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Abstract. We investigate the action of outer automorphisms of finite groups of Lie
type on their irreducible characters. We obtain a definite result for cuspidal characters.
As an application we verify the inductive McKay condition for some further infinite
families of simple groups at certain primes.

1. Introduction

An important open problem in the ordinary representation theory of finite groups of
Lie type is to determine the action of outer automorphisms on the set of their irreducible
characters, and more generally to determine the irreducible character degrees of the corre-
sponding almost (quasi-)simple groups. While the action of diagonal automorphisms and
the corresponding extension problems are well understood by the work of Lusztig [13],
based on the fact that such extensions can be studied in the framework of finite reductive
groups, much less is known in the case of field and also of graph automorphisms.

The most elusive situation seems to be the one where irreducible characters not stable
under diagonal automorphisms are concerned. In [15] we obtained a certain reduction of
this problem to the case of cuspidal characters. This is the situation we solve here by ap-
plying methods and results from block theory and Deligne–Lusztig theory (see Section 4):

Theorem 1. Let G be a quasi-simple finite group of Lie type. For any cuspidal character
ρ of G there is a semisimple character χ in the rational Lusztig series of ρ having the
same stabiliser as ρ in the automorphism group of G.

Observe that the action on semisimple characters is well-understood by the theory of
Gelfand–Graev characters, see [19]. For linear and unitary groups this result was obtained
by Cabanes and Späth [6] and we use it in our proof, for symplectic groups it follows from
recent work of Cabanes–Späth [7] and of Taylor [20]; for the other types it is new. For
the proof we first consider quasi-isolated series, see Sections 2 and 3. Here, we connect ρ
to χ either via a sequence of Brauer trees, in which case we also obtain information on
maximal extendibility (see Corollary 3.3), or of Deligne–Lusztig characters.

As an application we verify the inductive McKay condition for some series of simple
groups of Lie type and suitable primes ` (see Section 5):

Theorem 2. Let q be a prime power and S a finite simple group 2E6(q), E7(q), Bn(q)
or Cn(q). Let ` ≡ 3 (mod 4) be a prime with `|(q2 − 1). Then S satisfies the inductive
McKay condition at `. In particular, the inductive McKay condition holds for S at ` = 3.
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This is a contribution to a programme to prove McKay’s 1972 conjecture on characters
of `′-degree based on its reduction to properties of quasi-simple groups, an approach which
has recently led to the completion of the proof in the case when ` = 2 (see [15]).
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2. Cuspidal characters in classical groups

Throughout the paper we fix the following notation. We let G be a simple simply
connected linear algebraic group over an algebraically closed field of characteristic p with
a Frobenius map F : G → G inducing an Fq-structure, and we set G := GF the finite
group of fixed points under F . It is well-known that G then is a finite quasi-simple group
in all but finitely many cases (see [16, Thm. 24.17]), and furthermore all but finitely many
quasi-simple finite groups of Lie type can be obtained as G/Z for some suitable central
subgroup Z ≤ Z(G) (the exceptions being the Tits simple group and a few exceptional
covering groups, see e.g. [16, Tab. 24.3]). For us, a “finite group of Lie type” is any nearly
simple group whose non-abelian composition factor is neither sporadic nor alternating.

Let G ↪→ G̃ be a regular embedding; thus G̃ is a connected reductive group with

connected centre and derived subgroup equal to G. For an extension F : G̃ → G̃ of

the Frobenius map on G we let G̃ := G̃F . We choose a group G̃∗ dual to G̃, with

corresponding Frobenius map again denoted by F , and an epimorphism π : G̃∗ → G∗

dual to the regular embedding G ↪→ G̃, and we write G̃∗ = G̃∗F and G∗ = G∗F for the

F -fixed points. Throughout, for closed F -stable subgroups H of G, G̃, G∗, . . . we will
write H := HF (in roman font) for their group of fixed points.

Let us recall the description of automorphisms of a finite simple group of Lie type: any
automorphism of S = G/Z(G) is a product of an inner, a diagonal, a graph and a field
automorphism. Here, the diagonal automorphisms are those induced by the embedding
G ↪→ G̃, the graph automorphisms come from symmetries of the Dynkin diagram of
G commuting with F and field automorphisms are induced by Frobenius maps on G
defining a structure over some subfield Fq′ of Fq some power of which is F (see e.g. [16,
Thm. 24.24]).

2.1. Cuspidal unipotent characters on Brauer trees. One crucial tool in our de-
termination of the action of automorphisms is the observation that cuspidal unipotent
characters of classical groups lie in blocks of cyclic defect for suitable primes. Lusztig
gave a parametrisation of the unipotent characters of groups G of classical type in terms
of combinatorial objects called symbols. According to this classification a classical group
has at most one cuspidal unipotent character, as recalled in Table 1, which is thus in
particular fixed by all automorphisms of G. (The parameter dG occurring in the table
will be used in the statement of Lemmas 2.1 and 2.2.)

The symbols parametrising unipotent characters behave very much like partitions; in
particular one can define hooks and cohooks, and the degrees of the associated unipotent
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G An−1
2An−1 Bn, Cn Dn

2Dn

n 1 a(a+ 1)/2 a(a+ 1) a2 even a2 odd

label () (a, a− 1, . . . , 1)
(
0 ... 2a
−

) (
0 ... 2a−1

−

) (
0 ... 2a−1

−

)
dG − 2(2a− 1) 4a 2(2a− 1) 2(2a− 1)

Table 1. Cuspidal unipotent characters in classical groups

characters can be given in terms of a combinatorial expression, called the hook formula (see
e.g. [18]). Recall that for every prime power q and any integer d > 2 with (q, d) 6= (2, 6)
there exists a prime dividing qd − 1 but no qf − 1 for f < d called Zsigmondy (primitive)
prime of degree d. The following is easily checked from the hook formula:

Lemma 2.1. Let ρ be a cuspidal unipotent character of a quasi-simple group G of classical
type. Then ρ is of defect zero for every Zsigmondy prime of odd degree, as well as for
those of even degree d > dG.

