)| ≤ q2 (in fact, we have equality but this will come
out).

Thus, the size of theG-orbit containing (c, d) is [G : (CG(c)∩CG(d))] ≥ q4(q2−1)(q6−1).
It follows that the size of the union of these two orbits is at least |Γ| (and so exactly).

Since we are assuming that q ≡ 1 (mod 3), b is contained in some Borel subgroup B of
G containing the Borel subgroup of CG(b). Let T be a maximal torus of CB(b) (and so
also of G). Let a1 be a long root element of CB(b). Let J be the subgroup of B generated
by T and all long root elements of B. Since J is normal in B and CB(b) is not normal in
B, we can choose a long root element a2 of B not in CB(g). Thus, (a1, b) and (a2, b) are
in different G-orbits on aG× bG. It follows that each pair in Γ is contained in some Borel
subgroup of G. �

Lemma 4.8. Let G = F4(q) with q odd. Let a be a long root element of G and b an
involution in G with centralizer H := CG(b) of type B4(q). Let P be the normalizer of the
long root subgroup of G containing a, so that P ′ = CG(a). Then [1GH , 1

G
P ′ ] = 2. Moreover,

if (c, d) ∈ aG × bG, then 〈c, d〉 is contained in a Borel subgroup of G.

Proof. Certainly, 1GP ′ =
∑

λ∈Irr(P/P ′) λ
G, with P/P ′ ∼= Cq−1.

Let P ≤ G be an F -stable parabolic subgroup with PF = P , and L an F -stable Levi
subgroup of P. Any nontrivial linear character λ of P/P ′ can be viewed as a linear
character of L = LF , and then λG is the Harish-Chandra induction RG

L (λ) of λ. Thus λ
belongs to the Lusztig series E(L, s), where s is a nontrivial central (semisimple) element
of L∗ ≤ G∗ = G∗F ∗

, the dual of L, where G∗ denotes the dual group (which is isomorphic
to G). Now L has type C3T1, with T1 a 1-dimensional torus. So the underlying algebraic
group L∗ with L∗ = L∗F ∗

has type B3T1. By [7, Prop. 3.6.8] we have Z(L∗)F
∗

= Z(L∗),
whence CG∗(s) contains the reductive subgroup L∗ of type B3T1. Note that Lusztig induc-
tion RG

L sends any irreducible character in E(L, s) to a linear combination of irreducible
characters in E(G, s), cf. for instance [26, Lemma 8.2]. So all the irreducible constituents
ϕ of λG belongs to E(G, s).

On the other hand, since q is odd, by [22, p. 110] we have

1GH = χφ1,0 + χφ′′8,3
+ χφ4,1 + χφ′′2,4

+ χ1,St
κ1

+

(q−3)/2∑
j=1

χ1
κ7,j

+

(q−1)/2∑
j=1

χ1
κ8,j
,

where the first four constituents are unipotent characters (and χψ is the unipotent char-
acter labeled by the Weyl group character ψ listed in [7, §13.9]). Furthermore, the fifth
constituent belongs to E(G, κ1), where κ1 = (t1)

G∗
is the conjugacy class of an involution

t1 ∈ G∗ with CG∗(t1) of type C3A1. Each of the summands in the next two summa-
tions belongs to E(G, κ7,j) or E(G, κ8,j), where κa,j = (ta,j)

G∗
is the conjugacy class of a
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semisimple element ta,j ∈ G∗, with the semisimple part of CG∗(ta,j) being of type C3 for
a = 7, 8. Since CG∗(s) contains a reductive subgroup of type B3T1, s cannot be conjugate
to any of the elements 1, t1, or ta,j, a = 7, 8. It follows that [1GH , λ

G] = 0 for λ 6= 1.
Thus [1GH , 1

G
P ′ ] = [1GH , 1

G
P ], and it remains to consider the case λ = 1P . It is well known

that the decomposition of 1GP into irreducible constituents is given by the corresponding
decomposition for the permutation character of the Weyl groupW (F4) acting on the cosets
of the parabolic subgroup W (C3), the Weyl group of L. The irreducible constituents in
the latter decomposition are χφ1,0 , χφ′2,4

, χφ9,2 , χφ4,1 , and χφ′8,3
. Thus, the scalar product

of the two permutation characters is 2 as claimed.
It follows that G has two orbits on aG× bG. Let B be a Borel subgroup of G containing

a Borel subgroup of CG(b) ∼= B4(q). Arguing as in the previous case, we can choose long
root elements a1, a2 ∈ B with a1b = ba1 and a2b 6= ba2. Certainly, (a1, b) and (a2, b)
belong to different G-orbits on aG × bG. It follows that each pair in aG × bG is contained
in some Borel subgroup of G. �

5. Algebraic Groups

We first recall some facts about conjugacy classes in algebraic groups. Throughout the
section we fix an algebraically closed field k of characteristic p ≥ 0.

By a fundamental result of Lusztig there are only finitely many conjugacy classes of
unipotent elements in a connected reductive group. This is easily seen to imply that if
A and B are conjugacy classes of a simple algebraic group, then AB is an infinite union
of conjugacy classes if and only if the closure of AB contains infinitely many semisimple
conjugacy classes. We will not use this result in what follows.

We will use the following elementary result. Note that if a is an element of a connected
reductive algebraic group G and a = su = us where s is semisimple and u is unipotent,
then s ∈ aG.

Lemma 5.1. Let G be a connected reductive algebraic group over k, T a maximal torus of
G, and let A and B be non-central conjugacy classes of G. Then the following statements
hold.

(a) AB either contains a unique semisimple conjugacy class of G or contains infinitely
many semisimple classes.

(b) AB contains a unique semisimple conjugacy class if and only if AB ∩T is finite.

Proof. Suppose that AB contains finitely many semisimple classes C1, . . . , Cm. Let Xi

be the set of elements in G whose semisimple parts are in Ci. Note that Xi is closed
(since if s ∈ Xi is a semisimple element, then Xi consists of all elements g ∈ G with
χ(g) = χ(s) for all the characters of rational finite-dimensional G-modules). Since A and
B are irreducible varieties, so is AB, whence AB ⊂ ∪iXi implies that AB ⊂ Xi for some
i. This proves (a).

Now (b) follows by (a) and the facts that every semisimple class of G intersects T
nontrivially and this intersection is finite (since it is an orbit of the Weyl group on T, see
[7, Prop. 3.7.1]). �

We need some results about closures of unipotent classes. These can be deduced from
the results in [38]. We give elementary proofs for what we need (but quote [38] for G2
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and also for F4 in characteristic 2). We also do not consider the groups of type B in
characteristic 2. The results in this case can be read off from the results for the groups
of type C. The first such result we need has a very short proof, see [15, Cor. 3.3].

Lemma 5.2. Let G be a simple algebraic group over an algebraically closed field k of
characteristic p ≥ 0 and g ∈ G a nontrivial unipotent element. Then the closure of gG

contains root elements.

We next note the following fact:

Lemma 5.3. Let G be a semisimple algebraic group with a, b ∈ G. If CG(a)CG(b) is
dense in G, then aGbG is contained in the closure of (ab)G. In particular, the semisimple
parts of elements of aGbG form a single semisimple conjugacy class of G.

Proof. Let Γ = {(g, h) ∈ G × G | gh−1 ∈ CG(a)CG(b)}. Note that by assumption Γ
contains a dense open subset of G×G. Suppose that (g, h) ∈ Γ. Then

(ag, bh) = (agh
−1

, b)h = (axy, b)h = (a, b)yh,

where gh−1 = xy with x ∈ CG(a) and y ∈ CG(b). Consider f : G × G → G given by
f(g, h) = agbh. If c = ab, then f(Γ) ⊆ cG, whence f(G ×G) is contained in the closure
of cG, and the first part of the lemma follows.

Let s be the semisimple part of c. Let Gs be the set of elements in G whose semisimple
part is conjugate to s. As previously noted, Gs is a closed subvariety of G. Thus,
aGbG ⊆ cG ⊆ Gs. �

We record the following trivial observation. Let H and K be subgroups of a group G
and set Γ := G/H × G/K. Then G acts naturally on Γ and the orbits of G on Γ are in
bijection with the orbits of H on G/K and so in bijection with H\G/K. In particular,
this implies:

Lemma 5.4. Let G be a group with a, b ∈ G. The number of conjugacy classes in aGbG

is at most |CG(a)\G/CG(b)|.

We record the following easy result.

Lemma 5.5. Let G be a connected reductive algebraic group with H a connected reductive
subgroup. If a, b ∈ H and the semisimple parts of aHbH are not a single H-class, then the
semisimple parts of aGbG are a union of an infinite number of G-conjugacy classes.

Proof. Let S be a maximal torus of H and T a maximal torus of G containing S. By
Lemma 5.1, aHbH ∩S is infinite. In particular, aGbG ∩T is infinite and the result follows
by another application of Lemma 5.1. �

We next point out the following short proof about products of centralizers. For unipo-
tent elements, this was proved independently by Liebeck and Seitz [25, Chapter 1]. We
will obtain stronger results below.

