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Abstract. We propose a modification to the Cohen–Lenstra prediction for the dis-
tribution of class groups of number fields, which should also apply when the base field
contains non-trivial roots of unity. The underlying heuristic derives from the distribution
of 1-eigenspaces in certain generalized symplectic groups over finite rings. The motiva-
tion for that heuristic comes from the function field case. We also give explicit formulas
for the new predictions in several important cases. These are in close accordance with
known data.

1. Introduction

The class group of a number field K is defined as the quotient Cl(K) := IK/PK of the
group of fractional ideals IK by the subgroup of principal ideals PK in the ring of integers
OK of K. Despite its importance, not much is known about the behavior of these objects.
For instance it is still an open question whether there exist infinitely many number fields
with trivial class group. In the early 1980’s H. Cohen and H.W. Lenstra [6] proposed a
heuristic principle, later extended by Cohen and J. Martinet [7], which makes predictions
on how often a given finite abelian p-group should appear as the p-part Cl(K)p of the class
group in a specified set of number fields. Only very few instances of these conjectures
have been proved (see [5, 10] for important recent progress).

In 2008 it was noticed by the second author [13, 14] that when the base field K0 contains
pth roots of unity the probabilities postulated by Cohen and Martinet do not match with
computational data. In particular this is always the case for p = 2. In the absence of
theoretical arguments, on the basis of his computational data the second author came up
with a conjectural statement [14, Conj. 2.1] describing the behavior of p-parts of class
groups in the presence of pth roots of unity in K0.

Motivated by the works of J. Achter [1, 2] who considered the analogous problem on the
function field side, we develop a method which can be seen as a theoretical justification for
the heuristics of Cohen and Martinet and at the same time for the conjecture in [14]. Our
main objects are 1-eigenspaces of elements in what we call the m-th symplectic groups

Sp
(m)
2n (R) over certain finite rings R (see Definition 3.1). The limit for n → ∞ of these

eigenspace distributions should then give the right predictions for class group distributions
over number fields.
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We use the results proved by the first author [4] to compute distributions in these
m-th symplectic groups (see Theorems 4.4 and 4.6) which allows us to make conjectural
predictions (see Conjecture 5.1) about the behavior of p-parts of class groups of number
fields. For the case when the base field does not contain pth roots of unity, these specialize
to the original Cohen–Lenstra–Martinet predictions (see Example 5.2).

2. Cohen–Lenstra heuristic and roots of unity

In this section we recall the heuristic principle introduced by Cohen and Lenstra to
predict the distribution of p-parts of class groups of imaginary quadratic number fields and
the generalization to arbitrary number fields proposed by Cohen and Martinet. However,
our focus lies on a situation where these predictions seem to fail.

2.1. The Cohen–Lenstra heuristic. Following Cohen and Lenstra [6] we equip finite

groups G with their CL-weight ω(G) :=
1

|Aut(G)|
. For integers q, r ≥ 1 we set

(q)r :=
r∏

i=1

(1− q−i) and (q)∞ :=
∞∏
i=1

(1− q−i).

For a prime p, let Gp denote the set of all isomorphism classes of finite abelian p-groups.
From [6, Ex. 5.10] we have:

Corollary 2.1. The function given by

PCL : Gp −→ [0, 1], G 7→ (p)∞
|Aut(G)|

,

defines a probability distribution on Gp.

This very natural distribution on the set of finite abelian p-groups occurs also in many
other contexts; see [12] for an overview.

In order to present the results of Cohen and Martinet [7] we need to introduce the
following setup.

Definition 2.2. We call a triple Σ := (H, K0, σ) a situation, where

(1) H ≤ Sn is a transitive permutation group of degree n ≥ 2,
(2) K0 is a number field, and
(3) σ is a signature which may occur as signature of a degree n extension K/K0 with

Galois group (of the Galois closure) permutation isomorphic to H.

For a situation Σ = (H, K0, σ) we let K(Σ) denote the set of number fields K/K0 (inside
a fixed algebraic closure) as described in (3).

To a given situation Σ one can attach a non-negative rational number u(Σ), the unit
rank and a ring O(Σ). We give the definition of these terms in a very important special
case, the general case is explained in [7, Chap. 6].

We write χ for the permutation character attached to the embedding H ≤ Sn. It
contains the trivial character 1H exactly once, and we let χ1 := χ− 1H . We assume that
χ1 is the character of an irreducible (but not necessarily absolutely irreducible) H-module;
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and that any absolutely irreducible constituent ϕ of χ1 has Schur index 1. Then O(Σ) is
the ring of integers of the field of values of any absolutely irreducible constituent of χ1.

