DECOMPOSITION MATRICES
FOR EXCEPTIONAL GROUPS AT d=14

OLIVIER DUDAS AND GUNTER MALLE

ABSTRACT. We determine the decomposition matrices of unipotent ¢-blocks of defect
®2 for exceptional groups of Lie type up to a few unknowns. For this we employ the
new cohomological methods of the first author, together with properties of generalised
Gelfand-Graev characters which were recently shown to hold whenever the underlying
characteristic is good.

1. INTRODUCTION

The main aim of this paper is to determine the decomposition matrices for the unipotent
blocks of finite exceptional groups of Lie type Eg(q), *Fs(q), E+(q), Es(q) and Fy(q) for odd
primes ¢ dividing ®,4(q) = ¢®>+1. For these groups, we study only the blocks with defect at
most 2 — which amounts to excluding only the principal block of Eg(q) — and we obtain
an approximation to the decomposition matrices in that a small number of entries remain
undetermined for ?Fg(q) and Fy(q). On the way, we also find decomposition matrices for
orthogonal groups of rank up to 7 which occur as Levi subgroups. As a byproduct, we
obtain the repartition of the simple unipotent modules into Harish-Chandra series.

The decomposition matrices are determined inductively, by the combination of standard
methods like Harish-Chandra induction and restriction, and the new ingredient introduced
in [8] to tackle the discrete series. Our strategy can be summarised in the following three
steps.

Step 1. We start by using Harish-Chandra induction from proper Levi subgroups, Harish-
Chandra restriction from suitable overgroups and decomposition numbers for Hecke
algebras to compute the columns of the decomposition matrix corresponding to the
non-cuspidal simple modules. In several cases this determines entirely the unipotent
part of the decomposition matrix.

Step 2. We consider suitable generalised Gelfand—Graev characters containing the missing
columns. The properties of these projective characters (see [22, 25]) force the decom-
position matrix to be unitriangular, but their construction introduce some conditions
on the underlying characteristic of the groups considered.

Step 3. Finally, we use virtual projective characters afforded by cohomology of Deligne—
Lusztig varieties. As observed in [8], we have some control on the multiplicity of the
various PIMs in these virtual characters, from which we deduce upper bounds on the

Date: July 29, 2015.

1991 Mathematics Subject Classification. Primary 20C33; Secondary 20G40.

The second author gratefully acknowledges financial support by ERC Advanced Grant 291512.
1



2 OLIVIER DUDAS AND GUNTER MALLE

missing decomposition numbers. In many cases these bounds are small enough to
determine the numbers.

The paper is built up as follows. In Section 2 we present the general methods used
in many of the arguments. Then in Section 3 we determine decomposition matrices for
some orthogonal groups of type D,, n < 8. In the following sections, we consider the
exceptional groups of type E,, 6 < n < 8. For these we are able to determine all the
decomposition numbers for blocks of defect at most 2, which excludes only the principal
block of groups of types D7, Dg and Eg. In Section 7 we turn to the twisted groups
of types 2D,, n < 7, and ?Es. We finish by the case of symplectic groups of type C,,
n < 4 and exceptional groups of type Fj in Section 8. In those cases we have to assume
that the underlying characteristic is good, and even then we are not able to determine all
decomposition numbers. Some entries remain unknown, but we still give conditions and
relations that they satisfy.

Let us note that our calculations give rather large examples for Geck’s conjectures on
the shape of (-decomposition matrices (see [13, Conjecture 3.4| for a precise formulation
of the conjectures). Indeed, in all the cases we consider we observe that:

e the decomposition matrix has a unitriangular shape, with respect to an order
compatible with Lusztig’s a-function,

e within a given family, the square submatrix is the identity matrix (up to some
indeterminates for types Dy, 2Dy, ?Eg and Cy),

e any cuspidal unipotent character remains irreducible after /-reduction (more gen-
erally any unipotent character with smallest a-function within its Harish-Chandra
series).

2. METHODS

We determine decomposition matrices for unipotent blocks of various families of groups
of Lie type G, where G = G(q) is the group of fixed points under a Frobenius endomor-
phism with respect to an Fg-structure of a simple algebraic group G over the algebraic
closure of F,. More precisely, we consider the case that £ is an odd prime dividing ¢* + 1.
In particular, we have ¢ > 5 always. In the proofs we make use of several standard
arguments which we collect here for easier reference.

