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NILPOTENT AND ABELIAN HALL SUBGROUPS
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ANTONIO BELTRÁN, MARÍA JOSÉ FELIPE, GUNTER MALLE, ALEXANDER MORETÓ,
GABRIEL NAVARRO, LUCIA SANUS, RONALD SOLOMON, AND PHAM HUU TIEP

Abstract. We give a characterization of the finite groups having nilpotent or
abelian Hall π-subgroups that can easily be verified using the character table.

1. Introduction

One of the main themes in finite group theory is to study the interaction between
global and local structure: if p is a prime and G is a finite group, we seek to analyze
the relationship between G and its p-local subgroups. Ideally, a local property of
G can be read off from the character table of G.

There are not many theorems analyzing local and global structure from the point
of view of two different primes, as we do in the main result of this paper.

Theorem A. Let G be a finite group, and let p and q be different primes. Then
some Sylow p-subgroup of G commutes with some Sylow q-subgroup of G if and only
if the class sizes of the q-elements of G are not divisible by p and the class sizes of
the p-elements of G are not divisible by q.

Theorem A, of course, gives us a characterization (detectable in the character ta-
ble) of when a finite group possesses nilpotent Hall {p, q}-subgroups. The existence
of Hall subgroups (nilpotent or not) is a classical subject in finite group theory,
with extensive literature. This characterization in our Theorem A can be seen as a
contribution to Richard Brauer’s Problem 11. In his celebrated paper [Br], Brauer
asks about obtaining information about the existence of (certain) subgroups of a
finite group given its character table.

In the course of proving Theorem A we show that for finite simple groups, com-
muting Sylow subgroups for different primes are actually always abelian; see The-
orem 2.1.
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Several possible extensions of Theorem A are simply not true. For instance,
the fact that p - |G : CG(x)| for every q-element x ∈ G does not guarantee that a
Sylow p-subgroup of G commutes with some Sylow q-subgroup of G: the semi-affine
groups of order qp(qp − 1)p provide solvable examples for every choice of p and q.
Furthermore, if p - |G : CG(x)| for every q-element x ∈ G, it is not even true that
P must normalize some Sylow q-subgroup of G. (G = M23 for (q, p) = (3, 5), or
G = J4 with (q, p) = (3, 7) are examples.) However, this assertion is true if G is
p-solvable or q-solvable, or if p = 2, as we will show in Section 4 below.

Recently, the finite groups with nilpotent Hall subgroups have also received at-
tention in [M]. Using Theorem A and the results of [M], we can deduce the following.

Theorem B. Let G be a finite group, and let π be a set of primes. Then G has
nilpotent Hall π-subgroups if and only if for every pair of distinct primes p, q ∈ π,
the class sizes of the p-elements of G are not divisible by q.

Theorem B gives an algorithm to determine from the character table if a group
has nilpotent Hall π-subgroups. (The somewhat weaker result that the property of
having nilpotent Hall subgroups is shared by groups with the same character table
was proved in [KS].)

As a consequence of Theorem B and the main results of [NT] and [NST], we now
have the following explicit way to detect from the character table of a finite group
G whether G possesses an abelian Hall π-subgroup, for any set π of primes.

Theorem C. Let G be a finite group, and let π be a set of primes. Then G has
abelian Hall π-subgroups if and only if the two following conditions hold:

(i) For every p ∈ π and every p-element x ∈ G, |G : CG(x)| is a π′-integer.
(ii) If {p} = π ∩ {3, 5}, then for every irreducible character χ in the principal

p-block of G, χ(1) is not divisible by p.

The examples of (G, π, p) = (Ru, {3}, 3) and (Th, {5}, 5) show that condition (ii)
cannot be removed from Theorem C.

As might be expected, the proofs of Theorems A, B and C use the Classification
of Finite Simple Groups.

2. Simple Groups and Theorem A

2.1. Results for simple groups. The goal of this section is to prove Theorem 2.1,
which yields a strong form of Theorem A for simple groups, and another auxiliary
result, Theorem 2.2.

Theorem 2.1. Let X be a finite non-abelian simple group and let p and q be
distinct prime divisors of |X|. Suppose that q - |X : CX(g)| for every p-element
g ∈ X and p - |C : CX(h)| for every q-element h ∈ X. Then p, q > 2 and X has
an abelian Hall {p, q}-subgroup.

Indeed, Theorem 2.1 holds for all finite quasi-simple groups, as follows easily from
the arguments in this paper. However, since, in contrast to Theorem A, we claim
existence of abelian Hall subgroups, Theorem 2.1 obviously does not generalize to
arbitrary finite groups.

Theorem 2.2. Let X be a finite non-abelian simple group of order divisible by an
odd prime r. Then X contains a conjugacy class of r-elements of even size.
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We begin with some obvious observations. If x ∈ G, then we denote by xG the
conjugacy class of x in G.

Lemma 2.3. (i) For each simple group X it suffices to prove the analogue of
Theorems 2.1 and 2.2 for some quasi-simple group L such that X ∼= L/Z(L).

(ii) The case min(p, q) = 2 of Theorem 2.1 follows from Theorem 2.2.

Proof. (i) Suppose that X satisfies the hypothesis of Theorem 2.1, and that the
analogue of Theorem 2.1 holds for some quasi-simple group L with X = L/Z(L).
Let g ∈ L be any p-element and let D/Z := CX(gZ) for Z := Z(L). Then for any
x ∈ D we have xgx−1 = f(x)g for some f(x) ∈ Z. Moreover, f ∈ Hom(D,Z),
Ker(f) = CL(g) =: C, and f(x)|g| = 1 for all x ∈ G, i.e. Im(f) is a p-group.
Thus |D : C| is a p-power. It follows that the integers |(gZ)X | = |L : D| and
|gL| = |L : C| have the same q-part and so |gL| is coprime to q. Similarly, |hL| is
coprime to p for all q-elements h ∈ L. Since the analogue of Theorem 2.1 holds for
L, L contains an abelian Hall {p, q}-subgroup P × Q, whence (P × Q)Z/Z is an
abelian Hall {p, q}-subgroup for X.

A similar argument proves the part of the claim concerning Theorem 2.2.
(ii) Suppose p = 2 < q. Since q||X|, by Theorem 2.2 there is a conjugacy class

xX of q-elements in X of even size, a contradiction. �

Lemma 2.4. Theorems 2.1 and 2.2 hold in the case X is an alternating group, a
sporadic group, or 2F4(2)′.