Corollary 5.6. Let G be a semisimple algebraic group. If a ∈ G is not central and
g ∈ G, then CG(a)CG(ag) is not dense in G.
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Proof. Clearly, we can reduce to the case that G is simple. Write a = su where su = us, s
is semisimple and u is unipotent. If u 6= 1, then u is not central and since CG(u) ≥ CG(a),
we may assume a = u. If u = 1, then a is semisimple. In particular, we may assume that
a is either semisimple or unipotent.

As we have noted in Lemma 5.3, if CG(a)CG(ag) is dense in G, then the semisimple
parts of elements of aGaG form a single conjugacy class. If a is semisimple, then we
may assume that a lies in a maximal torus T and does not commute with some root
subgroup Uα. However, by Lemma 2.3 applied to any large enough field Fq that contains
an eigenvalue of a, aHaH contains more than one semisimple class in H := 〈U±α,T〉,
whence the result follows by Lemma 5.5.

If a 6= 1 is unipotent, then by Lemma 5.2, there is a positive root α and a nontrivial
element b ∈ Uα in the closure of aG. Set H := 〈Uα,U−α〉, a rank 1 group. By a direct
computation in SL2, we see that bHbH contains both non-central semisimple and unipotent
elements. The result now follows by Lemma 5.3. �

Note that Corollary 1.3 now follows since CG(a)g−1CG(a) = CG(a)CG(ag)g−1.

Lemma 5.7. Let G = Sp2n(k) = Sp(V ) where k is an algebraically closed field of char-
acteristic 2. Let g ∈ G be a nontrivial unipotent element that is not a transvection. Let
h ∈ G be a unipotent element such that V = V1 ⊥ V2 ⊥ V3 with dimV1 = dimV2 = 2 such
that h induces a transvection on V1 and V2 and is trivial on V3.

(a) Suppose that (gv, v) = 0 for all v ∈ V . Then g2 = 1, and the closure of gG contains
short root elements but not long root elements.

(b) The closure of hG contains both short and long root elements.
(c) Suppose that (gv, v) 6= 0 for some v ∈ V . Then the closure of gG contains h and so

also both long and short root elements.

Proof. In (a) write g = I +N where N is nilpotent. Note that (Nv, v) = (gv − v, v) = 0
for all v ∈ V . Note also that 0 = (N(v + w), v + w) = (Nv,w) + (Nw, v) and so
(Nv,w) = (Nw, v) for all v, w ∈ V . It follows that NV ⊆ (kerN)⊥, whence we see that
N (and g) act trivially on a maximal totally singular subspace W of V . Let P be the
stabilizer of W and Q its unipotent radical. We may view Q as the space of symmetric
n×n matrices. Let Q0 be the subspace of skew symmetric matrices. Thus, g ∈ Q, whence
g2 = 1. Moreover the condition that (gv, v) = 0 is exactly equivalent to g ∈ Q0.

Since (gv, v) = 0 for all v ∈ V is a closed condition, any element in the closure of gG also
satisfies this, whence long root elements are not in the closure of gG (and so necessarily
short root elements are — this is also obvious from the proof above). This proves (a).

To prove (b) it suffices to work in Sp4. Note that we can conjugate h and assume that
it is in the unipotent radical Q of the stabilizer of a maximal totally singular space. Note
that hG ∩Q is dense in Q and since Q contains both long and short root elements, the
result follows.

Now assume that (gv, v) 6= 0 for some v ∈ V . Recall that g is not a transvection.
Choose 0 6= w ∈ V with gw = w. Let P be the subgroup of G stabilizing the line

containing w and let Q be its unipotent radical. Note that (gu, u) 6= 0 for some u with
(u,w) 6= 0 (if (gu, u) = 0 for all u outside w⊥, then (gu, u) = 0 for all u by density). Let
X = ku+ kw which is a nondegenerate 2-dimensional space and set Y = X⊥.
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Let L be the Levi subgroup of P that stabilizes ku and kw (and so also X and Y ). Let
T be the 1-dimensional central torus of L.

With respect to the decomposition V = kw ⊕ Y ⊕ ku , g acts as1 s c
0 r s>

0 0 1


where r ∈ Sp(Y ) is a unipotent element and c 6= 0. First suppose that r is nontrivial.
Thus, we see that the closure of gT contains an element of the same form but with s = 0.
Since the closure of r in Sp(Y ) contains a root element, we see that we may assume that
V = X ⊥ Y , g induces a transvection on X and dimY = 2 or 4 and g induces either a
transvection on Y or a short root element. If g induces a transvection on Y , then g is
conjugate to h and there is nothing more to prove. So assume that dimY = 4 and g acts
as a short root element on Y . This implies that the fixed space of g is a 3-dimensional
totally singular subspace Z. The hypotheses imply that the closure of gG contains the
unipotent radical of the stabilizer of Z, whence it contains h. Finally suppose that r is
trivial. Since g is not a transvection, s is nontrivial. Since Sp is transitive on nonzero
vectors, we can then assume that s = (1, 0, . . . , 0) and so reduce to the case of Sp4. In
that case, g is already conjugate to h. This completes the proof. �

Lemma 5.8. Let G be a simple algebraic group over an algebraically closed field k of
characteristic p ≥ 0. Let g be a nontrivial unipotent element of G. The closure of gG

contains long root elements unless one of the following occurs:

(1) (G, p) = (G2, 3) or (F4, 2) and g is a short root element; or
(2) G = Sp2n = Sp(V ), p = 2, n ≥ 2 and (gv, v) = 0 for all v ∈ V .

Moreover, if (G, p) = (G2, 3) or (F4, 2) and g is not a root element, then the closure of
gG contains both short and long root elements.

Proof. By Lemma 5.2, the result follows unless G has two root lengths.
If G = G2, see [38, II.10.4]. Similarly if G = F4 with p = 2, see [38, p. 250].
Now assume that p 6= 2 and G = Bn, Cn or F4. It suffices to show that for g a short root

element, the closure of gG contains long root elements. By passing to a rank 2 subgroup
containing both long and short root subgroups, it suffices to consider G = Sp4 = Sp(V ).
In this case, we can write V = V1 ⊥ V2 where g acts as a transvection on each Vi and so
clearly the closure of gG contains long root elements (for U a maximal unipotent subgroup
of Sp(V1)× Sp(V2), g

G ∩U is dense in U and U contains long root elements).
Finally, when p = 2 and G = Sp2n = Sp(V ) we may apply Lemma 5.7. �

Lemma 5.9. Let G = SO2n+1(k) = SO(V ), n ≥ 2, with k an algebraically closed field of
characteristic p 6= 2. Let g ∈ G be unipotent. Then the closure of gG contains a short
root element if and only if g has a Jordan block of size at least 3.

Proof. Clearly, the condition is necessary since having all Jordan blocks of size at most 2
is a closed condition and a short root element has a Jordan block of size 3. Conversely,
suppose that g has a Jordan block of size d ≥ 3. It is well known that V can be written as
an orthogonal direct sum of g-invariant subspaces on each of which either g has a single
Jordan block of odd size or it has two Jordan blocks of (the same) even size of g.
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Thus, we can write V = V1 ⊥ V2 where either dimV1 = d ≥ 3 is odd and g acting on
V1 is a regular unipotent element of SO(V1) or dimV1 = 2d ≥ 6 and g acts on V1 with
two Jordan blocks of size d. By taking closures, we may assume that g is trivial on V2. In
the first case, the closure of gG contains all unipotent elements of SO(V1) (in particular
a short root element). In the second case, we see that g is contained in some GLd Levi
subgroup of SO(V1) and so g is a regular unipotent element of GLd. Thus, its closure
contains all unipotent elements of GLd, whence in particular an element with two Jordan
blocks of size 3. Now argue as in the first case. �

We next need a result about subgroups generated by root subgroups of a given length.

Lemma 5.10. Let G be a simply connected algebraic group over an algebraically closed
field k of characteristic p ≥ 0. Let T be a maximal torus of G and let Φ denote the set of
roots of G with respect to T. Assume that Φ contains roots of two distinct lengths. Let
Φ` denote the long roots in Φ and Φs = Φ \ Φ` the short roots. Let X` = 〈Uα | α ∈ Φ`〉,
and Xs = 〈Uα | α ∈ Φs〉. The following hold:

(a) CG(Xs) = Z(G).
(b) If G = G2, then CG(X`) has order 3 if p 6= 3 and is trivial otherwise.
(c) If p = 2 and G 6= G2, then CG(X`) = Z(G).
(d) If p 6= 2 and G 6= G2, then CG(X`) is an elementary abelian 2-group and intersects

a unique non-central conjugacy class of involutions unless G = Sp2n in which case it
intersects every conjugacy class of involutions (in Sp2n).