Firstly, the subdivision of unipotent characters into ¢-blocks is known in our situation,
see [3]. Secondly, by results of Geck and Hiss, whenever ¢ is a good prime for the group
in question, then the unipotent characters form a basic set for the union of unipotent
blocks. Thus, for good primes the decomposition matrix for a unipotent block is known
once the decomposition numbers for the unipotent characters in that block have been
found. To determine the decomposition matrix of the block is hence equivalent to finding
the (unipotent parts of the) ordinary characters of all projective indecomposable modules
(PIMs) in that block.

One standard method for constructing projective characters is via Harish-Chandra in-
duction RY of projective characters from proper Levi subgroups L (see [5, Prop. 1.5]),
which we may assume to be known by induction. Thus our first source for projective
characters is

(HCi) Harish-Chandra induction of projective characters from proper Levi subgroups.
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This Harish-Chandra induction can be computed explicitly in terms of induction in rela-
tive Weyl groups. All of our calculations were done in the Chevie-system [23]. In addition,
Harish-Chandra restriction *R$ of projective characters also yields projective characters
(see [5, Prop. 1.5]). This leads to the following indecomposability criterion:

(HCr) Let x be a projective character of G. If no proper subcharacter of x has the
property that its Harish-Chandra restriction to Levi subgroups L decomposes non-
negatively on the PIMs of L, then y is the character of a PIM.

One of our results is the subdivision into modular Harish-Chandra series of the Brauer
characters in the block. A valuable criterion to determine this is given by [14, Thm. 4.2

(Csp) The group G has a cuspidal unipotent Brauer character if and only if a Sylow
(-subgroup of G is not contained in any proper Levi subgroup of G.

Furthermore, the ordinary Gelfand—Graev character always provides the Steinberg PIM:

(St) There exists a PIM with unipotent part just the ordinary Steinberg character. It
is non-cuspidal if and only if a Sylow ¢-subgroup of G is contained in a proper Levi
subgroup L. In this case it is a summand of the Harish-Chandra induction of the
Steinberg PIM from L.

Other PIMs will appear as direct summands of generalised Gelfand—Graev representations
(GGGRs). The results of Lusztig [22, §11], which have recently been extended to good
characteristic by Taylor (see [25, Thm. 14.10]), give an approximation of some columns
of the decomposition matrix:

(GGGR) Assume the underlying characteristic of G is good. Given a unipotent character
p, there exists a (projective) Gelfand-Graev representation I' such that p occurs in T,
and any other unipotent constituent in I' is either in the same family as p or has a
larger a-value.

(For the definition of Lusztig’s a-function see [21, Chap. 4].) Under suitable conditions
on the family of unipotent characters containing p one can even use [6, Thm. 6.5(ii)]
to compute the multiplicities of the characters in the family in a GGGR. An instructive
example is given in the proof of Theorem 3.6.

A further tool is given by a particular case of Dipper’s result (see [7, 4.10] for the precise
assumptions):

(End) The decomposition matrix of the Hecke algebra Endg(R$%(Z,)) embeds as a sub-
matrix into the decomposition matrix of G.

Dipper’s result holds more generally for a Hecke algebra associated with R%(p) where p
is a cuspidal unipotent character satisfying the following two conditions (see [12, §2.6]):

- the f-reduction of p is an irreducible Brauer character ¢,

- Nw(Wr,p) = Nw (W, ¢)
where W denotes the Weyl group of G. Note that when L is classical, p is the unique
cuspidal unipotent character, so that Ny (Wy, p) = Ny (W) and the second condition is
automatically satisfied. The first condition is conjectured to hold whenever ¢ is good, as
already mentioned in the introduction.

For dealing with PIMs which are not induced from a proper Levi subgroup, we will

make use of suitably chosen Deligne-Lusztig characters as in [8] and [10, Sec. 6]:
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(DL) Let x be a projective character of G. If w € W is minimal in the Bruhat order
for the property that the unipotent part of x occurs in the Deligne-Lusztig character
R, then the sign of its multiplicity in R, is (—1)®),

We shall often use the following particular case:

(Cox) Let x be the character of the projective cover of a cuspidal unipotent module, and
w € W be a Coxeter element. Then the multiplicity of the unipotent part of y in
(—1)*®) R,, is non-negative.

The previous two arguments will usually give upper bounds on decomposition numbers.