Proof. The case of the 26 sporadic groups and 2F4(2)′ can be checked directly using
[GAP]. (We remark that the only examples among the sporadic groups are J1 for
{p, q} = {3, 5} and J4 for {p, q} = {5, 7}, and in both cases S has cyclic Hall {p, q}-
subgroups.) Suppose that X = An and n ≥ p > q ≥ 2. Then CSn(g) ∼= Cp × Sn−p

for a p-cycle g ∈ S. If p ≥ 5, we have that |gSn | =
(
n
p

)
(p− 1)! is divisible by 2q and

so q divides |gX |. If p = 3, then n ≥ p + 2 and so |gX | = |gSn | is again divisible by
q. �

The rest of the section is devoted to proving Theorems 2.1 and 2.2 for simple
groups of Lie type X 6∼= 2F4(2)′. For the sake of convenience, we rename p, q in
Theorem 2.1 to r, s. We will consider the following setup: X = GF /Z(GF ), where
G is a simple simply connected algebraic group over the algebraic closure of a finite
field of characteristic p and F : G → G is a Steinberg endomorphism. We let q
denote the absolute value of all eigenvalues of F on the character group of an F -
stable maximal torus of G. Also, we will sometimes use the notation SLε to denote
SL when ε = + and SU when ε = −, and similarly for PSLε, GLε. Furthermore,
Eε

6(q) denotes E6(q) when ε = + and 2E6(q) when ε = −. In these cases, ε will also
be treated as ε1 in numerical expressions like qm − εn, etc. Finally, for types E6

and E7 we will use subscripts sc for groups of simply connected type.

Lemma 2.5. Theorems 2.1 and 2.2 hold in the case X is a simple group of Lie
type in characteristic r = p.

Proof. By Lemma 2.4 we may assume that (X, p) 6= (2F4(2)′, 2). By Lemma 2.3(i)
we may replace X by G := GF . Set s := 2 in the case of Theorem 2.2. By [C,
Prop. 5.1.7], G contains a regular unipotent p-element g ∈ G. We claim that s
divides |gG|. Indeed, otherwise s - |gG| and so CG(g) contains a Sylow s-subgroup
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S of G. But every semisimple element in CG(g) belongs to Z(G) by [C, Prop. 5.1.5],
whence S ≤ Z(G). It follows that s - |X|, a contradiction. �

Proof of Theorem 2.2. Assume the contrary: |X : CX(x)| is odd for all r-elements
x ∈ X. By Lemmas 2.4 and 2.5 we see that X is a simple group of Lie type in
characteristic p for some prime p 6= r and (X, p) 6= (2F4(2)′, 2).

Note that if 1 6= g ∈ X is a real r-element, then |NX(〈g〉) : CX(g)| is even
and so |gX | is even. Thus X cannot contain any real r-element g 6= 1. By [TZ,
Prop. 3.1], it follows that

(1) X ∈ {PSLn(q),PSUn(q) | n ≥ 3} ∪ {PΩ±
4n+2(q) | n ≥ 2} ∪ {E6(q), 2E6(q)}.

By Lemma 2.3(i) we may replace X by G := GF , or by some quotient L = G/Z
with Z ≤ Z(G).

Suppose first that G = SLn(q) with n ≥ 3, and set k := ordr(q) ≤ n. If k ≤ n/2,
then SLn(q) ≥ Sp2k(q) contains a nontrivial real r-element by [TZ, Prop. 3.1], a
contradiction. Similarly, if 2|k, then again SLn(q) ≥ Spk(q) contains a nontrivial
real r-element. Thus k > n/2 and k is odd. Now it is easy to see that H := SLk(q)
contains an r-element g with CH(g) ∼= C(qk−1)/(q−1). Embedding H naturally in
SLn(q), we get that

|gG| = |GLn(q)|
(qk − 1) · |GLn−k(q)|

= q(
n
2)−(n−k

2 ) ·
∏n

j=n−k+1(q
j − 1)

qk − 1

is even, again a contradiction.
The same argument as above applies to the case G = SUn(q) if we replace q by

−q.
Suppose now that X = PΩε

4n+2(q) with n ≥ 2. Then we replace X by L =
Ωε

4n+2(q). If r|
∏2n

j=1(q
2j − 1), then Ωε

4n+2(q) > Ω4n+1(q) contains a nontrivial real
r-element by [TZ, Prop. 3.1], a contradiction. So r -

∏2n
j=1(q

2j−1) but r|(q2n+1−ε).
Now it is easy to see that H := SOε

4n+2(q) contains an r-element g ∈ Ωε
4n+2(q) with

CH(g) ∼= Cq2n+1−ε. It follows that |gL| is even, a contradiction.
Finally, let G := Eε

6(q)sc. If r divides |F4(q)|, then G > F4(q) contains a
nontrivial real r-element by [TZ, Prop. 3.1], a contradiction. So r - |F4(q)| but
r|(q5− ε)(q9− ε). In particular, r is a Zsigmondy prime divisor for q5− ε or q9− ε.
Inspecting the centralizers of semisimple elements in G of order divisible by r, as
described in [D], one sees that there exist r-elements h with |hG| even, again a
contradiction.

An alternate way to deal with the simple groups X in (1) is as follows. Let
P ∈ Syl2(G). If q is even, then CG(P ) ≤ Z(G)P by [C, Prop. 5.1.5] and so no
non-central r-element x ∈ G can centralize P , a contradiction. Hence q is odd. In
this case, by [GLS, Theorem 4.10.6], there is a commuting product S(P ) 6= 1 of
fundamental SL2(q)-subgroups in G and a Cartan subgroup H of G normalizing
S(P ) such that CG(P ) ≤ S(P )H. In particular, any odd prime divisor of |CG(P )|
divides q2 − 1. By assumption, some nontrivial r-element x ∈ G centralizes P ,
whence r|(q2−1). But then a direct factor SL2(q) of S(P ) contains a real r-element
y 6= 1, again a contradiction. �

We will now prove the following result, which, together with Lemmas 2.4, 2.5
and Theorem 2.2, implies Theorem 2.1.
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Theorem 2.6. Let X be a finite non-abelian simple group of Lie type defined over
Fq, q a power of a prime p, and let r and s be distinct odd prime divisors of |X|
different from p. Suppose that s - |X : CX(g)| for every r-element g ∈ X and
r - |C : CX(h)| for every s-element h ∈ X. Then X has an abelian Hall {r, s}-
subgroup.

2.2. Proof of Theorem 2.6 for classical groups. Throughout this subsection,
we assume that X is a simple classical group.

Proposition 2.7. Theorem 2.6 holds in the case where X = PSLε
n(q), ε = ±, and

at least one of the primes r, s divides q − ε.