Now for K ∈ K(Σ) let L denote the Galois closure of K/K0. The action of H makes
O×L ⊗Z Q into a Q[H]-module whose character we denote by χL. Then

u(Σ) := 〈χL, ϕ〉
(see [7, p. 63]), the scalar product of the character χL with an absolutely irreducible
constituent ϕ of χ1. Since χL is rational, this does not depend on the choice of ϕ (nor
does it depend on the choice of K ∈ K(Σ)).

Given a situation Σ = (H, K0, σ) and a finite p-torsion O = O(Σ)-module G, where
p E O is a prime ideal, we set

NΣ(G) := lim
x→∞

|{K ∈ K(Σ) : dK/K0 ≤ x, Cl(K/K0)p
∼= G}|

|{K ∈ K(Σ) : dK/K0 ≤ x}|
(if it exists), where dK/K0 denotes the norm of the discriminant of K/K0 and Cl(K/K0) is
the relative class group of K/K0 (the kernel in the class group of K of the norm map from
K to K0). With this we can present the conjecture of Cohen and Martinet [7, Chap. 6]
predicting the distribution of p-parts of relative class groups of number fields over K0.

Conjecture 2.3 (Cohen and Martinet). Let G be a finite p-torsion O-module, with p 6 |n.
Then NΣ(G) exists and is given by

(q)∞
(q)u

· 1

|G|u|AutO(G)|
,

where u := u(Σ), q := |O/p|, and AutO(G) denotes the group of O-automorphisms of G

Subsequently it was noticed that this conjecture cannot hold for all primes which were
originally allowed by Cohen and Martinet. The reason why Cohen and Martinet excluded
the primes that divided the extension degree n = (K/K0) is that by genus theory the
conjecture cannot be true for such primes. A few years later and after more computations
Cohen and Martinet [8] were forced to enlarge the set of bad primes by those which divide
the order of the common Galois group H of the situation Σ. For the bad behavior of these
primes one can find theoretical arguments in the spirit of genus theory, too. Much later it
was noticed by the second author [13, 14] on the basis of extensive numerical support that
the presence of pth roots of unity in the base field K0 does play a role for the distribution
of p-parts of class groups. In an attempt to explain this deviation, one is led to consider
the analogous situation on the side of function fields.

2.2. The function field case. Three years after [6], E. Friedman and L.C. Washington
[11] linked the distribution of p-parts of the divisor class groups of degree 0 of quadratic
extensions of Fl(t) to equi-distributed sequences of matrices over finite fields. This was
extended by J. Achter as follows. LetHg(Fl) denote the set of monic separable polynomials
of degree g over the finite field Fl and let Cg,f be the hyperelliptic curve of genus g defined
by f ∈ H2g+1(Fl). Achter [1, 2] showed that for a finite abelian p-group G

lim
l→∞

|{f ∈ H2g+1(Fl) : Cl0(Cg,f )p
∼= G}|

|H2g+1(Fl)|
=
|{h ∈ Sp2g(Fp) : ker(h− 12g) ∼= G}|

|Sp2g(Fp)|
,
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where Cl0(Cg,f )p is the Sylow p-subgroup of the Jacobian of Cg,f . Later Achter [2,
Thm. 3.1] established a correspondence between eigenspace distributions in symplectic
similitude groups over finite rings and the distribution of the Jacobian of hyperelliptic
curves. These distributions were computed explicitely by J.S. Ellenberg, A. Venkatesh
and C. Westerland [9] and one consequence of their work is that the distribution of the
p-parts of divisor class groups of degree 0 of quadratic function fields over Fl with p 6 |(l−1)
(which corresponds on the number field side to the case where pth roots of unity are not
contained in the base field) matches the distributions predicted by Cohen–Lenstra and
Friedman–Washington. Following [14, §3] the philosophy should now be that the char-
acteristic 0 number field case can be obtained as the limit for the genus g → ∞ of the
characteristic l function field cases.

3. Distribution of 1-eigenspaces in matrix groups

The ideas and results from the function field case yield the motivation for a more
thorough investigation of eigenspaces in suitable finite matrix groups. Since all finite
abelian p-groups should occur as such eigenspaces, and should carry an alternating form
coming from the Tate pairing, we are led to consider symplectic groups over finite rings
that are not integral domains. We introduce these groups and recall the crucial results
shown by the first author in [4].