Lower bounds can be obtained from ¢-reduction of non-unipotent characters, which are

non-negative combinations of irreducible Brauer characters. This applies in particular to

the Deligne-Lusztig induction of characters in general position:

(Red) Let T,, be a torus of type w € W. Assume that there exists an ¢-character of T, in
general position. Then the ¢-reduction of (—1)£(w)Rw is a non-negative combination
of irreducible Brauer characters.

Indeed, if § is an (-character of T}, in general position then (—1)* ™ R{ (6) is an irreducible
character by [4] and it has the same (-reduction as (—1)““)R,, = (—=1)"™R¢ (17,) (see
[18, Prop. 2.2]).

We will also use variations of the following elementary observation:

(Sum) Let x1+ x2, X1+ X3, X2, X3 be characters of projectives modules, and assume that
X2, X3 are indecomposable. Then y; is the character of a projective module.

Indeed, we have two direct sum decompositions of a projective module with character
X1 + X2 + X3, and the theorem of Krull-Schmidt allows to conclude. Sometimes, we will
also make use of the following obvious fact:

(Deg) The degres of the irreducible Brauer characters in a block can be computed from
the inverse of the decomposition matrix; they are all positive.

Our notation for modular Harish-Chandra series is as follows: characters in the principal
series are labelled ”ps”, or sometimes "p” for short in large tables. If a Levi subgroup has
a single cuspidal Brauer character, its Harish-Chandra series is labelled by the Dynkin
type of that Levi subgroup. Else, it is labelled by the name of the corresponding ordinary
unipotent character. For these, in turn, as customary we use the labelling in terms of

A0

ordinary Harish-Chandra series. Cuspidal Brauer characters are labelled by ”c¢”.

3. DECOMPOSITION MATRICES FOR ORTHOGONAL GROUPS OF TYPE D,

We first determine the decomposition matrices of orthogonal groups SO3, (q), with
n < 7 and q a prime power, for odd primes ¢|(¢*+1), except in the case that (¢*+1), = 5.
In the latter case, the decomposition matrices can be expected to be different from those
in the general case, see Remarks 3.2 and 3.4.

3.1. Decomposition matrices for SO7 (¢). Let first n = 4, so G = SOZ (¢). Four of
the unipotent characters of GG lie in ¢-blocks of defect zero, the others lie in the principal
block. Miyachi [24, Lemma 9] gives an approximation of the ®,-modular decomposition
matrix of the principal block of SOF (¢) when ¢ is odd, based on the triangularity of
the decomposition matrix proved by Geck—Pfeiffer [17] using generalised Gelfand-Graev
characters. Here we extend their results to all ¢ and determine the missing entry.
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Theorem 3.1. Let ¢ be a prime. The {-modular decomposition matrix for the principal
block of SOF (q), £|(q* + 1) with (¢* + 1), > 5, is as given in Table 1.

TABLE 1. SOZ (q), (> +1)¢ > 5

4 1 1

31 qQCI)?)Q)G 11

2+ q2¢)3(1)6 1 1

2— qzq)gq)ﬁ 1 . .1

1.21 | 12040 1 1 1 1 1

D4 %q?’@%@;; B |

212 qﬁq)gq)ﬁ 10 01 01

PP+ | ¢5Psds . . 1 . 1. . 1

12— q6q)3¢)6 .. .11 . . . 1

14 q'? A ) 1 11
ps ps ps ps ps ¢ D3 Az Aj ¢

Here, D3, A3, A; denote three non-conjugate Levi subgroups of type As.

Proof. All projective characters listed in the table except for those in the 6th and 10th
column are obtained by inducing the (known) unipotent projectives of all proper Levi
subgroups (HCi). (The explicit decomposition of Harish-Chandra induction into unipo-
tent characters can be calculated in the Weyl group.) The last column correspond to the
Steinberg-PIM, which is cuspidal (St). The unipotent parts of the five principal series
characters are precisely those of the Hecke algebra of type D4 at a fourth root of unity
by (End). Hence they are indecomposable for all ¢ dividing ¢* + 1. The printed PIMs in
the series Az, A% and D3 are indecomposable by (HCr).

Using the table of unipotent characters of G in Chevie [23] one finds that the tensor
product of the (projective) unipotent character p2 with the cuspidal unipotent character
pp, decomposes on the principal block as (¢—1)/2pp,+(q*—1) /4p.14 for odd ¢, respectively
as q/2pp, +q*/4p.1s when ¢ is even. Since the unipotent characters form a basic set for the
unipotent blocks (see [5, Thm. 14.4]), this shows the existence of a PIM involving only the
cuspidal unipotent character pp, and an unknown multiple a of the Steinberg character
p.14. In particular the decomposition matrix has unitriangular shape. Let sq, ..., s4 denote
the simple reflections in the Weyl group of G. When (¢* + 1), > 5, there exists an /-
character in general position in the Sylow ®4-torus T,, for w = (s1895384)?, forcing the
relation @ > 2 by (Red).