Proof. For definiteness, assume r|(q − ε). By Lemma 2.3(i), we may replace X by
G := SLε

n(q). Let V = Fn
q , respectively Fn

q2 , denote the natural G-module for ε = +,
respectively ε = −. In a suitable basis of V , a Sylow r-subgroup R of G contains
a subgroup RT of order rt(n−1), with rt := (q − ε)r, of the diagonal subgroup
T ∼= Cn−1

q−ε of G, and moreover CG(RT ) = T . By assumption, any s-element y ∈ G
is centralized by a Sylow r-subgroup of G. Thus a conjugate of y is centralized by
RT and so is contained in T . It follows that |y| divides q − ε, whence s|(q − ε).

Suppose now that n ≥ r + 1. Then we can find α ∈ F×q of order (qr − ε)r = rt+1

and consider the r-element g ∈ G conjugate (in G := SLn(Fq)) to

diag(α, αqε, . . . , α(qε)r−1
, α−

(qε)r−1
qε−1 , 1, . . . , 1︸ ︷︷ ︸

n−r−1

).

Note that α−
(qε)r−1

qε−1 has order r. It follows that

|gG| = |SLε
n(q)|

(qr − ε) · |GLε
n−r−1(q)|

=
|GLε

n(q)|
|GLε

r+1(q)| · |GLε
n−r−1(q)|

·
|GLε

r+1(q)|
(qr − ε)(q − ε)

which is divisible by
r−1∏
j=2

(qj − εj) · (qr+1 − 1),

a multiple of s, a contradiction.
We have shown that n ≤ r, and so n ≤ s as well by symmetry. Assume now that

n = r < s. Then we can find β ∈ F×q of order s and consider the s-element

h := diag(β, β−1, 1, . . . , 1︸ ︷︷ ︸
r−2

) ∈ G.

Then

|hG| = |SLε
r(q)|

(q − ε) · |GLε
r−2(q)|

= q2r−3 · qr − ε

q − ε
· qr−1 − 1

q − ε

which is divisible by r, again a contradiction.
Consequently, n < min(r, s). In this case, we have that T contains an abelian

Hall {r, s}-subgroup of G. �

Corollary 2.8. Suppose that G = SLε
r(q) with r|(q − ε). Then CG(R) = Z(G) =

Z(R) for R ∈ Sylr(G).
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Proof. In the notation of the proof of Proposition 2.7, we can choose R = 〈RT , g〉,
where g is a permutation matrix of order r in the chosen basis of V . Suppose
x ∈ CG(R). Then x ∈ CG(RT ) = T is diagonal. Now the condition [x, g] = 1
implies that x acts via scalars on V , and so x ∈ Z(G). Also, Z(G) = Z(R) as
dim V = r. �

In view of Proposition 2.7, in the case X is a simple classical group of Theo-
rem 2.6, we may assume that r, s are both coprime to q − ε = |GLε

n(q) : SLε
n(q)| if

X = PSLε
n(q). This observation, together with Lemma 2.3(i), implies that in this

case we may replace X by G := GLε
n(q). On the other hand, since r, s > 2, in the

case X = PΩε
d(q) we may replace X by G := GOε

d(q) (the full orthogonal group on
a d-dimensional quadratic space of type ε over Fq; in particular, ε is vacuous if d
is odd). Similarly, X = PSp2n(q) can be replaced by G := Sp2n(q). Thus in what
follows we will prove Theorem 2.6 for these group G that we just defined:

(2) G = GLn(q), GUn(q), Sp2n(q), GOε
d(q).

Correspondingly, let F := Fq, F2
q, Fq, or Fq, Cl := GL, GU, Sp, or GO, and let

V := Fn, Fn, F2n, or Fd, respectively, denote the natural G-module. In the case
Cl = GL, we will assume formally that V is endowed with the zero bilinear form.

As before, let r be an odd prime divisor of |G| coprime to q. For the groups G
in (2), let

er := ordr(q), ordr(−q), ordr(q), ordr(q),
respectively. If Cl = GLε, let dr := er. If Cl = Sp or GO, let dr := lcm(2, er).
Furthermore, if Cl = GO, define εr := + if er is odd and εr := − of er is even. It
is shown in [GL, Chapter 3, §8] that if Z is a cyclic subgroup of G of order r, then
a nontrivial FZ-submodule V (r) of V is orthogonally (with respect to the bilinear
or hermitian form on V ) indecomposable if and only if

dimF(V (r)) = dr

and furthermore V (r) has type εr if Cl = GO.
Now, as shown in [GL, Chap. 4, §10] and [GLS, Chap. 4, §4.10], a Sylow r-

subgroup R of G has the form R = RT o RW , with RT (the “toral part” of R)
being homocyclic abelian. Furthermore, there is an orthogonal decomposition of V
as FRT -module:

V = V0 ⊥ V1 ⊥ . . . ⊥ Vm,

with Vi
∼= V (r) for 1 ≤ i ≤ m (and V0 may be the zero subspace). Next, dimF V0 <

dr if Cl = GLε or Sp. If Cl = GO, then either dimF V0 < dr, or dimF V0 = dr but
V0 has type −εr. Moreover,

RT = R1 × . . .×Rm,

with Ri a cyclic subgroup of a cyclic maximal torus Ti of the isometry group Cl(Vi)
of Vi, acting orthogonally indecomposably on Vi and trivially on Vj for all j 6= i.
Note that |T1| = qdr − εdr in the case Cl = GLε and |T1| = qdr/2 + (−1)er in the
case Cl = Sp. If Cl = GO, then |T1| = qdr/2 − εr; in particular,

(3) r|(qdr/2 − εr).

In either case, if i > 0 and 1 6= x ∈ Ti, then x fixes no nonzero vector of Vi.
Furthermore, for

T = T1 × . . .× Tm
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one has that
(a) CG(RT ) = Cl(V0)× T , and
(b) there is a subgroup Σ of NG(T ) with Σ isomorphic to the symmetric group

Sm acting naturally on the sets {V1, . . . , Vm}, {T1, . . . , Tm}, and {R1, . . . , Rm},
and with RW (the “Weyl part” of R) being a Sylow r-subgroup of Σ.

Again, we can define ds, V (s), εs, subgroups S1, . . . , Sm′ , cyclic tori T̃1, . . . , T̃m′ ,
and an orthogonal decomposition

V = U0 ⊥ U1 . . . ⊥ Um′

of V as FST -module for S = ST o SW , where S ∈ Syls(G); in particular, ST =
S1 × . . .× Sm′ and Si ≤ T̃i ≤ Cl(Ui). Since the roles of r and s are symmetric, we
may assume that

(4) dr ≤ ds, and s < r if dr = ds.