Proof. This is a straightforward observation. In fact if p 6= 2, then Xs = G unless G = G2

with p = 3. In all those cases, the centralizer is just the center. So we only need to consider
X`. If G = F4, then X`

∼= D4 while if G = Sp2n, X`
∼= SL2× . . .×SL2. Finally if G = Bn

with p 6= 2, then X`
∼= Dn. The result follows. �

We can now prove Theorem 1.1 which we restate. As we have already remarked, the
result is essentially independent of the isogeny type of the simple algebraic group. We
will work with the most convenient form for each group (in particular, we work with Sp2n

and SO2n+1).

Theorem 5.11. Let G be a simple algebraic group over an algebraically closed field k of
characteristic p ≥ 0. Let a, b be non-central elements of G. Then one of the following
holds (up to interchanging a and b and up to an isogeny for G):

(1) There are infinitely many semisimple conjugacy classes which occur as the semisim-
ple part of elements of aGbG.

(2) G = Sp2n(k) = Sp(V ), n ≥ 2, ±b is a long root element, and either
(a) p 6= 2 and a is an involution; or
(b) p = 2 and a is an involution with (av, v) = 0 for all v in V .

(3) G = SO2n+1(k) = SO(V ), n ≥ 2, p 6= 2 and −a is a reflection and b is a unipotent
element with all Jordan blocks of size at most 2.

(4) G = G2, p 6= 3, a is of order 3 with centralizer SL3 and b is a long root element.
(5) G = F4, p 6= 2, a is an involution with centralizer of type B4 and b is a long root

element.
(6) (G, p) = (F4, 2) or (G2, 3), a is a long root element and b is a short root element.
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Proof. Let A be the closure of aG and B the closure of bG. Note that if the closure of aGbG

contains only finitely many semisimple classes, the same is true for AB (take closures).
Thus, the same is true for A′B′ where A′ ⊂ A and B′ ⊂ B are conjugacy classes.

Also recall (Lemma 5.5) that if a, b ∈ H a connected reductive subgroup of G and
there are infinitely many semisimple classes occurring as the semisimple part of elements
of aHbH, then the same is true in G.

A) We give a very quick proof in the case that G has only one root length where we
show that it is always the case that aGbG contains infinitely many classes with distinct
semisimple parts.

If the semisimple part s of a is noncentral, then s is in the closure of aG and so we
may assume that a is semisimple. If not, then modifying a by a central element, we
may assume that a is unipotent. Similarly, we may assume that b is either semisimple or
unipotent.

If a and b are both semisimple, choose a maximal torus T containing conjugates a′, b′

of a and b. By conjugating by Weyl group elements, we may assume that a′, b′ do not
commute with Uα for some root α. Thus, 〈T,U±α〉 is reductive with semisimple part
A1. Moreover, a′, b′ are not central, whence the result follows from the result for A1 (see
Lemma 2.3). Similarly if a and b are both unipotent, then by replacing a and b by elements
in the closures of the classes, we may assume that a and b are both long root elements,
whence as above we reduce to the case of A1. If a is unipotent and b is semisimple, then
as above, we may assume that a ∈ Uα and b ∈ T does not centralize a, whence again the
result follows by the case of A1.

B) So for the rest of the proof we assume that G has two root lengths. In particular
rank(G) > 1. The proof is similar to that above but more complicated (and there are
always exceptions).

Case 1. a, b are both semisimple.
Let T be a maximal torus containing both a and b. We apply Lemma 5.10. In particular,

we can choose a (short) root subgroup Uα and conjugates of a, b by elements of the Weyl
group that do not centralize Uα. Now the result follows by considering the subgroup
〈T,U±α〉.
Case 2. a and b are both unipotent and are not among the excluded cases.

If the closures of A and B both contain long root elements, then the result follows from
the case of A1. If p 6= 2, this is always the case by Lemma 5.8 unless (G, p) = (G2, 3). If
G = G2 with p = 3 or G = F4 with p = 2, aside from the excluded cases, the closures of
A and B will either contain both long root elements or short root elements and again the
result follows.

It remains only to consider G = Sp2n with p = 2. It follows by Lemma 5.8 that unless
a or b is a long root element, the closures of A and B will contain short root elements and
the result follows as above. So we may assume that b is a long root element and that the
closure of A does not contain long root elements. Again by Lemma 5.8 this implies that
a is an involution with (av, v) = 0 for v ∈ V .

Case 3. a is semisimple and b is unipotent.
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Let a ∈ T be a maximal torus. If char k = 2 with G 6= G2, we can choose a root
subgroup Uα with a not centralizing Uα and reduce to 〈T,U±α〉. If G = G2 with p = 3,
the same argument suffices.

Indeed, if the closure of bG contains a short root element, then it suffices to assume
that b is contained in a short root subgroup Uα and as above, we can conjugate a by
an element of the Weyl group and assume that a does not centralize Uα. Now argue as
before.

The same argument suffices if a is not an involution conjugate to an element of the
centralizer of the subgroup of G generated by the long root subgroups (with respect to
T). So we have reduced to the case that a is such an involution and the closure of
bG contains long root elements and not short root elements. By Lemma 5.8, these are
precisely the exceptions allowed in the theorem.

Case 4. The general case.
We may assume (by interchanging a and b if necessary and using the previous cases)

that a = su = us where s is a noncentral semisimple element and u 6= 1 is unipotent.
If the semisimple part of b is not central, we can take closures and so assume that b is

semismple. If the semisimple part of b is central, we can replace b by a central element
times b and assume that b is unipotent.

If b is unipotent, then we can take closures and assume that b is a root element. By
working in the closure of aG (which contains s), we see that by previous cases, it must be
that sGbG must have constant semisimple part. This implies that either p 6= 2, G 6= G2

and s is an involution with b a long root element or G = G2, p 6= 3, s is an element of
order 3 and b is a long root element.

Let T be a maximal torus. We may assume that b ∈ Uα, a root subgroup with respect
to T. By taking closures in D := CG(s), we may also assume that u is in a root subgroup
Uβ with respect to T. Thus, by considering 〈T,U±α,U±β〉, it suffices to assume that G
has rank 2.

Now suppose that p 6= 2 and G = Sp4. As noted above, s must be an involution. Note
that D contains both long and short root elements and moreover the centralizer of s is an
A1A1, whence we see that there are conjugates of b and a in D with aDbD having infinitely
many different semisimple parts.

The remaining case is p 6= 3 and G = G2. It follows that s is an element of order 3
with centralizer D isomorphic to A2. So u is a long root element. As we noted, b is also a
long root element and so conjugate to an element of D. The result follows since it holds
for A2. �

We will discuss the examples listed above in the next section. In particular, we will see
that in all cases aGbG is a finite union of classes but always more than one. Indeed, we
will see that aG× bG is the union of a very small number of G-orbits (but always at least
2). In particular, this implies the following result which includes Szep’s conjecture for
algebraic groups. See [8] for the finite case and [5, 6] for related results on factorizations.

Corollary 5.12. Let G be a simple algebraic group. If a, b are non-central elements of
G, then aGbG is not a single conjugacy class and G 6= CG(a)CG(b).

Another immediate consequence is:
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Corollary 5.13. Suppose that G is a simple algebraic group over an algebraically closed
field k with char k = p ≥ 0, and that a, b are non-central elements of G. If CG(a)CG(b)
is dense, then G, a, b are as described in Theorem 5.11. In particular, CG(a)CG(b) is not
dense if any of the following hold (modulo the center):

(1) a and b are conjugate;
(2) neither a nor b is unipotent; or
(3) a is semisimple and has order greater than 3.

Indeed, if a is semisimple and is not an involution then G = G2 and a has order 3.
We point out one further corollary which also comes from analyzing the exceptions in

the theorem above.

Corollary 5.14. Let G be a semisimple algebraic group. Let a, b ∈ G. The following are
equivalent.

(i) aGbG is a finite union of conjugacy classes.
(ii) The closure of aGbG contains only one semisimple conjugacy class.
(iii) |CG(a)\G/CG(b)| is finite.
(iv) G has finitely many orbits on aG × bG.
(v) CG(a)CG(bg) is dense in G for some g ∈ G.
(vi) 〈a, bg〉 is contained in some Borel subgroup of G for every g ∈ G.

Proof. Statements (i) and (ii) are equivalent by Lemma 5.1, and clearly (iii) and (iv) are
equivalent. Furthermore, (iii) implies (v). By Lemma 5.3 we have that (v) implies (ii).

Assume that (vi) holds. The conjugates of x1, x2 inside the normalizer of a fixed Borel
subgroup have only finitely many distinct semisimple parts, so the same is true for their
possible products, whence we get (ii) by Lemma 5.1.

Thus it remains to show that (i) implies (iii) and (vi), which we do in the next section
by going through the cases in Theorem 5.11. Note that by passing to the adjoint quotient
of G we may assume that G is a direct product of its simple factors, and finiteness of
the product of two classes in that direct product is equivalent to finiteness in each simple
component (and similarly for the properties in (iii) and (vi)). �

In fact, we will see that in all the cases where aGbG is a finite union of conjugacy classes,
it is a union of at most 4 classes.