Finally, we use (Cox) to determine a: the generalised 1l-eigenspace of the Frobenius
endomorphism on the Deligne-Lusztig character associated with a Coxeter element de-
composes as

Ps1525354 =pP4 + PDy + P.14
:\111—\1’2—\113—\IJ4+2\I/5+\1’6—\117—\1’8—\1/9+(2—a>\1110,

where U, i # 6, denotes the unipotent part of the PIM corresponding to the ith column
in Table 1 and Vg := pp, + ap 4. Here, the second equality is obtained by expressing the
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unipotent characters in terms of the (approximate) projective characters constructed so
far. So a must be equal to 2. O

Remark 3.2. The 5-modular decomposition matrices of SOg (2) and SO{ (3) are known;
they differ from the one in Table 1 in that the entry “2”7 is replaced by “1”. Thus,
Theorem 3.1 does not extend to the case (¢* + 1), = 5.

3.2. Decomposition matrices for SO},(¢). We next consider the 10-dimensional or-
thogonal groups G = SO,(q). Here, G has four unipotent ¢-blocks when £|(¢* + 1), the
principal block, one block with cyclic defect and two of defect zero, see e.g. [3].

The full proof of the following result will also rely on the subsequent determination of
the (-modular decomposition matrices of SO, (q) and SO, (q).

Theorem 3.3. Let ¢ be a prime. The £-modular decomposition matrices for the unipotent
blocks of SO3,(q) of positive defect for (¢* + 1), > 5 are as given in Tables 2 and 5.

TABLE 2. SOjy(q), (¢* + 1), >5

) 1 1

14 q(I>5(I>6 1

2.3 q2(b5(1)8 1 11

32 1500605 1 . . 1

1.31 ?q3q)3q)5q)8 11 01

D4 12 5(]3(1)‘11@3@5 T |

1.22 q5q)5q)6q)8 1 .11 . o1

3]_2 q6(I)3(I)6(1)8 B T |

221 Ly . . . 1 . .1 . 1

]_212 %q7q)3q)5q)8 A e o1 o1

D4 . 12 §q7(I)le(I)3q)5 e . . . . o1

12.1 ¢°osds . .1 . . .1 . .1 .1

1.14 ¢B30sds . . . . .2 .1 .1 .11

15 & .. . .. .1 .1 .21 .1
ps ps ps ps ps Dy ps Dy Dy ps Dy Ag 1% 14

TABLE 3. SOf,(g), block of defect 1, 2 # £|(¢* + 1)

41 —2.21—12.21— 213—O)
ps ps ps Ds

Proof. The Brauer tree for the block with cyclic defect is easily determined (see also [11]),
so it remains to consider the principal block. Let us denote by Wy,..., W4 the linear
combinations of unipotent characters given by the columns in Table 2. We shall show
that these are the unipotent parts of projective indecomposable characters of G.
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Using (HCi) from the respective Levi subgroups indicated in the last row of Table 2 gives
U, for i € {2,3,4,5,8,10,12}. The decomposition matrix of the Hecke algebra of type
Dy at a fourth root of unity gives by (End) the seven principal series PIMs Wy, ..., Vs,
U, and ¥y, for all primes ¢ with (¢> + 1), > 5. Furthermore, (HCi) yields g := Uy + Uy
and Uy := Ug + Uq9. An application of (Sum) yields Wy.

The centraliser of a Sylow ®4-torus of GG is contained in a Levi subgroup L of type
Dy, so [14, Thm. 4.2] shows that the Harish-Chandra induction U3 = Uy3 + Uy of the
Steinberg PIM from L has two summands, namely W3 and Wq4.

(HCi) also yields a projective character with unipotent part Ug = Ws+ Uy, The Hecke
algebra for the ordinary cuspidal character of a Levi subgroup L < G of type D, has type
A, with parameter ¢*, hence is semisimple modulo ¢, so the Harish-Chandra induction
of the corresponding PIM from L has two summands in that Harish-Chandra series.
Decomposition of the Harish-Chandra restriction to the proper Levi subgroups shows that
these summands must have the form Wg— (2—a)(¥i3—Vy4) and Vg + (2—a) (Vi3 — Uyy),
with one undetermined parameter a € {0, 1, 2}.