The blocks of cyclic defect and their Brauer trees for groups G of classical type have
been determined by Fong and Srinivasan [10]: assume that ` 6= 2 is an odd prime and
write d = d`(q) for the order of q modulo `. First assume that d is odd. Then a unipotent
character of G lies in an `-block of cyclic defect if and only if the associated symbol has
at most one d-hook, and two unipotent characters lie in the same `-block if their symbols
have the same d-core. If d = 2d′ is even, the same statements hold with d replaced by d′,
“hook” replaced by “cohook” and “core” replaced by “cocore”.

Let us write Φd for the dth cyclotomic polynomial over Q.

Lemma 2.2. Let ρ be a cuspidal unipotent character of a quasi-simple group G of classical
type. Then there exist sequences of unipotent characters ρ = ρ1, . . . , ρm = 1G of G and
of Zsigmondy primes `i 6= p of either odd degree di > 2 or even degree di ≥ dG such that
ρi, ρi+1 lie in the same `i-block of cyclic defect of G, for i = 1, . . . ,m − 1, except when
G = D4(2).

Proof. The claim is clear for type A0 as here the cuspidal character is the trivial character.
For G of type 2An−1, n ≥ 3, there exists a cuspidal unipotent character ρ if and only if
n = a(a+ 1)/2 for some a ≥ 2 (see Table 1). This is labelled by the triangular partition
δa = (a, . . . , 1) of n, which has a unique hook of length 2a− 1. By the hook formula (see
e.g. [18]) this implies that |G|/ρ(1) is divisible by Φd(q) exactly once, where d = 2(2a−1).
So by [10] ρ lies in an `1-block of cyclic defect for any Zsigmondy prime divisor `1 of
q2a−1 + 1. (Such a prime `1 exists unless (q, a) = (2, 2), in which case n = 3, but 2A2(2) is
solvable.) Moreover, the partition (3a− 3, a− 3, . . . , 1) has the same 2a− 1-core as δa, so
the unipotent character ρ2 labelled by it lies in the same `1-block as ρ1 = ρ. The latter
partition has a unique 4a− 4-hook, and arguing as before, we conclude that ρ2 lies in the
same `2-block of cyclic defect as the character ρ3 labelled by (5a− 10, a− 5, . . . , 1), for `2
a Zsigmondy prime divisor of q4a−4 + 1. Continuing inductively we arrive at ρ2a+1 = 1G

with label the partition (n).
Groups of type Bn and Cn, n ≥ 2, have a cuspidal unipotent character ρ if and only if

n = a(a + 1) for some a ≥ 1. This is labelled by the symbol
(
0 ... 2a
−

)
, which has a single
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2a-cohook. So ρ lies in a block of cyclic defect for any Zsigmondy prime divisor `1 of
q2a + 1 (see again [10]). Furthermore this block also contains the unipotent character ρ2

labelled by
(
0 ... 2a−2
0 4a−1

)
. This has a unique 4a− 2-hook, whose removal gives

(
0 ... 2a−2

0 1

)
, and

adding a suitable 4a− 2-hook we find
(
0 ... 2a−3 6a−4

0 1

)
, the symbol of a unipotent character

ρ3 lying on the same Brauer tree as ρ2 for primes `3 dividing q4a−2 − 1. The Zsigmondy
exception a = 2 can be avoided by working with 5-hooks instead of 6-hooks in this step.
Continuing this way, after m = a steps we arrive at the symbol

(
n
−

)
labelling ρa+1 = 1G.

For groups of type Dn or 2Dn, n ≥ 4, a cuspidal unipotent character exists only if n = a2

for some a ≥ 2. It is labelled by the symbol
(
0 ... 2a−1

−

)
. This has a single 2a − 1-cohook

and thus lies in an `1-block of cyclic defect for `1 any primitive prime divisor of q2a−1 + 1.
(Such a prime `1 exists unless (q, a) = (2, 2), which leads to the stated exception.) This
block also contains the character ρ2 labelled by

(
0 ... 2a−3
0 4a−3

)
. The latter symbol has a unique

4a− 4-hook; removing this and adding a different one leads to the symbol
(
0 ... 2a−4 6a−7

0 1

)
of a unipotent character ρ3. Again, a straightforward induction completes the proof. �

2.2. Constituents of Lusztig induction. Recall from [8, 11.1] that for any F -stable
Levi subgroup L of a parabolic subgroup of G, Lusztig defines a linear map

RG
L : Z Irr(LF ) −→ Z Irr(GF ),

called Lusztig induction. (In fact, this map might depend on the choice of parabolic
subgroup containing L, but it does not in the case of unipotent characters, see e.g. [3,
Thm. 1.33].) Also recall from [3] that an F -stable torus T ≤ G is called a d-torus (for
some d ≥ 1) if T is split over Fqd but no non-trivial F -stable subtorus of T splits over
any smaller field. The centralisers in G of d-tori are the d-split Levi subgroups. They are
F -stable Levi subgroups of suitable parabolic subgroups of G.

Lemma 2.3. Let G be quasi-simple of classical type Bn, Cn, Dn or 2Dn and ρ be a cuspidal
unipotent character of G. Let L ≤ G be a 2-split Levi subgroup of G

• of twisted type 2An−1(q).Φ2 in types Bn and Cn; or
• of twisted type 2An−2(q).Φ

2
2 in types Dn and 2Dn.

There exist sequences of unipotent characters ρ = ρ1, . . . , ρm = 1G of G and ψ1, . . . , ψm−1

of L such that ρi, ρi+1 both occur with multiplicity ±1 in RG
L (ψi) for i = 1, . . . ,m− 1.