6. Examples with dense centralizer products

We now consider the examples for the exceptions in Theorem 1.1 and show that aGbG

is a finite union of conjugacy classes in all cases. However, it always consists of at least
two classes and so G 6= CG(a)CG(b). We also show that there is a dense (and so open)
element in CG(a)\G/CG(b), whence CG(a)CG(bg) is dense for some g ∈ G. Indeed we
will see that |CG(a)\G/CG(b)| ≤ 4 in all cases.

Throughout the section, fix k to be an algebraically closed field of characteristic p ≥ 0.

Example 6.1. Let G = G2 with p = 3. Let a be a long root element and b a short root
element. Choose conjugates so that ab is a regular unipotent element. Then dim aG =
dim bG = 6 and dim(ab)G = 12. Since dim aG + dim bG = 12, we see that dim aGbG ≤ 12

and so (ab)G is the dense orbit in aGbG. In particular, aGbG is the set of unipotent
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elements in G. Moreover, for such a pair (a, b) we see that dim(CG(a) ∩ CG(b)) ≥ 2
because dimCG(a) = dimCG(b) = 8. However, since CG(a) ∩ CG(b) ≤ CG(ab) and
dimCG(ab) = 2, we have equality, whence CG(a)CG(b) is dense in G. Note that there
are at least two classes in aGbG. As noted, aGbG contains the regular unipotent elements.
On the other hand, we can find conjugates which commute and so the product will have
order 3 and so is not a regular unipotent element (and so G 6= CG(a)CG(b)). Since
(a, b)G is dense in aG× bG, it follows that any pair in aG× bG is contained in some Borel
subgroup.

We next show that in fact |CG(a)\G/CG(b)| = 2. This can be seen as follows. Fix
a maximal torus T and a Borel subgroup B containing T. Note that we may take
CG(a) = P′

1 and CG(b) = P′
2 where P1 and P2 are the maximal parabolics containing B.

Let Ti = T ∩P′
i. Since the P1,P2 double cosets are in bijection with the corresponding

double cosets in the Weyl group, we see that there are 2 such double cosets. Note that if w
is in the Weyl group, then P′

1wP′
2 = P′

1T1(T2)
wwP′

2. Note that T = T1(T2)
w for any w

in the Weyl group. It follows that P′
1wP′

2 = P′
1TwTP′

2 = P1wP2 and so |P′
1\G/P′

2| = 2.

Example 6.2. Let G = G2 with p 6= 3. Let a be a long root element and b an element
of order 3 with centralizer SL3. First take k to be the algebraic closure of a finite field.
By Lemma 4.7, we see that G has two orbits on aG × bG and for any (c, d) ∈ aG × bG,
〈c, d〉 is contained in some Borel subgroup. As noted in the proof of Lemma 4.7, aGbG

consists of two conjugacy classes (the classes have representatives bx and by where x is a
long root element of CG(b) and y is a regular unipotent element of CG(b)).

By taking ultraproducts, we see that the same is true for some algebraically closed field
of characteristic 0. By a well known argument (cf. [14, 1.1]), it follows that the same is
true for any algebraically closed field of characteristic not 3.

Example 6.3. Let G = F4 with p = 2. Let a be a long root element and b be a short
root element. We will show that 〈a, b〉 is always unipotent. Let T be a maximal torus of
G with T ≤ B, a Borel subgroup of G. Let P1 and P4 be the two end node maximal
parabolic subgroups containing B. Note that there are only finitely many P1,P4 double
cosets in G each of the form P1wP4 where w is in the Weyl group. We may assume
that P′

1 = CG(a) and P′
4 = CG(b). Arguing precisely as for G2 with p = 3, we see that

P′
1wP′

4 = P1wP4. Thus there are only finitely many CG(a), CG(b) double cosets in G. In
fact, by computing in the Weyl group, we see that there are precisely 2 double cosets. In
particular, G has only two orbits on aG× bG, whence the semisimple part of any element
in aGbG is the same up to conjugacy and so is contained in the set of unipotent elements.
The dense double coset corresponds to w being the element which acts as inversion on T.
One computes that the group generated by a and bw is unipotent, whence this is true for
all pairs in aG × bG (by density).

If a and bg commute, then abg has order 2 while if a and bg do not commute, we see
that abg has order 4 (already in C2). Thus aGbG consists of two conjugacy classes.

Example 6.4. Let G = F4 with p 6= 2. Let a be a long root element and let b be an
involution with centralizer of type B4. If k is the algebraic closure of a finite field of
odd characteristic, it follows by Lemma 4.8 that |CG(a)\G/CG(b)| = 2 and every pair
(c, d) ∈ aG × bG has the property that 〈c, d〉 is contained in a Borel subgroup. Arguing
as for G2 with p 6= 3, the same is true for k any algebraically closed field of characteristic
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not 2. Thus, G has two orbits on aG × bG. Clearly, one orbit is the set of commuting
pairs. If a and bg commute, then (abg)2 is a long root element. It is straightforward to
compute that if a and bg do not commute, then (abg)2 is a short root element and so there
are exactly two conjugacy classes in aGbG.

Example 6.5. Let G = Sp2n = Sp(V ), n ≥ 2, with p 6= 2. Let a be a transvection and let
b be an involution (i.e., all eigenvalues are ±1). We claim that 〈a, b〉 is contained in a Borel
subgroup, whence aGbG contains only elements with the semisimple part conjugate to b.
Let W be the intersection of the fixed spaces of a and b. If W contains a nondegenerate
subspace, we pass to the orthogonal complement and use induction. If W is totally
singular, then dimW = n− 1 or n. Let P be the stabilizer of W with unipotent radical
Q. If dimW = n, a is in Q, whence the result. If dimW = n − 1, then b is central in
P/Q, whence the result follows in this case as well.

Since CG(b) = Sp2m × Sp2n−2m, we see that CG(b) has three orbits on V \ {0} whence
|CG(a)\G/CG(b)| = 3. It is straightforward to see (already in Sp4) that aGbG contains el-
ements whose square are long root elements or short root elements, whence aGbG contains
at least 2 conjugacy classes.

Example 6.6. Let G = Sp2n = Sp(V ), n ≥ 2 with p = 2. Let a be a transvection and b
an involution with (bv, v) = 0 for all v ∈ V . We claim that 〈a, b〉 is unipotent. Consider
the intersection W of the fixed space of b and the fixed space of a. This has dimension
at least n− 1 ≥ 1. If this space contains a nondegenerate space D, we can replace V by
D⊥ and use induction (note that if n = 1, b = 1). So we may assume that W is totally
singular. Let P be the stabilizer of W and Q the unipotent radical of P. If dimW = n,
then a, b are both in Q and so commute. If dimW = n− 1, then 〈a, b〉 ≤ QSp2 whence
b ∈ Q. Thus aGbG is contained in the set of unipotent elements (and any pair in aG× bG
is contained in a common Borel subgroup). As we have seen a and b may commute and
so ab is an involution but it is straightforward to see that the order of ab may be 4.

We can write V = V1 ⊥ V2 ⊥ . . . ⊥ Vm ⊥ W where dimVi = 4, and b acts as a short root
element on Vi and b is trivial on W . If n = 2, we argue as for G2 to see that CG(a)CG(b)
can be dense. Indeed, it follows that in general CG(b) has only finitely many orbits on
V , whence there are only finitely many CG(a), CG(b) double cosets in G. Indeed, it is a
fairly easy exercise in linear algebra to show that CG(b) has at most 4 orbits on nonzero
vectors in V , whence |CG(a)\G/CG(b)| ≤ 4.

Example 6.7. Let G = SO2n+1 = SO(V ), n ≥ 2 with p 6= 2. Let a ∈ G be such that
−a is a reflection, and let b be a unipotent element with all Jordan blocks of size at most
2. We claim that 〈a, b〉 is contained in a Borel subgroup of G, whence aGbG consists of
unipotent elements. If n = 2, then the result follows by the result for Sp4. So assume
that n > 2. Let W be the intersection of the −1 eigenspace of a and [b, V ]. Note that
W 6= 0 (since dim[b, V ] ≥ 2) and is totally singular. By induction, ab has semisimple part
the negative of a reflection on W⊥/W , whence also in G.

Note that CG(a) is the stabilizer of a nonsingular 1-space. Note also that the number
of Jordan blocks of b is even, whence by reducing to the 4-dimensional case we see that
CG(b) has only finitely many orbits on 1-dimensional spaces. Thus there are only finitely
many CG(a)\G/CG(b) double cosets. Indeed, it is a straightforward exercise to see that
|CG(a)\G/CG(b)| ≤ 4. By reducing to the case of SO5

∼= C2, we see that the unipotent
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parts of elements in aGbG are in at least 2 different conjugacy classes, whence aGbG is
not a single conjugacy class.