Definition 3.1. Let O be the ring of integers of a number field and let p E O be a
non-zero prime ideal. Given natural numbers n and m ≤ f we define the m-th symplectic
group over the ring O/pf as

Sp
(m)
2n (O/pf ) := {h ∈ GL2n(O/pf ) | htJnh ≡ Jn (mod pm)},

where GL2n(O/pf ) is the general linear group and Jn :=

(
0 1n

−1n 0

)
∈ GL2n(O/pf ).

Remark 3.2. From the definition we obtain the following descending chain of groups:

GL2n(O/pf ) = Sp
(0)
2n (O/pf ) ⊇ Sp

(1)
2n (O/pf ) ⊇ · · · ⊇ Sp

(f)
2n (O/pf ) = Sp2n(O/pf ),

where Sp2n(O/pf ) denotes the usual symplectic group over O/pf . Thus, the m-th sym-
plectic groups in a sense ‘interpolate’ between the general linear and the symplectic group
over the non-integral domain O/pf .

Proposition 3.3. Let q := |O/p| and f ∈ N. Then:

(a) |Sp
(0)
2n (O/pf )| = |GL2n(O/pf )| = q4n2(f−1) · |GL2n(Fq)|.

(b) |Sp
(f)
2n (O/pf )| = |Sp2n(O/pf )| = q(2n2+n)(f−1) · |Sp2n(Fq)|.

(c) |Sp
(m)
2n (O/pf )| = q4n2(f−m) · |Sp2n(O/pm)| for 1 ≤ m ≤ f − 1.

Proof. See [4, Prop. 2.7]. �

We are interested in the following limit proportion of elements with a given 1-eigenspace

Pm,q(G) := lim
n→∞

|{g ∈ Sp
(m)
2n (O/pf ) : ker(g − 12n) ∼= G}|

|Sp
(m)
2n (O/pf )|

,
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where G denotes a finite p-torsion O-module. Note that this is trivially a probability mea-
sure on the set of finite p-torsion O-modules. For m ≤ 2 this distribution was computed
explicitely in [4, Thms. 3.8 and 3.23], respectively [3, Rem. 4.27]:

Theorem 3.4. Let G be a finite p-torsion O-module annihilated by pf−1. Then:

(a) P0,q(G) =
(q)∞

|AutO(G)|
,

(b) P1,q(G) =
(q)∞
(q2)∞

· (q)r · q(
r
2)

|AutO(G)|
with r = rkp(G),

(c) P2,q(G) =
(q)∞
(q2)∞

· (q)r−s(q)s · q(
r
2)+(s

2)

(q2)t |AutO(G)|
with r = rkp(G), s = rkp2(G), t = b r−s

2
c,

where q := |O/p|, and rkp(G) denotes the rank of G as a p-module.

In particular one sees that the limit does not depend on O and p, but only on q, and
is also independent of f , as long as G is annihilated by pf−1, which justifies our choice of
notation. The value of |AutO(G)| is computed explicitly in [7, Thm. 2.11].

Remark 3.5. We have no closed formulas for Pm,q(G) for m ≥ 3 and general G, but for
fixed m and G it is possible to calculate Pm,q(G) explicitly, as indicated in [4].

4. u-Probabilities

The concept of u-probability was originally introduced by Cohen and Lenstra (see [6,
Chap. 5]). Here we present a modified version used by various other authors (e.g. J. Lengler
[12]). Throughout, O denotes the ring of integers of an algebraic number field, p E O is
a non-zero prime ideal, and q := |O/p|. We let P denote the set of isomorphism classes
of finite p-torsion O-modules.

Definition 4.1. Given a probability distribution P on P and a natural number u we
define the u-probability distribution with respect to P by the following recursion formula

P (u) : P −→ R, G 7→ P (u)(G) :=
∑
H∈P

∑
y∈H

H/〈y〉∼=G

P (u−1)(H)

|H|
,

where P (0)(G) := P (G) for G ∈ P. Here, 〈y〉 denotes the O-submodule generated by y.
We call P (u)(G) the u-probability of G (with respect to P ).

Remark 4.2. Note that P (u) is in fact a probability distribution on P , since∑
G∈P

P (1)(G) =
∑
H∈P

∑
G∈P

|{y ∈ H | H/〈y〉 ∼= G}|
|H|

· P (H) =
∑
H∈P

P (H) = 1

for any probability distribution P on P , and P (u+1) = (P (u))(1).