Proposition 2.9. Theorem 2.6 holds for simple classical groups X in the case s
divides |T1|.

Proof. (i) By assumption, T1 contains an element x of order s, where T1 ≤ Cl(V1)
and V1 is an orthogonal direct summand of V . Hence dr = dimF V1 ≥ ds, and so
dr = ds =: d by the choice made in (4). If furthermore Cl = GO, then s|(qd/2−εr) =
|T1| by the assumption and also s|(qd/2 − εs) = |T̃1| by (3). It follows that

(5) εr = εs.

In particular, the quadratic spaces V1 and U1 are isometric when Cl = GO. Clearly,
V1 and U1 are also isometric in the other cases as they have the same dimension.

(ii) Here we show that m = m′. Indeed, note that

(6) dimF U0 + m′d =
m′∑
i=0

dimF Ui = dimF V =
m∑

i=0

dimF Vi = dimF V0 + md.

If dimF V0, dimF U0 < d, then

|(m−m′)d| = |dimF V0 − dimF U0| < d

and so m = m′. Assume next that dimF V0 = d. It follows that Cl = GO, and V
has type −εm+1

r , as V0 has type −εr. Now if U0 = 0, then m′ = m + 1 by (6), and
V has type εm+1

r according to (5), a contradiction. Hence 0 < dimF U0 ≤ d, whence
dimF U0 = d as d|dimF V = (m + 1)d, and so m′ = m by (6).

It now follows that dimF U0 = dimF V0. As mentioned at the end of (i), Ui and
Vi are isometric when i = 1, 2, . . . ,m. Hence, U0 and V0 are isometric by Witt’s
theorem. So without loss we may now assume that Ui = Vi for all i. In turn, this
allows us to write

ST = S1 × . . .× Sm

with Si < Ti. (Indeed, in the case of GLε, |T1| = qd − εd = |T̃1|. If Cl = GO,
then |T1| = qd/2 − εr and we have εr = εs by (5). Finally, when Cl = Sp, s|(qd/2 +
(−1)er ) = |T1| and s|(qd/2 + (−1)es) = |T̃1| imply er = es. Thus in all cases, the
role of the cyclic torus T̃1 for s can be played by the cyclic torus T1 for r.)

(iii) Next we show that s - |Cl(V0)|. This is clear in the case dimF V0 < d.
In particular, we are done if Cl = GLε or Sp. Assume now that Cl = GO and



8 BELTRÁN, FELIPE, MALLE, MORETÓ, NAVARRO, SANUS, SOLOMON, AND TIEP

dimF V0 = d. In this case, V0 has type −εr = −εs, and so GO(V0) cannot contain
any element of order s as well.

(iv) Now choose an element y ∈ G of order |y| = exp(S) ≥ s. By hypothesis, we
may assume that y centralizes R. In particular, y ∈ CG(RT ) = Cl(V0)× T . Since
s - |Cl(V0)| by (iii), y ∈ T . As T = T1 × . . .× Tm is homocyclic, |y| ≤ |T1|s =: sa,
and so

(7) exp(S) ≤ sa.

Assume in addition that m ≥ s. Then we may assume that SW contains an
element π that permutes V1, . . . , Vs cyclically and fixes each Vj with j > s. Also
choose z ∈ T1 of order sa. It is easy to check that

(zπ)s = diag(z, zπ, zπ2
, . . . , zπs−1

) ∈ T1 × . . .× Ts

and so zπ ∈ G has order sa+1, contrary to (7).
We have shown that m < s < r (recalling (4)). In this case,

RW = SW = 1, RT , ST ≤ T,

whence T contains R × S, an abelian Hall {r, s}-subgroup of G, completing the
proof. �

Proposition 2.10. Theorem 2.6 holds for simple classical groups in the case s -
|T1|.

Proof. Consider any nontrivial s-element x ∈ G. By assumption, some conjugate
gxg−1 of x centralizes R, and so gxg−1 ∈ CG(RT ) = Cl(V0) × T . But s - |T1|, so
gxg−1 ∈ Cl(V0). It follows that V0 6= 0 and Cl(V0) contains elements of order s. In
particular,

ds ≤ dimF V0 ≤ dr,

whence dimF V0 = dr = ds =: d by (4) and Cl = GO. Since the type of V0 is −εr,
we must also have that εs = −εr. Furthermore,

(8) dimF CV (x) = dimF CV (gxg−1) ≥
m∑

i=1

dimF Vi = md.

Now we choose

x = diag(z1, z2, . . . zm′) ∈ S1 × . . .× Sm′

with |zi| = s. As noted above, zi acts fixed-point-freely on Ui, and so

dimF CV (x) = dimF U0 ≤ d.

Together with (8), this implies that m = 1, dimF V = 2d, m′ = 1, and dimF U0 = d.
We have shown that V = V0 ⊥ V1 = U0 ⊥ U1, with V1

∼= U0 of type εr = −εs

and U1
∼= V0 of type εs = −εr. Without loss we may assume that U0 = V0 and

U1 = V1. Now R = RT < GO(V1) and S < GO(U1) = GO(V0). It follows that

G > GO(V0)×GO(V1) > R× S.

Therefore R× S is an abelian Hall {r, s}-subgroup of G, completing the proof. �
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2.3. Proof of Theorem 2.6 for exceptional groups. We now turn to the case of
exceptional simple groups of Lie type. In what follows, we consider the cyclotomic
polynomials, over Q(

√
p) in the case of Suzuki and Ree groups (see [BM, §F]) and

over Q otherwise, that occur in the generic order of G.
First we record a simple observation:

Lemma 2.11. Let G be a finite group and r be a prime. Assume that x ∈ G is an
element of order r such that CG(x) contains a Sylow r-subgroup R of G. Assume
in addition that CG(x) contains a normal subgroup D, where |CD(R1)| divides
t|Z(R1)| for a Sylow r-subgroup R1 of D and for some integer t. Then |CG(R)|
divides t|Z(R)| · |CG(x)/D|.