Here, as in later results and tables, a notation like 2An−1(q).Φ2 is meant to indicate
not the precise group theoretic structure of the finite group, but rather the root system
of the underlying algebraic group (not its isogeny type) together with the action of the
Frobenius: in our example the underlying group has a root system of type An−1 on which
F acts by the non-trivial graph automorphism, and its center is a 1-dimensional 2-torus.

Proof. First consider types Bn and Cn. So by Table 1, n = a(a+ 1) for some a ≥ 1, and
ρ is parametrised by the symbol S =

(
0 ... 2a
−

)
. Observe that all unipotent characters of

groups of type A are uniform, so that RG
L (ρ) for any unipotent character ρ of L can be

expressed in terms of Deligne–Lusztig characters RG
T (1T ) for various F -stable maximal tori

T of G. The decomposition of Deligne–Lusztig characters has been determined explicitly
by Lusztig, and from this our claim can be checked by direct computation.
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To do this, we appeal to [3, Thm. 3.2], which shows that Lusztig induction of unipo-
tent characters from 2-split Levi subgroups is, up to signs, the same as induction in
the corresponding relative Weyl groups. Since the symbol S has exactly n 1-cohooks,
its 1-cocore is trivial and so ρ lies in the principal 2-series. The relative Weyl group
for the principal 2-Harish-Chandra series of G is W=W (Bn), the one for L is its max-
imal parabolic subgroup WL = Sn. Determination of the 2-quotient of the symbol S
shows that it corresponds to the character with label (δa; δa) of W , with δa = (a, . . . , 1)
the triangular partition. Let ψ be the unipotent character of L parametrised by the
partition 2δa = (2a, 2a − 2, . . . , 2). The constituents of IndW

WL
(2δa) are exactly those bi-

partitions whose parts (including zeroes) can be added up so as to obtain the partition
2δa, with multiplicity one if this is possible in a unique way. Thus it contains (δa; δa)
exactly once, but also (2a, 2a− 4, . . . ; 2a− 2, 2a− 6, . . .). This in turn is contained once
in IndW

WL
((4a − 2, 4a − 10, . . .)), and so on. Continuing in this way we reach the symbol

(a(a+ 1);−) which parametrises the trivial character of G.
For G of type Dn, by Table 1 a cuspidal unipotent character exists if n = a2 for some

even a ≥ 2, and it is labelled by the symbol
(
0 ... 2a−1

−

)
. Again, this character lies in the

principal 2-series of G, and by [3, Thm. 3.2] the decomposition of RG
L can be computed

in the relative Weyl groups WL = Sn−1 ≤ W = W (Dn). Here, ρ corresponds to the
character of W with label (δa; δa−1). Let W1 = Sn ≤ W (Dn) be a maximal parabolic
subgroup of W (Dn) containing WL. For ψ ∈ Irr(WL) labelled by λ = (δa + δa−1) \ {1},
IndW1

WL
(λ) contains all characters whose label is obtained by adding one box to the Young

diagram of λ. Then IndW
WL

(λ) = IndW
W1

IndW1
WL

(λ) can be computed as before. It ensues
that the multiplicities of the characters labelled by (δa; δa−1) and by (2a, 2a− 5, . . . ; 2a−
3, 2a−7, . . .) in IndW

WL
(λ) are both 1. Again, an easy induction gives the claim. The same

type of reasoning applies for 2Dn with n an odd square. �

2.3. Brauer trees and automorphisms. The following result of Feit on Brauer trees
will also provide some information on extendibility. Let ` be a prime.

Lemma 2.4. Let B be an `-block of a finite group H with cyclic defect. Let γ be an
automorphism of H fixing some non-exceptional character in B. Then γ fixes every non-
exceptional character in B.

Proof. Assume that χ ∈ Irr(B) is non-exceptional and fixed by γ. Then by [9, Thm. 2.4]
all nodes in the Brauer tree of B are fixed by γ, hence in particular all non-exceptional
characters in B. �

Corollary 2.5. Let N EH be finite groups with H/N solvable and of order prime to `.
Let χ, χ′ be non-exceptional characters on the same `-Brauer tree for N . Then χ extends
to H if and only if χ′ does.

Proof. As H/N is solvable, there is a sequence of subgroups N = N1 E · · ·ENr = H with
Ni/Ni−1 cyclic of prime order. Assume that χ extends to χ̃ ∈ Irr(H), and let χi = χ̃|Ni

,
1 ≤ i ≤ r, a system of compatible extensions of χ to Ni.

Assume that we have extended χ′ to a character χ′i of Ni on the same `-Brauer tree as
χi. Since χi extends to H, it is invariant in Ni+1, hence by Lemma 2.4 the same is true
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for χ′i. So χ′i also extends to Ni+1 (as Ni+1/Ni is cyclic), and clearly we may choose an
extension χ′i+1 in the same `-block as χi+1. So the claim follows by induction. �

Remark 2.6. We can now lay out two types of arguments we will use to relate the stabilisers
in Aut(G) of two characters ρ, χ ∈ Irr(G):

(a) Assume there is a sequence ρ = ρ1, . . . , ρm = χ of irreducible characters of G, a
sequence of primes `1, . . . , `m−1 and a sequence of `i-blocks B1, . . . , Bm−1 of G with cyclic
defect such that ρi, ρi+1 ∈ Irr(Bi) are non-exceptional for all i. Then by Lemma 2.4 any
automorphism fixing ρ = ρ1 also fixes ρm = χ and vice versa.

(b) Similarly, assume there is a Levi subgroup L of G and sequences ρ = ρ1, . . . , ρm = χ
of irreducible characters of G, ψ1, . . . , ψm−1 of L satisfying the conclusion of Lemma 2.3.
Assume that γ is an automorphism of G stabilising L and fixing all ρi and all ψi, and that
there are γ-invariant normal subgroups L′ ≤ L, G′ ≤ G such that all ρi, ψi have exactly
two constituents upon restriction. Then if γ does not fix the constituents of ρ1, it cannot
fix those of ρm and vice versa.