Finally, using (HCr) we check that, independently from the value of a, all W¥; are
indecomposable. Indeed, no proper subsums restrict to a non-negative combination of
PIMs in all Levi subgroups. We shall prove that a = 2 in Theorem 3.6 below. U

Remark 3.4. The 5-modular decomposition matrix of SOY,(2) is known; it differs from
the one in Table 2 in that the two entries “2” are replaced by “1”s. Thus, Theorem 3.3
does not extend to the case where (¢> + 1), = 5.

3.3. Decomposition matrices for SOf,(q). Now let G = SO{,(¢). This group has four
unipotent ®,-blocks of defect zero and three blocks of defect 3. We label these blocks by
the symbol for their 4-Harish-Chandra source in a 4-split Levi subgroup of type SO} (¢).

Theorem 3.5. Let ¢ be a prime. The {-modular decomposition matrices for the unipotent
blocks of SO35(q) of positive defect, for (¢* + 1) > 5, are as given in Tables 4—6.

Proof. All projectives W, listed in the tables are obtained by (HCi) from the Levi sub-
groups of types D5 and As, except that instead of ¥4 and Wy, in the first block we obtain
\114 — (2 — a)(\Iilg — \1114) and \1111 + (2 - a)(\1112 - \Ifl4>, and instead of \1[5 and ‘1112 in the
third block we obtain \1[5 — (2 — a)(\Iju — @14) and \1112 —+ (2 — CL)<\I/11 — \1114), with the
parameter a € {0, 1,2} as in the proof of Theorem 3.3. Tt is straightforward to check by
(HCr) that all these projective characters are indecomposable. We shall prove that a = 2
in Theorem 3.6 below. 0

3.4. Decomposition matrices for SO{,(q). We now consider the three blocks of posi-
tive ®4-defect for the groups G = SO7,(¢q). The non-principal block is again labelled by
the symbol for its 4-Harish-Chandra source in a 4-split Levi subgroup of type SOZ (¢).

Theorem 3.6. Let G = SO7,(q) and { a prime with (¢*> + 1), > 5.

(a) If q is odd then the decomposition matriz for the principal £-block of G is as given
in Tables 7 and 8.

(b) The decomposition matriz for the non-principal unipotent (-block G of positive
defect is as given in Table 9.
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TaBLE 4. SOj,(q), block (7), and SOf;(q), block (3), (¢* + 1), > 5

.6 1 1 1.7
2.4 q2(1)3(1)5(1)6(1)10 11 3.5
141 | 1P 050,030, 11 1.52
Dy : 2. %q3<1>‘1*<1>§<1>5<b6 A | D,:3.1
412 qG(I)5(I)8(I)10 .. 1 1 521
.32 %q4¢5¢§®8@10 1 1 1.3%1
2.31 —q4CI)§CI>5<I>8<I>10 111 1 3.32
12.22 q CDS(I)5(I)6(I)8(I)10 1 . . . 111 12321
2.212 q8®§®5(1>§<1>10 B | 221.3
1221 |1qY00305020, . . . . . . 1111 13.312
D4 2.2 5(]10@%@%@5@10 P . . . e e . 1 D4 1 1.3
142 | LgBdsds®20g . . . 02 1 . . .11 .1 15.3
.2212 §q13q)§q)6q)gq)10 S . 11 .. . . 1 13212
214 g P54 .. . . . . .1 .12 .1 1}13
ps ps ps Dy D3 ps ps ps ps Az Dy 1% Dy 1%

TABLE 5. SO},(q), block (1), (¢ +1)¢ > 5

1.5 qq)g(I)G(I)g 1

3+ C]3(I)5(I)8(I)10 11

3— q3(1)5(I)8(I)10 1 .1

1.32 q5q)3q)5q)6q)8q)10 1 111

Dy:1.1| 1"®1®30:05 . . . . . 1

1221 q9<I>3(I>5<P6(I>8(I>10 1011 1 1

13—|— q15q)5q)8q)10 1 . 1 1

13— q15(I)5(I)8(I)10 A . 1. 1
1.1° P edg . . . .1 211 1 1

ps ps ps ps Dy Dy ps Az Ag .17

Proof. Let us first consider the block with defect ®3. We argue how to construct pro-
jectives Wy, ..., ¥y, with unipotent part equal to the columns in Table 9. (HCi) and
(End) give all ¥;, except that instead of U, and W3 we find Wy — (2 — a)(¥1p — ¥y4) and
U3+ (2—a)(Vyo—¥y4), with a € {1,2} as in the proof of Theorem 3.5. Again, it is easily
seen by (HCr) that all these characters are indecomposable. Now the tenth Brauer char-
acter has positive degree only if a > 2, which shows by (Deg) that a = 2 in this table and
also in the decomposition matrices for SO7,(¢q) and SO7,(g), thus completing the proofs
of Theorems 3.3 and 3.5. Note that up to this point we did not use any assumption on q.