Proof. Note that x ∈ Z(R) and we can take R1 = D ∩R. Now,

CD(R) = CD(R1) ∩CD(R)

contains a normal subgroup Z(R1) ∩CD(R) ≤ Z(R) of index dividing t. It follows
that |CD(R)| divides t|Z(R)|. Since CG(R) ≤ CG(x) and D �CG(x), we conclude
that |CG(R)| divides t|Z(R)| · |CG(x)/D|. �

Proposition 2.12. Let G be a simple simply connected algebraic group such that
G = GF is of exceptional type. Let r be an odd prime that either divides the order
of the Weyl group of G, or divides two distinct polynomials Φd(q) occurring in the
generic order of G. Then one of the following holds for a Sylow r-subgroup R of G:

(a) CG(R) = Z(G)Z(R);
(b) G = E6(q)sc, r = 5|(q − 1), |CG(R)| divides |Z(R)|(q − 1)2;
(c) G = 2E6(q)sc, r = 5|(q + 1), |CG(R)| divides |Z(R)|(q + 1)2;
(d) G = E7(q)sc, r = 3, |CG(R)| divides |Z(R)|(q − ε) where q ≡ ε (mod 3);
(e) G = E7(q)sc, r = 5, |CG(R)| divides |Z(R)|(q − ε)3 where q ≡ ε (mod 5);
(f) G = E7(q)sc, r = 7, |CG(R)| divides |Z(R)|(q − ε) where q ≡ ε (mod 7);

or
(g) G = E8(q), r = 7, |CG(R)| divides |Z(R)|(q − ε)2 where q ≡ ε (mod 7).

Proof. If r divides two distinct cyclotomic polynomials occuring in the generic order
of G, then r divides the order of the Weyl group of G, by [BM, Cor. 3.13]. Hence
the assumptions exclude the Suzuki and Ree groups, except for G = 2F4(q2) with
r = 3.

In all cases with r = 3, and also when r = 5 and G = E8(q), the normalizer of a
Sylow r-subgroup of G is given in [MN, Tab. 1], and conclusion (a) follows, except
when G = E7(q) with r = 3. In the latter case, we have 3|(q − ε) for some ε = ±1.
Let x be a central element of order 3 in a Levi subgroup L ≤ G of type Eε

6T1, where
|T1| = q−ε. Since any reductive overgroup of L has center of order coprime to 3, we
must have L = CG(x). Note that CG(x) contains a Sylow 3-subgroup R of G, and
a normal subgroup D ∼= Eε

6(q) of index q− ε. Also, Z(D) < R1 := D∩R ∈ Syl3(D)
and so by the E±

6 case we have that CD(R1) = Z(R1). Hence |CG(R)| divides
|Z(R)|(q − ε) by Lemma 2.11 (taking t = 1).

The only remaining possibilities for primes dividing two cyclotomic polynomials
are

(i) r = 5, G = Eε
6(q)sc and q ≡ ε (mod 5),

(ii) r = 5, 7, G = E7(q)sc and r|(q2 − 1), or
(iii) r = 7, G = E8(q) and r|(q2 − 1).
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First assume that G = E6(q)sc. Then, a Sylow 5-subgroup R of G is contained
in a Levi subgroup L of type A4A1T1. Let x ∈ L be a central 5-element of L.
Since any reductive overgroup of L has center of order coprime to 5, we must have
L = CG(x). Furthermore, CG(x) contains a normal subgroup D ∼= SL5(q)×SL2(q)
of index q − 1. By Corollary 2.8 the centralizer of a Sylow 5-subgroup of the SL5-
factor is just its center. For the SL2-factor, the centralizer of a Sylow 5-subgroup
has order q − 1. It follows that |CD(R1)| divides (q − 1)|Z(R1)| for R1 ∈ Sylr(D),
and so the claim follows by Lemma 2.11 (with t = q − 1) in this case. Entirely
similar arguments apply for 2E6(q)sc.

If G = E7(q)sc with r = 5, then our assumption gives 5|(q − ε) for some ε = ±1
and again a Sylow 5-subgroup of G lies inside a Levi subgroup L of type A4A2T1.
As before there exists a 5-element x in the center of L with L = CG(x). Fur-
thermore, CG(x) contains a normal subgroup D ∼= SLε

5(q)× SLε
3(q) of index q − ε.

By Corollary 2.8 the centralizer of a Sylow 5-subgroup of the SL5-factor is just its
center. For the SLε

3-factor, the centralizer of a Sylow 5-subgroup has order (q− ε)2.
It follows that |CD(R1)| divides (q− ε)2|Z(R1)| for R1 ∈ Sylr(D), and so the claim
follows by Lemma 2.11 (with t = (q − ε)2) in this case.

If G = E7(q)sc with r = 7, then our assumption gives 7|(q − ε) for some ε = ±1,
and R is contained in a Levi subgroup L of type A6T1 and again a 7-element
x ∈ Z(L) satisfies L = CG(x). Furthermore, CG(x) contains a normal subgroup
D ∼= SLε

7(q) of index q − ε. By Corollary 2.8 the centralizer of a Sylow 7-subgroup
of the SL7-factor is just its center. Hence the claim follows by Lemma 2.11 (taking
t = 1).

Finally, if r = 7 and G = E8(q), then our assumption gives 7|(q − ε) for some
ε = ±1. Here, R is contained in a Levi subgroup of type A1A6T1, which con-
tains a central 7-element x with L = CG(x). Our previous arguments go through
unchanged. �

Next, for Suzuki–Ree groups let Φd1 be the cyclotomic polynomial occurring in
the generic order of G such that r|Φd1(q) as in [BM, App. 2], and similarly Φd2 for
s. For other groups, let d1 and d2 be the order of q modulo r, respectively s. Then
there exist corresponding Sylow di-tori as defined in [BM, 3.14].

Proposition 2.13. Assume that the Sylow d1-tori of G are maximal tori and that
s divides a unique cyclotomic factor in the generic order of G. If every s-element
of G centralizes a Sylow r-subgroup of G, then d1 = d2.

Proof. Let g be an s-element such that CG(g) contains a Sylow r-subgroup. Then
by [BM, Cor. 3.13], g lies in a maximal torus T containing a Sylow d1-torus T1 of G.
Since T1 is a maximal torus by assumption, T = T1. So s divides Φd1(q) = |TF

1 |,
which by our assumption implies that d2 = d1. �

Proposition 2.14. Assume that d1 = d2 and neither of r, s divides the order of
the Weyl group of G. Then there exists an abelian {r, s}-Hall subgroup of G.

Proof. Since neither r nor s divides the order of the Weyl group of G, any Sylow
d-torus Td of G, where d = d1 = d2, has the property that TF

d contains a Sylow
r-subgroup R and a Sylow s-subgroup S of G by [BM, Cor. 3.13]. In particular,
R× S is an abelian Hall {r, s}-subgroup of G. �

Now we can complete the proof of Theorem 2.6:
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Theorem 2.15. The assertion of Theorem 2.6 holds for X a simple exceptional
group of Lie type.

Proof. As before, there exists a simple, simply connected algebraic group G with
a Steinberg endomorphism F such that X = G/Z(G), where G := GF . By
Lemma 2.3(i), we may replace X by G.