In our arguments we will have to deal not only with unipotent characters. Recall that
Lusztig gives a partition Irr(G) =

∐
s E(G, s) of the set of irreducible characters of G into

rational Lusztig series E(G, s) indexed by semisimple elements s ∈ G∗ up to conjugacy
(see [2, Thm. 11.8]). Moreover, for any such s the Lusztig series E(G, s) is in bijection with
the unipotent characters of CG∗(s), where, as customary, a character of CG∗(s) is called
unipotent if its restriction to C◦

G∗(s)F has unipotent constituents (see [13, Prop. 5.1]).
We will be particularly interested in semisimple characters. Recall our regular embedding

G ↪→ G̃ with dual epimorphism G̃∗ → G∗ and let s̃ ∈ G̃∗F be a preimage of s. The
semisimple character χ̃s in E(G̃, s̃) can be defined as an explicit linear combination of
Deligne–Lusztig characters (see [2, (15.6)]); the semisimple characters in E(G, s) are then
just the constituents of the restriction of χ̃s to G, see [2, (15.8)].

We will need the following properties of Jordan decomposition:

Lemma 2.7. In the above situation we have:

(a) Jordan decomposition sends semisimple characters to semisimple characters.
(b) E(G, s) contains a cuspidal character if and only if CG∗(s) has a cuspidal unipotent

character and moreover Z◦(CG∗(s)) and Z◦(G) have the same Fq-rank. In this
case, Jordan decomposition induces a bijection between cuspidal characters.

Proof. As explained above the semisimple character χ̃s ∈ E(G̃, s̃) is uniform. Jordan
decomposition preserves uniform functions, so χ̃s is sent to the semisimple character
in E(CG̃∗(s̃), 1). As the Deligne–Lusztig characters of G are obtained by restriction from

those of G̃, the claim in (a) follows from our definition of semisimple characters in E(G, s).
Part (b) is pointed out for example in [11, Rem. 2.2(1)]. �

2.4. Cuspidal characters in quasi-isolated series. We now study the action of auto-
morphisms on cuspidal characters in quasi-isolated series of classical groups.

Let s ∈ G∗ be semisimple. Recall that s is quasi-isolated in G∗ if CG∗(s) is not contained
in any proper F -stable Levi subgroup of G∗. If C◦

G∗(s)F is a product of classical groups,
then it has a unique cuspidal unipotent character (see Table 1), so the cuspidal characters
in E(G, s) form a single orbit under diagonal automorphisms. In particular, E(G, s) can
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contain cuspidal characters not fixed by some automorphism of G stabilising E(G, s) only
if CG∗(s) is not connected.

Theorem 2.8. Let G be quasi-simple of classical type B,C,D or 2D, let s ∈ G∗ be quasi-
isolated and ρ ∈ E(G, s) cuspidal. Then there is a semisimple character χ ∈ E(G, s) with
the same stabiliser in Aut(G) as ρ.

Proof. Let γ ∈ Aut(G). If γ does not stabilise E(G, s), then it lies neither in the stabiliser
of ρ nor of any semisimple character in E(G, s). So we may assume that E(G, s) is γ-stable.
Moreover, if CG∗(s)F = C◦

G∗(s)F then E(G, s) contains a unique cuspidal and a unique
semisimple character, and again we are done. Thus, as |CG∗(s) : C◦

G∗(s)| divides |Z(G)|,
which is a 2-power and prime to p, we have in particular that q is odd. We discuss the
remaining possibilities case-by-case.

The classes of quasi-isolated elements in G∗ were classified by Bonnafé [1, Tab. 2]. The
various rational types are worked out in Table 2. Here A(s) := CG∗(s)/C◦

G∗(s) denotes
the group of components of the centraliser, o(s) is the order of s and the structure of
the abelian group A(s) is indicated by giving the orders with multiplicities of its cyclic
factors.

Our strategy of proof is as follows. In each case, [C◦
G∗(s), C◦

G∗(s)]F is a product of
classical groups G1 · · ·Gr. By Lemma 2.7(b), the Lusztig series E(G, s) contains a cuspidal
character only if each of these factorsGi has a cuspidal unipotent character ρi. If all factors
are non-isomorphic, then for the factor of largest rank, say G1, take a Zsigmondy prime `
as in Lemma 2.2. (Note that the exception D4(2) does not occur here as q is odd.) Then
ρ1 lies in an `-block of cyclic defect, while all the other ρi are of `-defect 0. As Jordan
decomposition preserves blocks with cyclic defect and their Brauer trees (see [10]), the
Jordan correspondent ρ of ρ1 ⊗ · · · ⊗ ρr then also lies in a block of cyclic defect. So we
conclude with Remark 2.6(a) using the sequence of characters from Lemma 2.2.

For example, in G = Sp2n(q) centralisers of quasi-isolated elements s in G∗ = SO2n+1(q)
with |CG∗(s) : C◦

G∗(s)| = 2 have types δDd(q)Bn−d(q) for 1 ≤ d ≤ n and δ ∈ {±}. These
possess a cuspidal unipotent character ρd ⊗ ρn−d only if d = a2 and n − d = b(b + 1) for
some a, b ≥ 1. Now for a > b the cuspidal unipotent character ρd of δDd(q) lies in a Brauer
tree for primitive prime divisors ` of q2a−1 + 1, while ρn−d is of `-defect zero in Bn−d(q);
and for a ≤ b we have that ρn−d lies in a Brauer tree for primitive prime divisors ` of
q2b + 1, and ρd is of `-defect zero.