We now compute the u-probabilities for the distributions Pi,q given in Theorem 3.4.
For G ∈ P a finite p-torsion O-module of rank rkp(G) = r and k ≥ 0 we set

wk(G) :=


(q)k

(q)k−r|AutO(G)|
if k ≥ r,

0 else,
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and w∞(G) := |AutO(G)|−1 = limk→∞wk(G).
With this we recall the following crucial result from [6, Thm. 3.5]:

Proposition 4.3. Let Z,G ∈ P. Then for all 0 ≤ k ≤ ∞ we have∑
H∈P

wk(H)|{H1 ≤ H : H1
∼= Z, H/H1

∼= G}| = wk(Z)wk(G).

Theorem 4.4. Let G be a finite p-torsion O-module, and q := |O/p|. Then

P
(u)
0,q (G) =

(q)∞
(q)u

· 1

|G|u|AutO(G)|
for all integers u ≥ 0.

Proof. The induction base u = 0 is given by Theorem 3.4, so now let u ≥ 1. By Proposi-
tion 4.3 with k = ∞ we have∑

H∈P

|{H1 ≤ H : H1
∼= Z, H/H1

∼= G}|
|AutO(H)|

=
1

|AutO(Z)||AutO(G)|

for any Z ∈ P . With Z = O/pnO this gives∑
H∈P

|H|=qn|G|

|{y ∈ H : |〈y〉| = qn, H/〈y〉 ∼= G}|
|AutO(H)|

=
1

|AutO(G)|
.

Multiplying this equation by (qn|G|)−u and summing over all n ∈ N we obtain∑
n≥0

∑
H∈P

|H|=qn|G|

|{y ∈ H : |〈y〉| = qn, H/〈y〉 ∼= G}|
|H|u|AutO(H)|

=
∑
n≥0

1

qun|G|u|AutO(G)|

which by induction is equivalent to

(q)u−1

(q)∞

∑
H∈P

∑
y∈H

H/〈y〉∼=G

P
(u−1)
0,q (H)

|H|
=

1

|G|u|AutO(G)|
∑
n≥0

1

qun
=

1

(qu)1 |G|u|AutO(G)|
.

�

Next, we determine the u-probabilities for the distribution given by the first symplectic
groups. For this we show first the following result.

Lemma 4.5. For G ∈ P of p-rank r and all u ∈ N we have∑
H∈P

rkp(H)=r

|{y ∈ H : H/〈y〉 ∼= G}|
|H|u|AutO(H)|

=
qr+u − 1

qr(qu − 1)
· 1

|G|u|AutO(G)|
.

Proof. Let u ∈ N. Splitting up the sum in question according to the order of y we get∑
H∈P

rkp(H)=r

|{y ∈ H | H/〈y〉 ∼= G}|
|H|u|AutO(H)|

=
∑
n≥0

∑
H∈P

rkp(H)=r

|{y ∈ H : |〈y〉| = qn, H/〈y〉 ∼= G}|
|H|u|AutO(H)|

.



A CLASS GROUP HEURISTIC BASED ON 1-EIGENSPACES 7

Writing Zn := O/pnO, the inner sum equals∑
H∈P

rkp(H)=r

|AutO(Zn)| · |{H1 ≤ H : H1
∼= Zn, H/〈H1〉 ∼= G}|

|H|u|AutO(H)|

=
|AutO(Zn)|
(q)r|G|uqnu

∑
H∈P

wr(H) |{H1 ≤ H : H1
∼= Zn, H/〈H1〉 ∼= G}|

=
|AutO(Zn)|
(q)r|G|uqnu

wr(Zn)wr(G) by Proposition 4.3.

Note that the middle sum may be extended over all H, since wr(H) = 0 if rkp(H) > r.
Now wr(Z0) = 1 and wr(Zn) = (q)r/(q)r−1|AutO(Zn)|−1 when n > 0, so the left hand side
in the assertion becomes

wr(G)

(q)r|G|u

(
1 +

∑
n≥1

wr(Zn)|AutO(Zn)|
qnu

)
=

wr(G)

(q)r|G|u

(
1 +

(q)r

(q)r−1

∑
n≥1

1

qnu

)

=
1

|G|u|AutO(G)|

(
1 + (1− q−r)

1

qu − 1

)
=

qr+u − 1

qr(qu − 1)
· 1

|G|u|AutO(G)|
as claimed. �

Theorem 4.6. Let G be a finite p-torsion O-module of rank r, and q := |O/p|. Then

P
(u)
1,q (G) =

(q2)u(q)∞
(q)u(q2)∞

· (q)r+uq
(r
2)

(q)u|G|u|AutO(G)|
.