First assume that r, say, satisfies the assumptions of Proposition 2.12. If both
r and s satisfy this condition, then choose r to be the smaller one among r and
s. Let R denote a Sylow r-subgroup of G. In case (a) of that result we see that
any s-element in CG(R) is central in G and so s - |X|, a contradiction. In all
of the remaining cases (b)–(g) necessarily s divides q ± 1. We will exhibit a Levi
subgroup occurring as the centralizer of an s-element of order dividing q ± 1 but
not containing a Sylow r-subgroup. For G = E6(q), take a Levi of type A2

2A1T1,
cf. [D, p. 120] (note that here s ≥ 7 by the choice of r), and similarly for 2E6(q).
For G = E7(q) with r = 3, we have s|(q − ε), where q ≡ ε (mod 3). But E7(q) has
a Levi subgroup of type D6T1, with center a torus of order q − ε, and s-elements
(which have order at least 5) in that center do not centralize a Sylow 3-subgroup
of G. For E7(q) with r = 5 or r = 7 we may take a Levi of type A3A2A1T1, and
for E8(q) with r = 7 a Levi of type E6A1T1 will do.

We may now assume that each of r and s divides a unique cyclotomic polynomial
Φdi(q) occurring in the generic order of G, but does not divide the order of the Weyl
group of G. If d1 = d2, we are done by Proposition 2.14. Otherwise, by Proposition
2.13 we have that neither of the Sylow di-tori are maximal tori of G. Then d1 and
d2 are as in Table 1. In these cases, the last column of the table gives certain
centralizers of r-elements x that do not contain a Sylow s-subgroup. (In all cases,
x is chosen in the central torus of the Levi subgroup). This final contradiction
completes the proof of the Theorem. �

Table 1. The case of non-maximal non-cyclic Sylow tori

G di

3D4(q) 1, 2 (q + 1).A1(q3)
E6(q)sc 2, 4; 2, 6 (q2 − 1).2D4(q)
E6(q)sc 4, 6 (q2 + 1)(q − 1).2A3(q)
2E6(q)sc 1, 3; 1, 4 (q2 − 1).2D4(q)
2E6(q)sc 3, 4 (q2 + 1)(q + 1).A3(q)
E7(q)sc 3, 4, 6 (q3 ± 1).3D4(q)

3. Proof of Theorems A, B and C

We start with a trivial observation.

Lemma 3.1. Suppose that N / G, and let p and q be primes. If all the p-elements
of G have conjugacy class size not divisible by q, then the same happens in G/N
and N .
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Proof. If x ∈ N is a p-element, then |N : CN (x)| divides |G : CG(x)|, which is not
divisible by q, by hypothesis. If Nx ∈ G/N is a p-element, then Nx = Ny where
y is the p-part of x. If D/N = CG/N (Nx), then CG(y)N/N ≤ D/N and |G : D|
divides |G : CG(y)|, which is not divisible by q, by hypothesis. �

Lemma 3.2. Let q be a prime. Suppose that a q-group Q acts coprimely on a
finite group N . Let p be a prime and let P be a Q-invariant Sylow p-subgroup of
N . Assume that for every x ∈ Q, there exists n ∈ N such that [x, Pn] = 1. Then
[P,Q] = 1.

Proof. We argue by induction on |Q|. Suppose that R that is a maximal subgroup
of Q. By induction, we have that [R,P ] = 1. Suppose that S is another maximal
subgroup of Q. Then [S, P ] = 1, and therefore [Q,P ] = 1 since RS = Q. Hence,
we conclude that Q has a unique maximal subgroup. Then Q/Φ(Q) is cyclic, and
therefore Q = 〈x〉. Now, by hypothesis, there is n ∈ N such that [Q,Pn] = 1. In
particular, Pn is Q-invariant. Since P is Q-invariant, by [G, Thm. (6.2.2)] there is
c ∈ CN (Q) such that P = (Pn)c ≤ CN (Q), as desired. �

We will use the following consequence in several places below.

Corollary 3.3. Suppose that G is a finite group, and let p, q be different primes.
Assume that every q-element of G has conjugacy class of size not divisible by p.
Suppose that N / G is a q′-group. If Q ∈ Sylq(G) and P ∈ Sylp(N) is Q-invariant,
then [Q,P ] = 1.

Proof. Let x ∈ Q. By hypothesis, there is P1 ∈ Sylp(G) such that [x, P1] = 1. Since
G = NG(P )N by the Frattini argument, we have that Pn ≤ P1 for some n ∈ N ,
and thus [x, Pn] = 1. Now Lemma 3.2 applies. �

Now, we are ready to prove Theorem A of the introduction. Recall that if a
finite group G has a nilpotent Hall π-subgroup H, then every π-subgroup of G is
contained in some G-conjugate of H by a well-known theorem of Wielandt [W].

Theorem 3.4. Suppose that G is a finite group, and let p and q be different primes.
Then G has nilpotent {p, q}-Hall subgroups if and only if q - |G : CG(x)| for every
p-element x ∈ G, and p - |G : CG(y)| for every q-element y ∈ G.

Proof. The “only if” direction is obvious. For the “if” direction, we assume that G
satisfies the condition

(∗) :
for every p-element x ∈ G, q - |G : CG(x)|, and
for every q-element y ∈ G, p - |G : CG(y)|.

We prove by induction on |G| that G has a nilpotent Hall {p, q}-subgroup. Write
π := {p, q}.

The condition (∗) is inherited by quotients and normal subgroups, by Lemma 3.1.
Let 1 < N be a normal subgroup of G. By induction, we know that G/N has a

nilpotent Hall π-subgroup H/N . Suppose that |N | is not divisible by p or q. Then
we use the Schur–Zassenhaus theorem in H to get a nilpotent Hall π-subgroup of
G.

Suppose now that |N | is not divisible by p. Let P ∈ Sylp(G) and let Q ∈ Sylq(N)
be P -invariant (which we know to exist by coprime action). By Corollary 3.3, we
have that [P,Q] = 1. Now, recall that G/N has a nilpotent Hall π-subgroup H/N .
Thus, using the Frattini argument and the Schur–Zassenhaus theorem in the group
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NH(Q)/Q with respect to the normal subgroup NN (Q)/Q, we have that NH(Q)/Q
has a nilpotent Hall π-subgroup U/Q, which we may assume contains P . Now,
notice that U is a Hall π-subgroup of G. Write U/Q = (S/Q) × (PQ/Q), where
S ∈ Sylq(U). (In particular, S ∈ Sylq(G).) Then [P, S] ≤ Q and [S, P, P ] = 1.
Thus [S, P ] = 1 by coprime action.

Hence we may assume that the order of every proper normal subgroup is divisible
by p and q.