Thus we are only left with those cases when CG∗(s) has two isomorphic quasi-simple
factors, and these are the factors of largest rank. The corresponding lines are marked
(1)–(5) in the last column of Table 2. We discuss them individually.

Cases 2, 4 and 5: Note that here cuspidal characters only arise when ε = −, so when
q ≡ 3 (mod 4). But then q is not a square and so field automorphisms have odd order.
In Case 2 the outer automorphism group of G is the direct product of the diagonal
automorphism group A of order 2 with an odd order group of field automorphisms. So
the latter must act trivially on all A-orbits in E(G, s). The cuspidal characters as well as
the semisimple characters both lie in A-orbits of length 2, so we are done.
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In Case 5 a Sylow 2-subgroup A of the outer automorphism group of G consists of
the diagonal automorphism group A0 of order 4 extended by the cyclic group of graph-
field automorphisms. This has as quotient a dihedral group of order 8, as the graph-field
automorphism of Spin−2n(q) centralises a subgroup Spin2n−1(q) and so acts non-trivially
on the centre.

Clearly automorphisms of odd order must act trivially on any A0-orbit in CG(s) which
they fix. Now let γ ∈ A be an automorphism of 2-power order moving a cuspidal character
ρ. As there is just one class of elements s with the relevant centraliser, the image of ρ
must lie in the A0-orbit R of ρ, and A acts faithfully on R. The same then holds for the
A-orbit of semisimple characters in E(G, s). In particular γ also moves some semisimple
character and vice versa.

The same argument applies to Case 4: again a Sylow 2-subgroup of the outer auto-
morphism group has a dihedral quotient as the graph automorphism interchanges the two
half-spin groups.

Case 1: Here, cuspidal characters occur if n = 2r = 2a(a+1). Let L ≤ G be an F -stable
Levi subgroup of twisted type 2An−1(q).Φ2 containing a Sylow 2-torus of CG∗(s), with dual

L∗ ≤ G∗. Then CL∗(s) is disconnected of type CL∗(s)F = (2Ar−1(q).Φ2)o2. Let G ↪→ G̃ be

our regular embedding, and L̃ = LZ(G̃). Let s̃ be an F -stable preimage of s in G̃∗. Then

C eG∗(s̃) = G̃2
1 is connected with G̃F

1 of type Cr(q), and CeL∗(s̃) = L̃2
1 is connected with L̃F

1 of

type 2Ar−1(q).Φ2. By Lemma 2.3(1) there is a chain of unipotent characters ψ1,i of L̃1 and

of unipotent characters ρ1 = ρ1,1, . . . , ρ1,m = χ1 of G̃1 connecting the cuspidal unipotent

character ρ1 to the semisimple character χ1 = 1G1 such that R
eG1eL1

(ψ1,i) contains ρ1,i, ρ1,i+1

exactly once. Jordan decomposition maps E(G̃, s̃) to E(G̃1, 1) × E(G̃1, 1), and it maps
E(L̃, s̃) to E(L̃1, 1) × E(L̃1, 1). As Lusztig induction of unipotent characters commutes

with products, this implies that R
eG2

1eL2
1

(ψ⊗2
1,i ) contains ρ⊗2

1,i and ρ⊗2
1,i+1 exactly once.

Let ρ̃i ∈ Irr(G̃) correspond to ρ⊗2
1,i under Jordan decomposition, and ψ̃i ∈ Irr(L̃) cor-

respond to ψ⊗2
1,i . As L̃ is of type A, all of its unipotent characters are uniform. Now

Jordan decomposition commutes with Deligne–Lusztig induction, so R
eGeL (ψ̃i) contains ρ̃i

and ρ̃i+1 exactly once. By their description above, the restriction of ψ̃i to L splits into
two constituents ψi, ψ

′
i, and the restriction of ρ̃i to G splits into two constituents ρi, ρ

′
i.

Let γ be an automorphism of G, then we may choose L to be γ-stable, and all characters

in the Lusztig series E(G̃, s̃) and E(L̃, s̃) are γ-stable. We are thus in the situation of
Remark 2.6(b) and may conclude.

Case 3: The argument here is very similar, using a Levi subgroup L ≤ G of type
D2(q).

2An−3(q).Φ2 with CL∗(s) disconnected of type 2Ar−2(q)
2.Φ4

2.2
2 where n = 2r =

2a2, and applying Lemma 2.3(2). Observe that n 6= 4 so that there are no triality
automorphisms and L can again be chosen γ-invariant. �

Remark 2.9. By [6] the conclusion of Theorem 2.8 also holds for G of type An. For type
Cn our result also follows from the recent work of Cabanes–Späth [7] and of Taylor [20].
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3. Cuspidal characters in exceptional groups

We now turn to groups of exceptional type. Here, there exist Lusztig series containing
more than one cuspidal character even for groups with connected centre, which makes the
situation somewhat more involved.

3.1. Automorphisms in type E6. We start by considering G simple simply connected
of type E6. Then G has a graph automorphism of order 2 which we may choose to
commute with F .

The interesting case occurs when there exist non-trivial diagonal automorphisms of G.
If F is untwisted, so G = GF = E6(q)sc, this happens when q = pf ≡ 1 (mod 3). Then
Out(G) ∼= S3 × Cf , with the first factor inducing diagonal and graph automorphisms,
the second the field automorphisms if p ≡ 1 (mod 3), respectively the product of the
field automorphism by the graph automorphism if p ≡ 2 (mod 3). If F is twisted, so
G = 2E6(q)sc, we have non-trivial diagonal automorphisms for q = pf ≡ −1 (mod 3).
Then q is not a square, so f is odd, and again Out(G) ∼= S3 × Cf , with the symmetric
group S3 inducing the diagonal automorphisms and the graph-field automorphism γ, and
the cyclic group Cf inducing the field automorphisms. We need the following elementary
observation.