7. A short proof of Szep’s conjecture

We use our previous results to give a short proof of the conjecture of Szep’s (a finite
simple group cannot be the product of two centralizers); see [8] for the original proof. In
particular, using Corollaries 1.7 and 5.13 (for semisimple elements), we can shorten the
proof considerably.

Observe the following connection to the Arad–Herzog conjecture. Let G be a group
with a, b ∈ g. As we have noted the number of orbits of G on aG × bG is precisely
CG(a)\G/CG(b). In particular, if G = CG(a)CG(b), then G acts transitively on aG × bG

and aGbG is a single conjugacy class of G. Indeed if w(x, y) is any element of the free
group on two generators, then w(a′, b′) is conjugate to w(a, b) for all (a′, b′) ∈ aG × bG.
In particular, if the Arad–Herzog conjecture holds for G, then no such factorization can
exist.

Theorem 7.1 (Szep’s conjecture; Fisman–Arad [8]). Let G be a finite non-abelian simple
group. If a, b are non-trivial elements of G, then G 6= CG(a)CG(b).

Proof. For alternating groups, the Arad–Herzog conjecture, proved in Theorem 1.4, gives
the result. For the twenty six sporadic groups, it is straightforward to check the Arad–
Herzog conjecture from the character tables.

So now assume that G is simple of Lie type. The basic idea is as follows. We find
two primes r1, r2 for which the Sylow ri-subgroups of G are cyclic and there exist regular
semisimple elements x1, x2 ∈ G of order ri such that no nontrivial element of G centralizes
conjugates of both of them.

Then assume that G = CG(a)CG(b) for a, b ∈ G. If ri divides |CG(a)|, then some
conjugate of xi centralizes a, and similarly for |CG(b)|. Thus by our assumption, a cen-
tralizes a conjugate of x1, say, and b centralizes a conjugate of x2. Since the xi are regular,
this implies that a, b are both semisimple. But then by Proposition 4.1, aGbG consists of
more than one class of G. As pointed out above this implies that CG(a)CG(b) 6= G, a
contradiction.

For G of exceptional type and rank at least 4, we take for r1, r2 Zsigmondy primes as
listed in Table 1. For the small rank cases the claim follows from Proposition 3.3.

For G of classical type, the claim for Ln(q) follows by Theorem 2.5, and for Un(q) with
3 ≤ n ≤ 6 by Proposition 3.1. For the types 2An, Bn, Cn,

2Dn and D2n+1, we take the two
tori T1, T2 given in [32, Table 2.1], which contain Zsigmondy prime elements and are not
contained in a common centralizer (by the arguments given in [32, §2]).

This leaves only the case of O+
4n(q). If n = 2, we apply Proposition 3.2. So assume that

n > 2. Here we take r1 to be a Zsigmondy prime divisor of q4n−2−1, r2 to be a Zsigmondy
prime divisor of q2n−1− 1. Let xi ∈ G be of order ri. Note that the Sylow ri-subgroups of
G are cyclic, and x1 and x2 are regular semisimple. Abusing the notation, we will let xi
denote the inverse image of xi of order ri in S := SO+

4n(q). Then CS(x1) ∼= Cq2n−1+1×Cq+1

and CS(x2) ∼= Cq2n−1−1 × Cq−1. Suppose s ∈ S centralizes conjugates of both x1 and x2.
Then |s| divides gcd(q2n+1 +1, q2n−1−1) ≤ 2. In particular, s = 1 if 2|q. Assume q is odd
and s 6= 1. Since s centralizes a conjugate of x1, we see that s acts as ±1 on U1 and as
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±1 on U⊥
1 , where U1 is a nondegenerate subspace (of the natural FqS-module V = F4n

q ) of
type − of codimension 2. Similarly, since s centralizes a conjugate of x2, s acts as ±1 on
U2 and as ±1 on U⊥

2 , where U2 is a nondegenerate subspace of V of type + of codimension
2. This can happen only when s = −1V . We have shown that no nontrivial element of G
can centralize conjugates of both x1 and x2, and so we can finish as above. �

We next give some examples to show that if the ambient group is not simple, there are
many counterexamples to both Szep’s conjecture and the Arad–Herzog conjecture. Of
course, a trivial example is to take G a direct product and choose elements in different
factors. There is a more interesting example for almost simple groups.

Example 7.2. Let G := GL2n(q) = GL(V ), n ≥ 1, q > 2, (n, q) 6= (1, 3), and let
τ be a graph automorphism of G with centralizer CG(τ) ∼= Sp2n(q). Also, let x =
diag (a, 1, . . . , 1) for some 1 6= a ∈ F×q , so that CG(x) is the stabilizer of a pair (L,H),
where L is a line and H is a hyperplane not containing L in V .

First we show that G = CG(τ)CG(x); equivalently, CG(τ) is transitive on such pairs
(L,H). Since Sp2n(q) is transitive on nonzero vectors, we just have to show that the
stabilizer of L in CG(τ) is transitive on the hyperplanes complementary to L. Let Hi,
i = 1, 2, be fixed hyperplanes complementary to L. Let 0 6= v ∈ L. Choose vi ∈ Li := H⊥

i

with (vi, v) = 1. Set Mi = 〈L,Li〉. Note that V = Mi ⊥ H ′
i where H ′

i = L⊥i ∩ Hi is a
hyperplane in L⊥ not containing L. By Witt’s theorem for alternating forms, there is an
isometry g ∈ G such that gM1 = M2 and gH1 = H2. So we may assume that M1 = M2.
Applying another isometry, we may assume that L1 = L2 whence H1 = H2 as required.

It follows that τAxA = (τx)A with A := 〈G, τ〉. The same also holds in the almost
simple group A/Z(G) ≤ Aut(Ln(q)).

Of course this also works for the algebraic group (or indeed over any field of size greater
than 2).

Here is another example.

Example 7.3. Let L be a nontrivial finite group and H a cyclic group of order n > 1.
Set G = L oH. Let 1 6= a be an element of Ln with only one nontrivial coordinate. Let
b be a generator for H. Note that CG(a) ≥ Ln−1 while CG(b) = D × H where D is a
diagonal subgroup of Ln. Thus G = CG(a)CG(b) and aGbG = (ab)G.

In particular, we can take n = 2, L simple non-abelian and choose a and b to be
involutions or n = p a prime and L simple of order divisible by p and choose a and b to
have order p. Note that since G is transitive on aG × bG, we see that 〈ax, by〉 is always a
p-group.

We give one more example to show that aGbG = (ab)G does not necessarily imply that
G = CG(a)CG(b).

Example 7.4. Let G be a group with a normal subgroup N . Suppose that a, b ∈ G are
such that all elements in abN are conjugate. Assume that G/N is abelian. Then clearly,
aGbG = (ab)G = abN (the condition that G/N is abelian can be relaxed). Such examples
include A4 and non-abelian groups of order qp where p < q are odd primes with a, b classes
of p-elements with b not conjugate to a−1.
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8. Variations on Baer–Suzuki

Recall that the Baer–Suzuki theorem asserts that if G is a finite (or linear) group,
x ∈ G, then 〈xG〉 is nilpotent if and only if 〈x, xg〉 is nilpotent for all g ∈ G. One might
ask what happens if we assume that 〈x, yg〉 is nilpotent (or solvable) for all g ∈ G for x, y
not necessarily conjugate elements. The examples in Section 7 show that this analog of
the Baer–Suzuki theorem fails for nonconjugate elements (and indeed even the solvable
version of Baer–Suzuki fails — see [13]). As we have seen for p = 2, 3, we even have
counterexamples for simple algebraic groups (and so also for finite simple groups).

However, it turns out that one can extend the Baer–Suzuki theorem with appropriate
hypotheses at least for p-elements with p ≥ 5 (see Theorem 8.8 below).

8.1. Some variations on Baer–Suzuki for simple groups. First we note that in
Theorem 4.6 there are no exceptions if p > 3. Moreover, the same proof (basically
reducing to the case of rank 1 groups) gives the following:

Corollary 8.1. Let G be a finite simple group of Lie type in characteristic p ≥ 5. Let u,w
be nontrivial unipotent elements of G. There exists g ∈ G such that uwg is not unipotent
and 〈u,wg〉 is not solvable.

Guest [13] proved that if G is a finite group with F (G) = 1 and x ∈ G has prime order
p ≥ 5, then 〈x, xg〉 is not solvable for some g ∈ G. See also [10].

Next we record the following results for alternating and sporadic groups.

Lemma 8.2. Let G = An, n ≥ 5. Let p be a prime with p ≥ 3. If u,w ∈ G are nontrivial
p-elements, then there exists g ∈ G such that uwg is not a p-element and 〈u,wg〉 is
nonsolvable.

Proof. First take p = 3. By induction, it suffices to consider the case n = 5 or 6 where
the result is clear. So assume that p ≥ 5. Clearly, it suffices to consider the case p = n,
where again the result is clear. �

Lemma 8.3. Let G be a sporadic simple group. Let p be a prime. Let u,w ∈ G be
nontrivial p-elements. Then

(a) there exists g ∈ G such that uwg is not a p-element; and
(b) if p ≥ 5, there exists g ∈ G such that 〈u,wg〉 is not solvable.