Let N be a minimal normal subgroup of G. Hence N = S1 × · · · × Sk, where Si

is a non-abelian simple group of order divisible by pq, and G transitively permutes
the set Ω = {S1, . . . , Sk}. Let B be the kernel of the action. We claim that G/B
is a q′-group. Otherwise, let Bx be an element of order q, where x has q-power
order. Now, by hypothesis, we have that [x, P ] = 1 for some Sylow p-subgroup P
of G. Then, P ∩ N ∈ Sylp(N), and in fact P ∩ N = (P ∩ S1) × . . . × (P ∩ Sk).
Now, let y ∈ P ∩ Si be of order p. Then [y, x] = 1, and therefore we deduce that
x has to normalize Si. Then x ∈

⋂
i NG(Si) = B and this is a contradiction. This

shows that G/B is a q′-group and by symmetry a p′-group. But then B contains
both Sylow p-subgroups and q-subgroups of G and therefore by induction, we may
assume that B = G. Thus N is a simple group of order divisible by pq.

We show now that G can be assumed to have no proper solvable quotients.
Suppose that G/K has prime order, where K / G. By induction, we know that
K has nilpotent Hall π-subgroups. If G/K is a π′-group, then the nilpotent Hall
π-subgroups of G are Hall subgroups of G and we are done. Therefore, we assume
(by symmetry) that G/K has order p, so we may write G = K〈x〉 for some p-
element x ∈ G. By hypothesis, let Q ∈ Sylq(G) = Sylq(K) such that [Q, x] = 1.
Since K has nilpotent Hall π-subgroups, there is P ∈ Sylp(K) such that [Q,P ] = 1.
In particular, |K : CK(Q)| is not divisible by p. Since x ∈ CG(Q), we have that
G = KCG(Q). Hence |G : CG(Q)| = |K : CK(Q)| is not divisible by p, and there
is some Sylow p-subgroup P1 of G such that [Qk, P1] = 1. We deduce that G has
nilpotent Hall π-subgroups, and in this case the theorem is proved.

Now, since G/NCG(N) is isomorphic to a subgroup of Out(N), then G/NCG(N)
is solvable and we conclude that G = N ×CG(N). Since CG(N) has nilpotent Hall
π-subgroups by induction, we conclude that N cannot be proper in G, because
otherwise N and therefore G would have nilpotent Hall π-subgroups. Thus G = N
is simple of order divisible by pq and so Theorem 2.1 applies. �

Theorem B immediately follows from Theorem A, by using the following.

Lemma 3.5. Let G be a finite group and let π be a set of primes. Assume that π
contains at least two prime divisors of |G|. If G has nilpotent Hall τ -subgroups for
every τ ⊆ π with |τ | = 2, then G has nilpotent Hall π-subgroups.

Proof. This is [M, Lemma 3.4]. (See the comment that follows the proof.) �

Proposition 2.3 of [KS] provides a different reduction of Theorem B to simple
groups. However, it is easier to check Theorem 2.1 than Theorem B for simple
groups.

Proof of Theorem C. The “only if” direction is an obvious consequence of the main
result of [KM]. For the “if” direction, note that condition (i) implies by Theorem B
that G has nilpotent Hall π-subgroups. Assume for instance that Sylow p-subgroups
of G are non-abelian for some p ∈ π. By [NT, Main Theorem] and condition (i),
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p ∈ {3, 5}. Next, conditions (i), (ii), and the Main Theorem of [NST] imply that
π ⊇ {3, 5}. Also, using condition (i) and [NST, Theorem B], we see that G admits a
non-abelian composition factor S, where S ∈ {Ru, J4,

2F4(q)′} if p = 3 and S ∼= Th
if p = 5. In either case, |S| is divisible by both 3 and 5. Furthermore, S satisfies
condition (i) by Lemma 3.1. In particular, if x ∈ S has order 5 then CS(x) contains
a Sylow 3-subgroup R of S. This is obviously false for S ∈ {Ru, Th}. This does
not hold for S ∼= 2F4(q)′ either, since in this case CS(R) = Z(R) by Proposition
2.12. It follows that Sylow p-subgroups of G are abelian for all p ∈ π, and so we
are done. �

4. Some Solvability Conditions

Next, we show that a version of Theorem A is possible under weaker hypotheses
if we allow some solvability conditions.

Theorem 4.1. Let p, q be primes, and let G be a finite group. Assume that all
the q-elements have conjugacy class sizes not divisible by p. If G is p-solvable or
q-solvable, then a Sylow p-subgroup of G normalizes some Sylow q-subgroup of G.

Proof. We argue by induction on |G|. Assume first that G is p-solvable. Let
K = Op′(G) and let L/K = Op(G/K). Let Kx be a q-element of G/K, where x is
a q-element of G. Now, [x, P ] = 1 for some Sylow p-subgroup P of G, by hypothesis.
Thus [Kx, PK/K] = 1 and therefore Kx centralizes L/K. By Hall-Higman 1.2.3.
Lemma, it follows that Kx ∈ L/K, and thus Kx = K. We conclude that G/K
is a q′-group. In particular, K contains a Sylow q-subgroup of G. Now, P acts
coprimely on K, and by coprime action, it follows that P normalizes some Sylow
q-subgroup of K, which is a Sylow q-subgroup of G.

Assume now that G is q-solvable. If 1 < N / G, then by induction we know
that there exists P ∈ Sylp(G) and Q ∈ Sylq(G) such that P normalizes NQ.
If Oq(G) > 1, then we set N = Oq(G), P normalizes QN = Q, and we are
done. So we may assume that Oq′(G) = N > 1. Now Q acts coprimely on
N . By coprime action Q normalizes some P1 ∈ Sylp(N). By Corollary 3.3, we
have that [Q,P1] = 1. In particular, |N : NN (Q)| is not divisible by p. Now
NQ / NQP and by the Frattini argument, we have that NQP = NNNQP (Q).
Then |NQP : NNQP (Q)| = |N : NN (Q)| is not divisible by p. Hence some Sylow
p-subgroup of NQP (and hence of G) normalizes Q. �

It is an interesting problem to study if the property that a Sylow p-subgroup
normalizes some Sylow q-subgroup is detectable by the character table. (More
generally, what does the character table of G know about νq(G), the number of
Sylow q-subgroups of G?) We can easily solve this question in p-solvable groups.

Theorem 4.2. Suppose that G is p-solvable. Let q 6= p be another prime. Then
some Sylow p-subgroup of G normalizes some Sylow q-subgroup of G if and only if
G/Op′(G) is a q′-group.