We now turn to the principal block. Here, (HCi) yields ¥; except for i € {2, 14,16, 19,
24,25, 26,34, 35,36, 38,40}. Using (Sum) we get other projective characters: Wy + W3 and
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TaBLE 6. SOj,(q), block (;7), and SOY;(g), block (;23), (¢ + 1), > 5

bl q2(I)5(I)10 1 1512
42 1PPIDD Dy 11 1.421
12.4 1%q3q)3®5q)gq)8 o1 135
21.3 %q4<1>%<1>5(1>§<1310 1. 11 3.312
D4 . 12. §q4(I)il(I)§(I)5q)10 | D4 . 131
2.22 qﬁq)gq)gsq)ﬁq)gq)lo 11 .1 .1 2.321
1231 | $®205020y, . . 11 . . 1 13.32
313 q12(135(1)8(1)10 e e . 101 3213
.23 %q10q>5q>gq>8<1>10 S U R | 1.322
12.212 _q10@§@5®8®10 T e 1 13.221
1.213 §q13<1>;*<1>3<1>§<1>10. .2 .11 .11 1.2213
D4 . .12 %q13(plllq)§q)5q)6 e e . R . . . . 1 D4 . 113
12.14 quCI)3(I)5CI)6CI)10 ... 201 . . 101 o1 13.15
16 ¢*° o1 o121 1T
ps ps ps ps Dy ps ps D3 Ds ps .1 Dy Ag .17

Uy + Wy + Wy give Wy, Wiy + W7 and Wiy + Wag give Wiy, We+ Wig and Wig+ W3 give Wy,
Wip + Wie and Wig + Wig give Wig, Yo + Wog + Woy and Woy + Wy give Woy, W3y + W35 and
W33+ W35 give Was, Wog+ W3y and W3y + VU35 give W3y, Furthermore we find Wog with ¢ = 1.
The PIM Wy is cuspidal by (St). (HCr) shows that all of the projectives obtained so far,
with the possible exception of Wag, which might contain Wy; once, are indecomposable.
We have thus obtained all but three columns of the decomposition matrix. Since we have
accounted for all proper Harish-Chandra series, the remaining three Brauer characters
must be cuspidal.

To establish the unitriangularity we look at suitably chosen generalised Gelfand—Graev
representations and use (GGGR). Note that we have to assume that ¢ is odd in order
to construct these representations and use the results in [25]. Let us first consider the
family F = {p15.2, p1.214, p.2213, pp,.13 } of unipotent characters. The special character of
this family is p; 914; via the Springer correspondence, it corresponds to a special unipotent
class, and we denote by O its dual. By [25, Thm. 14.10], the character of any GGGR
attached to O involves characters lying in F or in a family with a strictly larger a-
value than that of F. In particular, the only characters in the block that can occur
are pis.o, P1.214; PD,135 P13.14, P12.15, p1.16 and p 7, which gives an approximation of Wsg.
Furthermore, u € OF satisfies the following two conditions:

e the small finite group attached to the family as in [21, Chap. 4] and the component
group Ag(u) := (Cg(u)/Cq(u)®)F are isomorphic (to Z/27Z),
e at most one of the local systems on (u) is not in the principal block,

in which case one can apply [6, Thm. 6.5(ii)] to compute the projection of the GGGR I,
into the span of F. Recall that the characters in a family are parametrised by pairs (g, )
where ¢ runs over a set of representatives of conjugacy classes of the small finite group
attached to the family, say G and ¢ € Irr(Cg(g)). For g € G, the Mellin transform of the
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1.6

2.5
1.51
125

D4 3.
3.4
3.31
1.42
1.3°
2.32
D4 . ].3.
512
421
13.4

D4 1 2.1
3241
212.3
D4 . 121
12.32
13.31
322

D4 0 1.2
2.2%1
D4 2.3
1.23
12.221
143
3212
D4 . ].12
1.2212
13.212
314
1.214
15.2

D4 : .13
13.14
12.1°
1.1¢

OLIVIER DUDAS AND GUNTER MALLE

TABLE 7. SO{,(q), ¢ odd, principal block, (¢ + 1), > 5

—_
—_

—_
—_

—_ = = =
—_

—_ = = =
N -

ps ps ps ps ps Dy ps ps ps ps

ps D

1+ D3 D3 ps Dy D3 ps Dy ps
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TABLE 8. SO7Y,(q), principal block, cntd.