Proof. These are straightforward computations using GAP. �

8.2. A variation on Baer–Suzuki for almost simple groups. Our next goal is to
prove the following:

Theorem 8.4. Let p ≥ 5 be a prime and let S be a finite non-abelian simple group. Let
S CG ≤ Aut(S), and c, d ∈ G any two elements of order p. Then:

(a) There is some g ∈ G such that 〈c, dg〉 is not solvable.
(b) There is some g ∈ G such that cdg is not a p-element.

If S is an alternating group or a sporadic group, we apply Lemmas 8.2 and 8.3. So
assume that S is of Lie type in characteristic r. In what follows, we will call any element
of G inducing a nontrivial field automorphism of S modulo Inndiag(S), the subgroup
of inner-diagonal automorphisms of S, a field automorphism. Also, Φm(t) denotes the
mth-cyclotomic polynomial in the variable t.
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8.2.1. The case r = p. If c, d are both inner elements, then the result follows by Corol-
lary 8.1. So assume that c induces a field automorphism of S. Suppose that S has rank at
least 2. Let P be a maximal end node parabolic subgroup of S with d not in the radical
Q of P . Note that NG(P ) contains a Sylow p-subgroup of G and so we may assume that
c, d ∈ NG(P ). Since p ≥ 5, it follows that P/Q has a unique simple section S0 and that
c, d each act nontrivially on S0, whence the result follows by induction.

If S has rank 1, then either S ∼= L2(q) or U3(q). Write q = qp0. Since p ≥ 5, it follows
[11, 7.2] that there is a unique conjugacy class of subgroups of field automorphisms of
order p and that every unipotent element is conjugate to an element of the group defined
over Fq0 . Thus, we see conjugates of c, d in H := L2(q0)× 〈c〉 or U3(q0)× 〈c〉. Note that
c is conjugate in G to a non-central element in H (again by [11, 7.2]) and so the result
follows by induction.

For the rest of the section, we assume that r 6= p.

8.2.2. Field automorphisms. Here we handle the case when c is a field automorphism
of order p of S. So we can view S = S(q) as a group over the field of q elements
with q = qp0. One can find a simple algebraic group G of adjoint type over Fr and a
Steinberg endomorphism F : G → G such that X = X(q) := GF p

is the group of inner-
diagonal automorphisms of S. By [11, 7.2], any two subgroups of G of order p of field
automorphisms of S are conjugate via an element of X(q). In particular, this implies
that any field automorphism normalizes a parabolic subgroup of any given type. Thus,
precisely as in the case r = p, if d is also a field automorphism, we can reduce to the case
that S has rank 1 and complete the proof.

Thus, we may assume that d is semisimple. Moreover, since dS = dX , it suffices to
work with X-classes and as noted there is a unique conjugacy class of subgroups of order
p consisting of field automorphisms. We digress to mention two results about p-elements.

Lemma 8.5. Let H be a connected reductive algebraic group over Fr, with a Steinberg
endomorphism F : H → H, and let p 6= r be a prime not dividing the order of the Weyl
group W of H nor the order of the automorphism of W induced by F . Then the Sylow
p-subgroups of HF and HF p

are abelian of the same rank.

Proof. Under our assumptions, by [33, Thm. 25.14] the Sylow p-subgroups of HF i
are

homocyclic abelian, of rank si say. Moreover, there is at most one cyclotomic polynomial
Φei

dividing the order polynomial of (H, F i) such that p|Φei
(qi), where q denotes the

absolute value of the eigenvalues of F on the character group of an F -stable maximal
torus of H, and si equals the Φei

-valuation of the order polynomial. Now p|Φe(q) if and
only if p|Φep(q), and if Φe divides the order polynomial of (H, F ) then Φep divides the one
of (H, F p), to the same power. Thus, ep = pe1 and sp = s1, and the claim follows. �

Note that in our situation the previous result says that if p ≥ 5 does not divide the
order of the Weyl group W , then every element in S of order p is conjugate to an element
centralized by F . We can extend this even to some primes dividing |W |.
Lemma 8.6. Let H be a simple simply connected linear algebraic group over Fr, with a
Steinberg endomorphism F : H → H. Let T be an F -stable maximal torus of H and let
δ > 0 such that F δ acts trivially on the Weyl group NH(T)/T. If x ∈ HF p

has order p,
for some prime p with gcd(p, rδ) = 1, then x is conjugate in HF p

to an element of HF .
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Proof. Since H is simply connected, centralizers of semisimple elements in H are con-
nected. So it suffices to show that the H-conjugacy class C of x is F -stable (see [33,
Thm. 26.7]). Since F p(x) = x, C is F p invariant. Thus, it suffices to show that Fm fixes
C for some m prime to p. By our assumption on δ, we may replace F by the standard
Frobenius endomorphism F δ. Let y be a conjugate of x in the maximal torus T, so that
F (t) = tq for all t ∈ T. Thus, F fixes 〈y〉 and so F p−1 fixes y, whence C is F -stable. �

Note that we may always choose T so that δ ≤ 3. Note also that the proof goes
through verbatim if we only assume that H is reductive and that the derived group is
simply connected with fewer than p simple factors.

Returning to the proof of Theorem 8.4 we see in particular, if p does not divide the
order of the center of the simply connected algebraic group H in the same isogeny class
with G, this shows that d is conjugate to an element of X(q0) (and since the centralizer of
d covers X(q)/S(q), this conjugation is via an element of S(q)). Next we claim that some
conjugate of c normalizes but does not centralize some conjugate of X(q0). Since any
two subgroups of field automorphisms of order p are conjugate via an element of X(q), it
follows that cX(q)∩X(q0) consists of more than one conjugacy class. Therefore c has more
than one fixed point on X(q)/X(q0), whence the result. Thus, choosing some subgroup
Y of X(q) with Y ∼= S(q0), we may assume that each of c and d normalizes but does not
centralize S(q0), whence the result follows by induction.

So we will only need to consider field automorphisms in the case that S = Un(q) or
Ln(q) with p dividing n, and these cases will be handled in the next subsection.

8.2.3. Classical groups. A) We first handle the case where S = Lεp(q) with p dividing
q − ε1 and c is an irreducible p-element. In particular, c is semisimple regular. First
suppose that d is semisimple. By a minor variation of Gow’s result [12], we see that cdg

can be any regular semisimple element of G in the coset cdS. In particular, cdg need not
be a p-element. By choosing cdg to have order as large as possible in the torus acting
irreducibly on a hyperplane, we see that 〈c, dg〉 need not be solvable (for example, using
the main result of [17]).

Suppose now that d is a field automorphism, and let T be a maximally split torus of S.
Then NG(T ) contains a Sylow p-subgroup of G. Note that NG(T )/CG(T ) ∼= Sp and both
c and d are conjugate to elements in NG(T ) \ CG(T ) (this is obvious for c, and for d we
can apply [11, 7.2]). Hence the result follows by applying Lemma 8.2 to NG(T )/CG(T ).

B) Now let S be any (simple) classical group with natural module V of dimension e
defined over Fq1 . By our earlier results, it suffices to assume that c is semisimple and d
is either a field automorphism or a semisimple element. Moreover, since cS is invariant
under all diagonal automorphisms, by the remark above, we can work with any conjugacy
class of field automorphisms of order p.

Let m be the dimension of an irreducible module for an element of order p. Then the
case where p = m and m is the order of q1 modulo p has already been treated in A). Note
that every semisimple element of order p stabilizes an m-dimensional subspace W that
is either nondegenerate or totally singular (furthermore, the type is independent of the
element).

Suppose that W is totally singular. Then we may assume that c, d both normalize the
stabilizer of W . If m = 1, then c, d both normalize the stabilizer of a singular 1-space and
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the result follows by induction. So assume that m > 1. As W is totally singular, then
by construction, we see that c, d induce nontrivial automorphisms on GL(W ) (and since
p ≥ 5, SL(W ) is quasisimple), whence the result follows by induction.

Suppose that W is nondegenerate. The same argument applies unless the stabilizer of
W is not essentially simple. This only happens if m = 2 and S is an orthogonal group
(and so we may assume that e ≥ 7). In this case, we see that c, d will each stabilize a
nondegenerate space of the same type of either dimension 4 or 6 and we argue as above.

8.2.4. Exceptional groups. By the results above, we may assume that c, d are both semi-
simple elements in S of order p (with p ≥ 5). We may also assume that P is not
cyclic (since that case is handled by [18] and [13]). In particular, the result follows for
S = 2B2(q

2) or 2G2(q
2) since there P is always cyclic.