Proof. Suppose that G/N is a q′-group, where N = Op′(G). Let P ∈ Sylp(G).
Then P acts coprimely on N , and by coprime action it stabilizes some Sylow q-
subgroup of N , which is a Sylow q-subgroup of G.

Conversely, suppose that P ∈ Sylp(G) normalizes Q ∈ Sylq(G). We show by
induction on |G| that G/Op′(G) is a q′-group. If N / G, then we have that PN/N
normalizes QN/N , so by applying induction in G/Op′(G), we may assume that
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Op′(G) = 1. Now, let K = Op(G). By hypothesis, we have that K normalizes Q.
Also Q normalizes K. Since Q ∩K = 1, then we conclude that [Q,K] = 1. Then
Q ≤ CG(K) ≤ K by Hall-Higman’s Lemma 1.2.3, and Q = 1. This concludes the
proof. �

Finally, we prove that if the prime 2 is involved in the following form, then we
can obtain a certain solvability.

Theorem 4.3. Let q be an odd prime, and let G be a finite group. If all the q-
elements of G have conjugacy class size not divisible by 2, then G is q-solvable. In
particular, a Sylow 2-subgroup of G normalizes some Sylow q-subgroup of G.

Proof. We argue by induction. If 1 < N is a proper normal subgroup of G, then
G/N and N are q-solvable. So we may assume that G is a non-abelian simple
group of order divisible by 2q and appeal to Theorem 2.2. The last part follows
from Theorem 4.1. �

We cannot reverse the primes in the previous theorem, not even to obtain nor-
malizing conditions between Sylow subgroups. All the 2-elements of G = J1 have
conjugacy class not divisible by 5, and no Sylow 5-subgroup of G normalizes any
Sylow 2-subgroup of G.

5. Character Tables

Recall that
|CG(x)| =

∑
χ∈Irr(G)

|χ(x)|2

for any x ∈ G. In order to apply our main results Theorems A, B and C to a
particular character table, it remains to recognize p-elements in the character table
of G for every prime p. This is possible by a well-known theorem of G. Higman
(see [I, Thms. 8.20 and 8.21], for instance), which is proved using maximal ideals in
rings of algebraic integers. To finish the paper and for the reader’s convenience, we
outline a very similar method which nevertheless avoids choosing maximal ideals.

Let R be the ring of algebraic integers in C, and let p be a prime. If α, β ∈ R,
then we write α ≡ β (mod p) if α−β = pγ for some γ ∈ R. If α ≡ β, then αn ≡ βn

for every integer n. Also, recall that if α1, . . . , αk ∈ R, then

(α1 + · · ·+ αk)pn

≡ α1
pn

+ · · ·+ αk
pn

(mod p) .

If x ∈ G, then xp denotes the p-part of x and xp′ denotes the p′-part of x.

Lemma 5.1. Suppose that χ is a character of a finite group G, and let x ∈ G.
Then

χ(x)|xp| ≡ χ(xp′)|xp| (mod p) .

Thus
χ(x)|G|p ≡ χ(xp′)|G|p (mod p) .

Proof. Let m := |xp|. Write x = yz, where y = xp and z = xp′ . Let X be a
representation affording χ. We can assume that

X (x) = diag(ε1, . . . , εk)

is a diagonal matrix. Since y and z are powers of x, we have that

X (y) = diag(α1, . . . , αk),
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where αm
i = 1, and

X (z) = diag(β1, . . . , βk),
with εi = αiβi. Now

χ(x)m = (ε1 + · · ·+ εk)m ≡ βm
1 + · · ·+ βm

k ≡ (β1 + · · ·+ βk)m = χ(z)m (mod p) .

The second assertion easily follows. �

Theorem 5.2. Let x, y ∈ G, and let p be a prime. Then xp′ and yp′ are G-conjugate
if and only if

χ(x)|G|p ≡ χ(y)|G|p (mod p)
for all χ ∈ Irr(G).

Proof. Suppose that xp′ and yp′ are G-conjugate. By Lemma 5.1, we have that

χ(x)|G|p − χ(y)|G|p ≡ χ(xp′)|G|p − χ(yp′)|G|p = 0 .

Conversely, suppose that

χ(x)|G|p ≡ χ(y)|G|p (mod p)

for all χ ∈ Irr(G). Let I be a maximal ideal of R containing pR, so that F := R/I
is a field. Then we have that

χ(x)|G|p ≡ χ(y)|G|p (mod I)

by hypothesis. Then

(χ(x)− χ(y))|G|p (mod I) ≡ χ(x)|G|p − χ(y)|G|p (mod I) = I ,

and therefore χ(x) ≡ χ(y) (mod I), since F is a field. But χ(x) ≡ χ(xp′) (mod I),
using the fact that if ε is a p-power root of unity, then ε ≡ 1 (mod I). Now apply
[I, Thm. (8.20)]. �

Corollary 5.3. We have that x ∈ G is a p-element if and only if

χ(x)|G|p ≡ χ(1) (mod p)

for all χ ∈ Irr(G).

Proof. Use Theorem 5.2, and the fact that np ≡ n (mod p) for every integer n. �
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corps finis. Math. Ann. 292 (1992), 241–262.

[C] R. Carter, ‘Finite Groups of Lie type: Conjugacy Classes and Complex Characters’.
Wiley, Chichester, 1985.

[D] D. I. Deriziotis, ‘Conjugacy Classes and Centralizers of Semisimple Elements in Finite
Groups of Lie Type’. Vorlesungen aus dem Fachbereich Mathematik der Universität Essen,
Heft 11, 1984.

[GAP] The GAP group, ‘GAP - Groups, Algorithms, and Programming’. Version 4.4, 2004, http:
//www.gap-system.org.

[G] D. Gorenstein, ‘Finite Groups’. Chelsea, New York, 1980.
[GL] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type,

Mem. Amer. Math. Soc. 42 (1983).
[GLS] D. Gorenstein, R. Lyons, R. Solomon, ‘The Classification of the Finite Simple Groups’,

Number 3, Mathematical Surveys and Monographs Volume 40, American Math. Soc. 1998.
[I] I. M. Isaacs, ‘Character Theory of Finite Groups’. AMS-Chelsea, Rhode Island, 2006.



NILPOTENT AND ABELIAN HALL SUBGROUPS 17

[KM] R. Kessar, G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture. Annals
of Math. 178 (2013), 321–384.

[KS] W. Kimmerle, R. Sandling, Group theoretic determination of certain Sylow and Hall
subgroups and the resolution of a question of R. Brauer. J. Algebra 171 (1995), 329–346.

[MN] G. Malle, G. Navarro, Extending characters from Hall subgroups. Doc. Math. 16 (2011),
901–919.
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