Proof. Let G ∈ P of p-rank r. The case u = 0 holds by Theorem 3.4(b). So by induction
and Definition 4.1 we need to compute

(q2)u−1(q)∞
(q)u−1(q2)∞

(
(q)r+u−1 q(

r
2) X(r) + (q)r+u q(

r+1
2 )X(r + 1)

)
where

X(s) :=
∑
H∈P

rkp(H)=s

∑
y∈H

H/〈y〉∼=G

1

(q)u−1|H|u|AutO(H)|
for s ∈ {r, r + 1}.

With

Y :=
1

(q)u|G|u|AutO(G)|

Lemma 4.5 states that X(r) =
qr+u − 1

qr+u
·Y , and Theorem 4.4 gives Y = X(r)+X(r +1),

so

X(r + 1) = Y −X(r) =
(
1− qr+u − 1

qr+u

)
Y =

1

qr+u
Y.
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Then the left hand side of the assertion becomes

(q2)u−1(q)∞ q(
r
2)

(q)u−1(q2)∞

(
(q)r+u−1

qr+u − 1

qr+u
+ (q)r+u qr 1

qr+u

)
Y

=
(q2)u−1(q)∞(q)r+u q(

r
2)

(q)u−1(q2)∞qu
(qu + 1) Y =

(q2)u(q)∞
(q)u(q2)∞

· (q)r+u q(
r
2)

(q)u|G|u|AutO(G)|
as claimed. �

5. Distribution of class groups of number fields

We can now present our conjecture about the distribution of p-parts of class groups
using the results from the last section. Here we restrict ourselves to situations Σ such
that O(Σ) = Z.

Conjecture 5.1. Let p be a prime, Σ = (H, K0, σ) be a situation with gcd(p, |H|) = 1
such that O(Σ) = Z, and K0 be a number field containing the pmth but not the pm+1th
roots of unity. Then a given finite abelian p-group G occurs as the p-part of a relative

class group Cl(K/K0) for K ∈ K(Σ) with probability P
(u)
m,p(G), where u = u(Σ).

Let us consider some special cases of this conjecture in which we have derived explicit
formulas.

Example 5.2. In the case m = 0, which should correspond to situations were no non-
trivial pth roots of unity are contained in the base field, Theorem 4.4 yields that the
probability in Conjecture 5.1 that a finite abelian p-group G occurs as the p-part of a
class group is given by

P
(u)
0,p (G) =

(p)∞
(p)u

· 1

|G|u|Aut(G)|
.

This is exactly the probability predicted by Cohen, Lenstra and Martinet (see Conjec-
ture 2.3).

Example 5.3. Next consider the case m = 1, which should apply when pth but no higher
roots of unity are present. Then by Theorem 4.6 the distribution in Conjecture 5.1 is given
by

P
(u)
1,p (G) =

(p2)u(p)∞
(p)u(p2)∞

· (p)r+up
(r
2)

(p)u|G|u|Aut(G)|
.

This distribution is exactly the one proposed by the second author in [14, Conj. 2.1]
for the case when the base field contains pth but no higher roots of unity. This was
derived from, and is in very close accordance with, huge amounts of computational data
in a number of situations, see [14] for details, but had no heuristic underpinning. Our
approach via eigenspaces in mth symplectic groups gives a theoretical explanation for the
above formula. As shown in [14, Prop. 2.2], the probability for a class group to have
p-rank r would then equal

(p2)u(p)∞
(p)u(p2)∞

· 1

pr(r+2u+1)/2 (p)r

.
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Example 5.4. Finally, assume that m = 2, which should apply if the p2rd but no higher

roots of unity are present in the base field. For u = 0, the value of P
(0)
2,p (G) is given in

Theorem 3.4(c). The general formulae for u ≥ 1 seem to get quite messy, therefore we
only give some example values. When u = 1 we find

P
(1)
2,p (Z/pkZ) =

(p2)u(p)∞
(p)u(p2)∞

· (p)r+u p(r
2)

(p)u|Z/pkZ|u |Aut(Z/pkZ)|
(for this calculation we have to sum over groups of types Z/pαZ×Z/pβZ with α ≥ k ≥ β),
while for the smallest non-cyclic p-group the result is

P
(1)
2,p (Z/pZ× Z/pZ) =

(p)∞
(p2)∞

· p3 + p2 − 1

p7(p− 1)
.

From the previous result we obtain

P
(2)
2,p (1) =

(p4)1(p)∞
(p)1(p2)∞

for the trivial group at u = 2.

One might expect that the case O 6= Z can be treated with similar methods as those
presented above. The main problem seems to be to find a suitable adaptation of the
concept of u-probability to the case of p-torsion modules. The obvious approach does not
seem to yield results which are in agreement with computational data from [13, 14].
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