13.31 1

322 o1

Dy:12 . . 1

2.2%1 |

Dy:3 | . .1 .1

1.23 1 .1 1

12.221 ... . e 1

1%.3 | S |

3212 Y |

D411.12 . . . . b5 . . . . 1

1.2212 .. . bg c 1 .1 .1

13.212 1 1 b7 1 1

314 1 2 . by 1 1

1.214 1 2 by ¢ 1 1 1 1 11

1°.2 1 . . 1b . .1 . . .1 . .1

D42.13 . . . . b11 . . . . 1 . . . . 1

13.14 . . o1 b12 cH 1. . . 1 1 . . R |

12.1° .. . .bg co1 . . .11 . 1 . .11

1.16 .1 . 1by 1. . .02 1 . . 1.1 d 1

17 1 . b 1.2 21311
Ag D3 D4p8 C A3D3p8 .]_4 D3 D4 .]_4 A3 .14 .14 .140143 C .].40

Here, b1, c¢,d € {0,1}. Moreover, if p > 5 then b3 = by = b5 = by = 0 and bg € {0, 1}.

pair (g, 1) is given by
By = Y (9P
Yelrr(Cg(9))

In particular, the small finite group for the dual family of F is Z/27Z and the Mellin
transforms of (1,1) and (—1,1) are

1,1 = P t Pe) = Prs1 + P12,
H(=1,1) = P(=1,1) — P(-1,e) = P.52 — PD4:3.5
where ¢ denotes the non-trivial character of Z/2Z. By [6, Thm. 6.5(ii)], the projections

to F of the two GGGRs attached to O are given by the Alvis—Curtis duals of these
characters, that is by

pr214 + P15 and  po2i3 + pp,.as.

Taking the second GGGR and cutting by the block, we obtain a projective character
whose unipotent part is given by pp,.13 + c1p13.14 + capi2.15 + c3p1.16 + cap.17. Note that ¢
is actually zero by [25, Thm. 14.10] since py3 14 and pp,. 13 have the same a-value but lie
in different families.



12 OLIVIER DUDAS AND GUNTER MALLE

TaBLE 9. SOj;(g), block (}?), (¢ + 1), > 5

61 5Dy 1

21.4 lq2q)5(1)6(1)7(1)8 11

43 §q2<I>6<I)7<I>8(I)10 1 .1

D4 21, %qZCI)%CI)?)@E)(IH . |

1241 q4®3®§@7®8 1. . 1

21.31 q5(I>3<I)5(I)6CI)7CI>101 1 . 101

21.22 q7q)5q)7q)8q)10 1 .1 . 101

21212 (]9@3@5(1)6@7(1310 e 1111

413 q10@5(1)8(1)10 e o1 o1

2.213 2030205 . . . 2 1 111

1421 | LgMdsdd Py 2 . .11 .11
2221 §q14@6@7¢)8¢10 A A . . . 1
D4 021 %q14(1)411q>3(1)5®7 e . F . . . . 1
215 G D, D o 1. . . 1121

ps ps ps Dy ps ps ps ps D3 1% A3 D3 D, 1*
Here, all character degrees have been divided by ¢?®,®,.

For Wo5 and W35 we consider the GGGRs associated with the families {py2 921, p13.22, p1.23,
pp,.3} and {p;z 15}, from which we deduce that the decomposition matrix is unitriangu-
lar. Moreover, if we denote by (b;);=1,__ 15 (resp. ¢s,cg) the unknown entries in the 25th
(resp. 38th) column then [6, Thm. 6.5] yields by = 0.

The unipotent part of the Gelfand-Graev representation of SOj;(q) associated with
the family {p;2.16}, cut by the principal block, is of the form py2.16 + aps16 + Bp1s for
suitable o, 3 > 0. The Harish-Chandra restriction of this character to SO,(q), cut by
the principal block, equals pyz.15 + p1.16 + (o + 3)p.17 and thus forces ¢; < 1.