Lemma 3.1. The group S3 × Cf has a unique action up to permutation equivalence on
a set of three elements in such a way that the elements of order 3 in the first factor act
non-trivially.

Proof. If the elements of order 3 in the S3-factor act non-trivially, then the whole S3-
factor must act faithfully, via its natural permutation representation. As the cyclic factor
Cf must centralise the S3-factor in this action, it can only act trivially. So the action is
unique up to permutation equivalence. �

Thus we see that if X ∈ Irr(G) is an orbit (of length 3) under diagonal automorphisms
which is stable under the graph respectively graph-field automorphism, then the action
of Aut(G)X on X is uniquely determined.

3.2. Cuspidal characters in quasi-isolated series. Next, we consider cuspidal charac-
ters in quasi-isolated series in exceptional type groups. Let G be simple simply connected

with dual G∗ such that G = GF is of exceptional type, and let G ↪→ G̃ be a regular
embedding.

Theorem 3.2. Let G be quasi-simple of exceptional type, s ∈ G∗ quasi-isolated and
ρ ∈ E(G, s) cuspidal. Then there is a semisimple character χ ∈ E(G, s) with the same
stabiliser as ρ in Aut(G).

Proof. The quasi-isolated elements s ∈ G∗ were classified by Bonnafé [1]. We deal with the
various possibilities case-by-case. First consider elements with connected centraliser C =
CG∗(s). Here we claim that cuspidal characters in E(G, s) are fixed by all automorphisms.
If s = 1, so ρ ∈ E(G, 1) is cuspidal unipotent then by results of Lusztig ρ is invariant
under all automorphisms of G, see e.g. [14, Thm. 2.5], as is the semisimple character
1G ∈ E(G, 1). Next assume that s 6= 1. If C has only components of classical type and
CF does not involve 3D4, then each such component has at most one cuspidal unipotent
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character and one semisimple character in any Lusztig series, and hence by Lemma 2.7(a)
the same is true for E(G, s). The claim then follows trivially. Connected centralisers of
isolated elements s 6= 1 with an exceptional component are of type E6 in E7, or of types
E6.A2 or E7.A1 in type E8. Now, the cuspidal unipotent characters of E6(q) lie on a Brauer
tree for Zsigmondy primes dividing Φ9 together with the trivial character. Thus they lie on
such a Brauer tree together with the semisimple character if they occur in quasi-isolated
series of type E6 or E6.A2. Our claim thus follows from Lemma 2.6(a). Similarly two of
the three cuspidal unipotent characters of 2E6(q) lie on the Φ18-Brauer tree, and the third
one is uniquely determined by its degree; and the two cuspidal unipotent characters of
E7(q) lie on a Φ18-Brauer tree and we conclude as before.

Thus we may now assume that CG∗(s) is not connected. As centralisers of semisimple
elements are connected in a group whose dual has connected centre, we are in one of
three situations: q ≡ 1 (mod 3) for G = E6(q)sc, q ≡ −1 (mod 3) for G = 2E6(q)sc, or q
is odd for G = E7(q)sc. The various rational forms of the occurring types of disconnected
centralisers CG∗(s) with cuspidal unipotent characters can be computed using Chevie;
they are collected in Table 3, depending on certain congruence conditions on q. The
column labelled “|E(G, s)|” gives the number of regular orbits (of length 3 or 2) under the
group of diagonal automorphisms and of orbits of length 1 respectively, and similar the
last column gives the same information for the subset of cuspidal characters. Note that
we only need to concern ourselves with the regular orbits under diagonal automorphisms,
and that the semisimple characters always form a regular orbit.

G∗ CG∗(s)F q |E(G, s)| |Ecusp(G, s)|
E6(q)

3D4(q).Φ3.3 (2×) ≡ 1 (3) 8× 3 2× 3
2E6(q)

2A2(q)
3.3 ≡ 2 (3) 3× 3 + 8× 1 1× 3

2A2(q
3).3 (2×) ≡ 2 (3) 3× 3 1× 3

D4(q).Φ
2
2.3 ≡ 2 (3) 8× 3 + 2× 1 1× 3

3D4(q).Φ6.3 (2×) ≡ 2 (3) 8× 3 2× 3
E7(q)

2E6(q).Φ2.2 ≡ 1 (2) 30× 2 3× 2
D4(q).A1(q)

2.Φ2.2 ≡ 3 (4) 20× 2 + 18× 1 1× 2
2A2(q)

3.Φ2.2 ≡ 5 (6) 9× 2 + 9× 1 1× 2

Table 3. Cuspidal characters in Lusztig series of quasi-isolated elements
with disconnected centralisers in exceptional types

We consider these in turn, starting with G = E6(q)sc. It can be checked by direct com-
putation in Chevie (see [17]) that the two classes of quasi-isolated elements are invariant
under the graph automorphism. In particular the corresponding Lusztig series must be
invariant under the graph automorphism of G. Moreover, the G̃-orbits of cuspidal charac-
ters in those series are invariant by degree reasons. So our claim follows from Lemma 3.1.
The situation is entirely similar for the six quasi-isolated series in 2E6(q)sc.

In G = E7(q)sc, in the second case the cuspidal and the semisimple characters are
contained in Brauer trees for Zsigmondy primes for Φ6 (note that q 6= 2 as q is odd).
By the Bonnafé–Rouquier Morita equivalence these characters are non-exceptional, so
Remark 2.6 applies.
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In the first case, let L∗ ≤ G∗ be a Levi subgroup of type A2(q).A1(q
3).Φ3 belonging

to the nodes 1, 2, 3, 5, 7 of the Dynkin diagram in the standard Bourbaki numbering used
for example in Chevie. A Chevie-calculation shows that its dual Levi subgroup L ≤
G has disconnected centre, and CL∗(s) is of type A2(q).Φ2Φ3Φ6.2. Application of [3,

Thm. 3.2] gives that R
eGeL (ψ) contains the cuspidal character ρ with label 2E6[1] as well as

the semisimple character in E(G̃, s̃) exactly once, where ψ is the semisimple character in
E(L̃, s̃). So the claim holds for ρ by Remark 2.6(b). The two other cuspidal characters
in this series lie on a Brauer tree for Zsigmondy primes dividing Φ18 and we can use
Lemma 2.4.