If S = 2F4(2)′, the result follows by a straightforward computation (the only prime to
consider is p = 5). Suppose that S = 2F4(q

2), q2 > 2. It follows by [30] that P will either
be contained in a subgroup 2B2(q

2) o2 or Sp4(q
2). In either case, we see that conjugates of

c, d will normalize but not centralize a simple subgroup and the result follows by induction.
Suppose S = G2(q). Since p ≥ 5 and P is non-cyclic, we see that p|(q2 − 1) and q ≥ 4.

Now we can embed P in a subgroup R ∼= SL3(q) or SU3(q) of S and apply the previous
results to R.

Next suppose that S = 3D4(q). If p|(q2 − 1), then we can argue as in the case of G2(q).
The remaining cases are when p divides Φ3(q) or Φ6(q). One cannot find a good overgroup
in these cases, but using Chevie, we see that cGdG hits any regular element in a torus of
order dividing Φ12(q). In particular, cdg need not be a p-element. By considering the
maximal subgroups [21], it also follows that S = 〈c, dg〉 for some g.

The standing hypothesis for the rest of this subsection is the following:
• S is a simple exceptional Lie-type group, of type F4, E6,

2E6, E7, or E8, over Fq;
• c and d are semisimple p-elements in S and the Sylow p-subgroups of S are not cyclic.
Slightly changing the notation, we will view S = S(q) as (GF )′, where G is a simple

algebraic group of adjoint type over Fq with a Steinberg endomorphism F : G → G, and
W is the Weyl group of G.

The basic idea to prove Theorem 8.4 for S is the following:

Lemma 8.7. Assume Theorem 8.4 holds for all non-abelian simple groups of order less
than |S|. To prove Theorem 8.4 for semisimple elements c, d ∈ S, it suffices to find a
subgroup D < S with the following properties:

(a) D = D1◦ . . .◦Dt is a central product of t ≤ 3 quasisimple subgroups Di with p coprime
to |Z(D)|;

(b) each S-conjugacy class of elements of order p intersects D; and
(c) either NS(D) acts transitively on {D1, . . . , Dt}, or t = 2 and an S-conjugate of D1 is

contained in D2.

Proof. 1) By (b), we may assume that c, d ∈ D. Suppose that there is some j such that
neither c nor d centralizes Dj. Then we can embed c and d in the almost simple group
ND(Dj)/CD(Dj) with socle Dj/Z(Dj). Since Theorem 8.4 holds for Dj/Z(Dj), we are
done.
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2) Since p 6 | |Z(D)|, we are done if t = 1. Suppose t = 2. In view of 1) we may assume
that c ∈ CD(D1) = Z(D)D2 (in particular, c does not centralize D2 and c ∈ D2 since
p 6 | |Z(D)|). Now if d does not centralize D2, we are also done. So we may assume that
d ∈ CD(D2) = Z(D)D1, whence d ∈ D1. By the assumptions, there is some s ∈ S such
that ds ∈ D2. Now we can apply Theorem 8.4 to the images of c and ds in D2/Z(D2).

Finally suppose that t = 3. As above, we may assume that c ∈ E := D2 ◦ D3. If d
does not centralize E, then we can embed both c and d in ND(E)/CD(E) and repeat
the t = 2 argument. On the other hand, if d ∈ CD(E) = Z(D)D1, then d ∈ D1 and
some S-conjugate ds lies in D2 < E, and so ds does not centralize E. Hence we are again
done. �

The rest of this subsection is to produce a subgroup D satisfying the conditions set in
Lemma 8.7. In the following table we list such a subgroup D. In all cases but the lines
with D = F4(q), D is taken from [24, Table 5.1], so that NS(D) is a subgroup of maximal
rank. In all cases, we choose e smallest possible such that p|Φe(q), and list the largest
power Φl

e that divides the order polynomial of (G, F ). According to [33, Thm. 25.11], GF

has a unique conjugacy class of tori T of order Φl
e(q). Moreover, by [40, Lemma 4.5], every

p-element of GF of order at most the p-part of Φe(q) is conjugate to an element in T . In
all cases, we choose D so that it contains a GF -conjugate of T and p is coprime to |Z(D)|.
Also, all the Lie-type groups appearing in the third column are simple non-abelian (here
we are slightly abusing the notation, using E6(q) and 2E6(q) to denote their non-abelian
composition factors).

GF Φl
e D

F4(q) Φ4
1, Φ4

2, or Φ2
4 Z(2,q−1) ·O9(q)

Φ2
3 or Φ2

6
3D4(q)

E6(q) Φ6
1 Z(2,q−1) · (L2(q)× L6(q))

Φ4
2, Φ2

4, or Φ2
6 F4(q)

Φ3
3 Z(3,q−1) · (L3(q)× L3(q)× L3(q))

2E6(q) Φ4
1, Φ2

3, or Φ2
4 F4(q)

Φ6
2 Z(2,q−1) · (L2(q)× U6(q))

Φ3
6 Z(3,q+1) · (U3(q)× U3(q)× U3(q))

E7(q) Φ7
1 or Φ2

4 Z(4,q−1)/(2,q−1) · L8(q)
Φ7

2 Z(4,q+1)/(2,q−1) · U8(q)
Φ3

3 Z(3,q−1) · E6(q)
Φ3

6 Z(3,q+1) · 2E6(q)
E8(q) Φ8

1, Φ8
2, Φ4

4, or Φ2
8 Z(2,q−1) ·O+

16(q)
Φ4

3 Z(3,q−1) · (L3(q)× E6(q))
Φ2

5 Z(5,q−1) · (L5(q)× L5(q))
Φ4

6 Z(3,q+1) · (U3(q)× 2E6(q))
Φ2

10 Z(5,q+1) · (U5(q)× U5(q))
Φ2

12
3D4(q

2)
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To check the condition (3) of Lemma 8.7, we need to work with the extended Dynkin
diagram of G. Fix an orthonormal basis (e1, . . . , e8) of the Euclidean space R8 and let

α1 = (e1 + e8 −
7∑
i=2

ei)/2, α2 = e2 + e1, αi = ei−1 − ei−2 (3 ≤ i ≤ 8), α′8 = −e8 − e7,

so that α1, . . . , αj are the simple roots of the root system of type Ej, 6 ≤ j ≤ 8, and

(α1, . . . , α8, α
′
8) forms the extended Dynkin diagram E

(1)
8 of type E8. Also, let α′6 be

chosen such that (α1, . . . , α6, α
′
6) forms the extended Dynkin diagram E

(1)
6 of type E6.

Certainly, the condition (3) in Lemma 8.7 needs to be verified only when D is not
quasisimple. These cases are considered below, where we will construct certain explicit
automorphisms of the Dynkin diagram.

• GF = E6(q). Let ω denote a graph automorphism of order 3 of E
(1)
6 . Observe that it

is induced by an element of W , whence by some element s ∈ S. If D is of type A1 + A5,
then ω sends α′6 to α1 or α5, and so it sends the A1-subgroup D1 to a subgroup of the
A5-subgroup D2. If D is of type 3A2, then ω permutes the three A2-subgroups Di of D
cyclically.
• GF = 2E6(q). Let τ denote the unique graph automorphism of order 2 of the Dynkin

diagram E6 (which also acts on E
(1)
6 ), so that GF is constructed using τ . If D is of

type A1 + 2A5, then certainly the A1-subgroup D1 (corresponding to α′6) is S-conjugate
to the A1-subgroup labeled by α4 of the 2A5-subgroup D2. Assume now that D is of
type 3(2A2). Observe that τ is central in a Sylow 2-subgroup of the full automorphism
group Z2 ×W of the root system of type E6. Hence it commutes with a W -conjugate
of γ, the automorphism that interchanges α1 with α3, α5 with α6, and α2 with α′6. So
without loss we may assume D is constructed using this particular graph automorphism
γ. In this case, the order 3 automorphism ω commutes with γ and permutes the three
2A2-subgroups Di of D cyclically.
• GF = E8(q). If D is of type A2 + E6, then certainly the A2-subgroup D1 (corre-

sponding to α8 and α′8) is S-conjugate to the A2-subgroup labeled by α1 and α3 of the
E6-subgroup D2. Assume now that D is of type 2A2 + 2E6. One can check that D can be
constructed using the element

β : α1 ↔ α6, α2 7→ α2, α3 ↔ α5, α4 7→ α4, α7 7→ e6 + e7, α8 ↔ α′8

in W ; in particular, β fixes α′6. Applying the previous case to D2
∼= 2E6(q), we see that

D2 contains a 2A2-subgroup (labeled by α5 and α6). The latter is S-conjugate to D1, the
2A2-subgroup labeled by α8 and α′8, via conjugation by the element

δ : e1 7→ e1, e2 7→ e2, e3 ↔ e8, e4 ↔ −e7, e5 ↔ −e6
in W , and so we are done.

Next, observe that the element

ϕ : α1 7→ α6 7→ α2 7→ α′8 7→ α1, α3 7→ α7 7→ α4 7→ α8 7→ α3,
α5 7→ (−e1 − e2 − e3 + e4 + e5 + e6 − e7 + e8)/2

in W interchanges the two A4-components of E
(1)
8 , and ϕ2 induces the graph automor-

phism of each of these A4-component. Since F acts trivially on E
(1)
8 , we now see that ϕ
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interchanges the two A4-subgroups Di if D is of type 2A4, and ϕ interchanges the two
2A4-subgroups Di if D is of type 2(2A4).

We have therefore completed the proof of Theorem 8.4.

8.3. Further variations on Baer–Suzuki. We can now prove:

Theorem 8.8. Let p ≥ 5 be prime. Let G be a finite group. Let C,D be conjugacy classes
of G with G = 〈C〉 = 〈D〉. If cidj is a p-element for all (c, d) ∈ C ×D and all integers
i, j, then G is a cyclic p-group.

Proof. First note that a p-group generated by a single conjugacy class is cyclic (pass to
the Frattini quotient to see that the Frattini quotient of G and so G are cyclic). Consider
a minimal counterexample (G,C,D).

We claim that G has a unique minimal normal subgroup N . If N1 and N2 are distinct
minimal normal subgroups, then by minimality, G/Ni is a p-group for each i, whence G
is a p-group, whence the claim.

By induction, G/N is a cyclic p-group. If N is a p-group, then so is G and the result
follows. Assume that N is an elementary abelian r-group for some prime r 6= p, and let
P be a Sylow p-subgroup of G. Choose c, d ∈ P , whence d = ci for some i. Since N
is the unique minimal normal subgroup of G and G/N = 〈dN〉, d acts irreducibly and
nontrivially on N . It follows that dN = dN . In particular, we can find x, y ∈ N such that
dx = dy 6= d. Now c−idx = y is not a p-element, a contradiction.

So N is a direct product of copies of a non-abelian simple group L. Replacing C and D
by Cq and Dq, we may assume that |G/N | = p. If N is simple, then G is almost simple
and Theorem 8.4(b) applies. So we may assume that N is a direct product L1 × · · · ×Lp
and that an element of C or D conjugates Li to Li+1 for 1 ≤ i < p. Replacing the elements
of D by a power prime to p, we may assume that CD ⊂ N . Choose (c, d) ∈ C×D. Write
c = (x1, . . . , xp)ρ where xi ∈ Aut(Li) and ρ ∈ Aut(N) permuting the Li in a cycle. So
d = ρ−1(y1, . . . , yp) with yi ∈ Aut(Li). Choosing h = (z, 1, . . . , 1) ∈ N with z running
over L, we see that cdh ∈ N , whose first coordinate is equal to x1y1z and so it also runs
over L. In particular cdh need not be a p-element for all h ∈ N . �

We now want to weaken the hypothesis that G = 〈C〉 = 〈D〉 in Theorem 8.8. To do
so, we have to weaken slightly the conclusion.

We first need the following result:

Lemma 8.9. Let p ≥ 3 be prime. Let G be a finite group with a Sylow p-subgroup P and
a normal p-complement N . Assume that P = 〈C〉 = 〈D〉 for C,D ⊂ P , and that 〈cx, d〉
is a p-group for all x ∈ N and (c, d) ∈ C ×D. Then G = N × P .

Proof. Observe that the hypotheses imply that N = CN(c)CN(d) for all (c, d) ∈ C ×D.
Indeed, for all x ∈ N we have that 〈cx, d〉 is a p-group. Thus, there exists y ∈ N with
cxy, dy ∈ P . Since N ∩ P = 1, it follows that y ∈ CN(d) and xy ∈ CN(c), whence
x ∈ CN(c)CN(d).

By way of contradiction, assume that [P,N ] 6= 1. Note that if R is a Sylow r-subgroup
of N , then G = NG(R)N , whence NG(R) contains a Sylow p-subgroup of G. Thus, P
normalizes a Sylow r-subgroup R of G for each prime divisor r of |N |. So for some r, P
does not centralize R. Thus, without loss we may assume that N is an r-group for some



34 ROBERT GURALNICK, GUNTER MALLE, AND PHAM HUU TIEP

prime r. By passing to a quotient, we may first assume that N is elementary abelian and
then that P acts irreducibly and nontrivially on N .

Now view N as an absolutely irreducible FP -module where F := EndP (N). We can
extend scalars and work over an algebraically closed field. So N = IndPM(W ) for some
irreducible M -module W with M a maximal subgroup of P . Since P/M is cyclic and
N is irreducible over P , we have that N = W1 ⊕ . . . ⊕ Wp where the Wi are pairwise
non-isomorphic irreducible M -modules. Choosing c ∈ C \M , we see that c permutes the
Wi transitively, whence dimCN(c) ≤ (dimN)/p.

Thus we have found c ∈ C with dimFr CN(c) ≤ (dimFr N)/p and similarly for some
d ∈ D. For this choice of (c, d), |CN(c)CN(d)| ≤ |N |2/p < |N |, a contradiction. �

We can now prove another variation on Baer–Suzuki, which is Theorem 1.9 in the
introduction. Note that this includes the usual Baer–Suzuki theorem (for p ≥ 5) by
taking C = D.

Theorem 8.10. Let G be a finite group and p ≥ 5 prime. Let C and D be normal
subsets of G such that H := 〈C〉 = 〈D〉. If 〈c, d〉 is a p-group for all (c, d) ∈ C ×D, then
H ≤ Op(G).

Proof. 1) Let G be a counterexample of minimal order. By minimality, G = H. By the
usual argument, we see that G must have a unique minimal normal subgroup N . Let P
be a Sylow p-subgroup of G.

By induction, G/N is a p-group, whence G = NP and N is not a p-group. For any
c ∈ C, since 〈c〉 is a p-subgroup, we can find x ∈ N such that c′ := cx ∈ C ∩P . It follows
that Nc′ = Ncx = N(cxc−1)c = Nc, and so c ∈ N〈C ∩ P 〉. Thus G = N〈C ∩ P 〉, and
similarly, G = N〈D ∩ P 〉.

2) Suppose that N is a p′-group. Then N ∩P = 1 and NP = N〈C ∩P 〉 by 1), whence
P = 〈C ∩ P 〉 and similarly, P = 〈D ∩ P 〉. Applying Lemma 8.9, we see that P C G, a
contradiction.

Thus we may assume that N = L1 × · · · × Lt where Li ∼= L, a non-abelian simple
group (of order divisible by p). Let Q := P ∩ N = Q1 × · · · × Qt with Qi ≤ Li, and
let T := NG(Q) = XP , where X = X1 × · · · × Xt with Xi := NLi

(Qi). By a result of
Glauberman–Thompson [20, Thm. X.8.13] (see also [16]), it follows that Xi 6= Qi.

Now consider T/Q = (X/Q)(P/Q). Then P/Q ∼= G/N is generated by the images of
C ∩ P and also by the images of D ∩ P by 1), and X/Q is a p′-group. So by Lemma 8.9
applied to T/Q, P/Q must centralize X/Q ∼= (X1/Q1) × · · · × (Xt/Qt). But Xi 6= Qi

and P permutes the Li, hence P must normalize each Li. Since N normalizes each Li,
this implies that Li is normal in G = NP . Recall that N is the unique minimal normal
subgroup of H. Thus, we have shown that N = L1 is simple and so G is almost simple.
Now we have a contradiction by Theorem 8.4(a). �

There is a version of the previous result for linear groups.

Corollary 8.11. Let k be a field of characteristic p with p = 0 or p > 3. Let G be a
subgroup of GLn(k). If C and D are normal unipotent subsets of G with H := 〈C〉 = 〈D〉
such that 〈c, d〉 is unipotent for all (c, d) ∈ C×D, then H is a normal unipotent subgroup
of G.
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Proof. There is no harm in assuming that k is algebraically closed and that G = H. Since
the condition that 〈c, d〉 is unipotent is a closed condition, it suffices to prove the result
in the case where G, C and D are replaced by their Zariski closures. So G = G is an
algebraic group. We may furthermore assume that the unipotent radical of G is trivial.
In particular, the connected component G◦ of G is reductive. By the result for finite
groups, G/G◦ is a p-group (in particular if p = 0, G is connected). If G◦ is trivial,
the result follows. Let B be a Borel subgroup of G◦ with unipotent radical U. Then
NG(B) covers G/G◦. Let P be a maximal (necessarily closed) unipotent subgroup of
NG(B) (so U ≤ P), and let T be a maximal torus of B. Then NG(B)/U = T.(P/U).
Note that P/U is generated by CU/U (as in our earlier arguments). For any m ≥ 1
let T[m] be the m-torsion subgroup of T. Note that T[m] is a finite group. Applying
Lemma 8.9, it follows that [P,T[m]] ≤ U. Since T is the closure of its torsion subgroup,
[P,T] ≤ U. Thus, G normalizes each simple component of G◦ and so we are reduced
to the almost simple case. However a simple algebraic group in characteristic p 6= 2, 3
has no outer automorphisms of order p and so G is simple. Now the result follows by
Theorem 5.11. �
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