Finally, for the last case, take a 6-split Levi subgroup L∗ ≤ G∗ for the nodes 2, 5, 7,
of type A1(q

3).Φ2
6, whose dual again has disconnected centre, and with CL∗(s) of type

(q3 + 1)Φ2
6.2. Then R

eGeL (ψ) contains the cuspidal character in E(G̃, s̃) as well as the
semisimple character exactly once and we conclude as before. �

Corollary 3.3. Let ρ be a cuspidal character of a quasi-simple group G of Lie type in
a quasi-isolated series and assume we are neither in cases (3) or (4) of Table 2 nor in
the first case of Table 3. Then some G̃-conjugate of ρ extends to its inertia group in the
extension Ĝ of G by graph and field automorphisms. In particular ρ satisfies part (ii) of
the inductive McKay condition from [15, Thm. 2.1].

Proof. For groups of types An and 2An this has been shown by Cabanes–Späth [6]. For
the other types, by the proofs of Theorem 2.8 and 3.2 we have connected ρ via a sequence
of Brauer trees or of Deligne–Lusztig characters to a semisimple character χ in the same
Lusztig series. According to [19, Prop. 3.4(c)] there exists a semisimple character χ′ in
the G̃-orbit of χ that satisfies the cited condition (ii) and thus in particular extends to

its inertia group I in Ĝ. Thus, the corresponding G̃-conjugate ρ′ of ρ also has inertia
group I.

If ρ, χ (and hence ρ′, χ′) are connected via Brauer trees, ρ′ extends to I by Corollary 2.5.

In the other cases not excluded in the statement, all Sylow subgroups of Ĝ/G are cyclic,
and so ρ′ also extends by elementary character theory. This yields part (ii) of the inductive
McKay condition. �

4. Proof of Theorem 1

We are now ready to prove our main result. Here, for finite groups UEV with characters
χ ∈ Irr(V ), ψ ∈ Irr(U) we write Irr(U | χ) for the constituents of χ|U , and Irr(V | ψ) for
those of ψV .

Lemma 4.1. Let G be a connected reductive group with Frobenius map F and G0 E G
a closed F -stable normal subgroup such that [G,G] = [G0,G0]. Let χ0 ∈ Irr(GF

0 ) and
χ ∈ Irr(GF ) be semisimple characters. Then:

(a) All characters in Irr(GF | χ0) and in Irr(GF
0 | χ) are semisimple.

(b) Let π : G∗ → G∗
0 be the dual epimorphism and s0 ∈ G∗F

0 such that χ0 ∈ E(GF
0 , s0).

Then |E(GF , s) ∩ Irr(GF | χ0)| = 1 for all s ∈ G∗F with π(s) = s0.

Proof. Choose a regular embedding G ↪→ G̃, then G0 ↪→ G ↪→ G̃ is also regular. The
first statement now follow immediately from the definition of semisimple characters as the
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Alvis–Curtis duals of regular characters, see [2, §15A]. For part (b) set G := GF , G0 :=
GF

0 , and AG(s) := (CG∗(s)/C◦
G∗(s))F . By Lusztig’s result [2, Thm. 11.12] the induction

IndG
G0

(χ0) is multiplicity-free and by [2, Prop. 15.13] it has exactly |G : G0|/|AG0(s0) :
AG(s)| constituents. On the other hand, by direct counting this is exactly the number of
semisimple classes of G∗F lying above the class of s0. By [2, Prop. 11.7] and part (a) any
corresponding Lusztig series will contain a character from Irr(GF | χ0). The pigeonhole
principle now shows that each such series will contain exactly one such character. �

Proof of Theorem 1. Let G be simple, simply connected and F : G → G such that
G = GF is quasi-simple. Let ρ ∈ Irr(G) be cuspidal and s ∈ G∗ such that ρ ∈ E(G, s).
Let L∗ ≤ G∗ be a minimal F -stable Levi subgroup of G∗ containing CG∗(s) with dual
L. According to [20, Thm. 9.5] the Jordan decomposition between E(G, s) and E(L, s)
induced by RG

L commutes with any γ ∈ Aut(G)s, and by Lemma 2.7 it sends cuspidal
characters to cuspidal characters and semisimple characters to semisimple ones. Here
Aut(G)s denotes the stabiliser in Aut(G) of E(G, s). Note that by construction s is
quasi-isolated in L∗. Thus we have reduced our question to the corresponding one for
quasi-isolated series in L.

Let L0 := [L,L] and let s0 ∈ L∗
0 be the image of s under the natural epimorphism

L∗ → L∗
0 induced by the embedding L0 ≤ L. Clearly s0 is quasi-isolated in L∗

0. As
G is of simply connected type, so is L0 (see [16, Prop. 12.14]), hence a direct product
L1 · · ·Lr of F -orbits Li, 1 ≤ i ≤ r, of simple components of L0. Correspondingly, we have
LF

0 = L1 · · ·Lr with quasi-simple finite groups of Lie type Li. Any irreducible character χ
of L0 is an outer tensor product of irreducible characters χi of the Li, which are cuspidal,
respectively semisimple, if and only if χ is. Moreover, if χ ∈ E(L0, s0) then χi ∈ E(Li, si),
with si the image of s0 under the epimorphism L∗

0 → L∗
i induced by the embedding

Li ↪→ L0. Again, the si are quasi-isolated in L∗
i . Now for cuspidal characters in quasi-

isolated series of quasi-simple groups, our claim holds: For groups of types An and 2An it
follows from [6], for the other groups of classical type it is contained in Theorem 2.8 and
for groups of exceptional type all relevant cases have been dealt with in Theorem 3.2.

It remains to deduce the claim for L from the one for L0. First, for χ ∈ E(L, s) and
χ0 ∈ Irr(L0 | χ), we have by Lemma 4.1(a) that χ is semisimple if and only χ0 is, and
by the definition of cuspidality, χ is cuspidal if and only if χ0 is. Furthermore, for χ
semisimple we have Irr(L | χ0) ∩ E(L, s) = {χ} by Lemma 4.1(b). Thus χ is uniquely
determined by χ0 (given its Lusztig series). Since our claim holds for L0, any cuspidal
character χ0 ∈ E(L0, s0) has the same stabiliser in L as the semisimple characters in this
series, and so again Irr(L | χ0)∩E(L, s) = {χ} and χ is uniquely determined by χ0 and s.
Now note that L0 is invariant under all automorphisms of L. But then our claim for the
Lusztig series E(L, s) follows from the corresponding one for the Lusztig series E(L0, s0)
of L0. �

Example 4.2. Let F ′ : G → G be a Frobenius endomorphism commuting with F and
such that Z(G) ⊂ GF ′

. Let s ∈ G∗ such that E(G, s) is stable under the field or graph-
field automorphism σ of G induced by F ′. Then any cuspidal character ρ ∈ E(G, s) is σ-
invariant. Indeed, by [4, Thm. 3.5] any such σ fixes all regular characters in E(G, s), hence
by [20, Thm. 9.5] the (Alvis–Curtis dual) semisimple characters, hence ρ by Theorem 1.
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5. On the inductive McKay condition

We apply our previous result to verify the inductive McKay condition for several series
of simple groups at suitable primes. Let still G be simple of simply connected type, with

regular embedding G ↪→ G̃ and dual epimorphism π : G̃∗ → G∗. By definition G̃ induces
the full group of diagonal automorphisms of G. Let D be the group of automorphisms of
G̃ induced by inner, graph and field automorphisms of G. We investigate the following
property of characters χ̃ ∈ Irr(G̃):

there exists χ ∈ Irr(G | χ̃) which is DIrr(G|χ̃)-stable; (†)
here DIrr(G|χ̃) denotes the stabiliser in D of the set of irreducible characters of G below χ̃.
The following is known:

Lemma 5.1. Regular and semisimple characters of G̃ satisfy (†).

Proof. First let χ̃ ∈ Irr(G̃) be a semisimple character. Then the claim is just [19,
Prop. 3.4(c)]. Regular characters are the images of semisimple characters under the
Alvis–Curtis duality (see [8, 14.39]), whose construction commutes with automorphism,
so we conclude by the previous consideration. �

In the next result, Irr`′(G) denotes the set of irreducible characters of G of `′-degree.

Proposition 5.2. Let G = 2E6(q)sc for a prime power q and `|(q + 1) be a prime. Then
any χ̃ ∈ Irr(G̃ | Irr`′(G)) satisfies (†).

CG∗(s) q |E(G, s)|
2A2(q

3).3 (2×) ≡ 2 (3) 3× 3
D4(q).Φ

2
2.3 ≡ 2 (3) 8× 3 + 2× 1

A1(q)
4.Φ2

2.3 ≡ 5 (6) 4× 3 + 4× 1
A1(q)

3.Φ3
2.3 ≡ 2 (3) 2× 3 + 2× 1

A1(q).Φ
5
2.3 ≡ 2 (3) 2× 3

Φ6
2.3 ≡ 2 (3) 1× 3

Table 4. Some `′-series in 2E6(q)sc, `|(q + 1)

Proof. Let s̃ ∈ G̃∗ be semisimple such that χ̃ ∈ E(G̃, s̃), and let s = π(s̃). If χ̃ restricts
irreducibly to G, the claim holds trivially. So we may assume CG∗(s) is not connected and
hence that 3|(q + 1). From the list of character degrees of 2E6(q)sc provided by Lübeck
[12], we obtain the Table 4 of conjugacy classes of semisimple elements s ∈ G∗ with
CG∗(s)F 6= C◦

G∗(s)F and such that E(G, s) contains characters of `′-degree. As in Table 3

we also give the number of G̃-orbits in E(G, s) (this is implicit in the data in [12]).
In the first three entries of Table 4 the element s is quasi-isolated, and the claim follows

with Lemma 3.1 as in the proof of Theorem 3.2. In the other three cases the non-invariant
characters are either regular or semisimple, so they all satisfy (†) by Lemma 5.1. �

Thus we can prove our second main result:
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Proof of Theorem 2. If `|(q − 1) the claim is contained in [15, Thm. 6.4(a)]. So now
assume that q ≡ −1 (mod `). For S = 2E6(q) all χ̃ ∈ Irr(G̃ | Irr`′(G)) satisfy property (†)
by Proposition 5.2. As moreover here D/ Inn(G) is cyclic, all such characters χ̃ satisfy
condition (ii)(1) in [15, Thm. 2.1] and thus the result follows from [15, Thm. 6.4(c)]. For
the other families of groups, we have that q ≡ −1 (mod `) with ` ≡ 3 (mod 4), so q is
not a square. Thus S has no even order field automorphisms, whence Out(G) is cyclic.
The claim then again follows from [15, Thm. 6.4(c)]. �

It was shown in [5, Cor. 7.3] that the inductive McKay condition holds for 2E6(q) at all
primes ` ≥ 5 if q 6≡ −1 (mod 3), as well as for E7(q), Bn(q) (and so Cn(q)) if q is even.

References
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[6] M. Cabanes, B. Späth, Equivariant character correspondences and inductive McKay condition

for type A. J. Reine Angew. Math. 728 (2017), 153–194.
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