If moreover p > 5 we may also consider a GGGR associated to the family {7042,
$400.43, $300,44, Dy : <;§’1’712} of Eg, whose projection on the family is ¢40043 + D1 @ ¢} 15. By
[25, Thm. 14.10], the only other unipotent characters lying in the principal ¢-block which
can occur as constituents are ¢1.120, ¥3574, @50,56, 210,52, P567.46, P112,63 and Dy 1 P124. As
above, the Harish-Chandra reduction of the GGGR gives upper bounds for some of the
b;’s, namely b3 = by = b5 =b; =0 and bg < 1

We now use (DL) to obtain relations on the other decomposition numbers. Let w be a
Coxeter element. For v < w, one checks easily that the characters Wsg, W39 and Wy do
not occur in R,. Therefore the computation of R, yields by (DL) three inequalities which
are —cg > 0, cocs —c3 > 0 and 2+ ¢3 — ¢4 + c2(cg — ¢5) > 0. This forces ¢ = ¢3 = 0 and
¢y < 2. We use (Red) to prove that ¢, = 2. More precisely, we consider the ¢-reduction of
a non-unipotent character which is obtained by inducing an ¢-character in general position
of a ®4-torus (of order (q+ 1)(¢*> + 1)3). Such a character exists whenever (¢*+ 1), > 12,
which automatically holds if (¢*+1), > 5. This yields the relations ¢4 > 2 and cg > c5+3,
so that ¢, = 2. In particular, none of W3g, W39 and Wy occur in R,,.

Finally, we use (DL) with w' = $15351525354855657, where si,...,s; are the simple
reflections ordered as in Chevie (so the end nodes are 1,2 and 7), and we find ¢5 + 3 > ¢,
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so that ¢4 = ¢5 4+ 3. Note that one relation on the 0;’s can also be obtained. The resulting
decomposition matrix is given in Table 8, where ¢5 € {0,1} is simply denoted by d. O

Remark 3.7. Under some assumptions on the special unipotent class O, Kawanaka con-
jectured in [19] that one can decompose any GGGR associated with O into a sum of
projective characters, each of which contains only one unipotent character of the fam-
ily. If Kawanaka’s conjecture holds for the family {12.221,1%.22,1.23, D, : .3} of SO14(q),
then b; and d must be equal to zero. More generally, as suggested by Geck, Kawanaka’s
characters should force block unitriangularity of the decomposition matrix whenever p is
good.

Our method is not sufficient to determine all the decomposition numbers of SO7,(q).
However, we can use [9, Conj. 1.2] to determine small upper bounds for the missing
entries. Following [9], we denote by ), the virtual character afforded by the Alvis—Curtis
dual of the intersection cohomology of the Deligne—Lusztig variety corresponding to w.
In addition, if A € F, we consider the virtual character Q,,[\] afforded by the generalised
A-eigenspace of the Frobenius on the intersection cohomology. Up to a sign, Q,[\] is a
proper character and Conjecture 1.2 in [9] predicts that it is actually the unipotent part
of a projective character. The multiplicities of the various PIMs in Q,,[A\] depend on the
decomposition numbers (including the missing entries), forcing some linear combinations
of decomposition numbers to be non-negative.

Proposition 3.8. Assume Conjecture 1.2 in [9] holds. Then in the decomposition matriz
of the principal ®4-block of SOT,(q), we have by = by = by = bs = bg = 0, bg, by, big, by < 2,
by < 6, bi2,b13 < 12, by < 18 and b5 < 20,

Proof. To obtain the upper bounds on the b;’s we consider the characters Q. [¢®] for
W1 = $15253515253555453565554535756555453 and Q. [1] for wy = 81595351 5283855655575655S4
as well as their decomposition on the basis of PIMs.

The coefficient of Wog in Qy,[¢*] is 10 — 14b;. By [9, Conj. 1.2] it must be non-
negative, which forces by = 0. The list of coefficients of Wor,..., U3y on Qy,[1] is given
by —7bs, —Tby, —Tbs, 17+ Tby — Tbg, 17 — 7b; and Tbs — Thg. Since they must be all non-
negative, we get by = by = b5 = bg = 0 and bg, by < 2. With these values, the coefficients
of Wss, ..., Uy on Qu,[l] are

14 + Tbg + Tby — Tbg, Tby — Tbyg, 19 — Tby1,

62 + Tbg + Tby — Tbia, —9 — Tbg — Tby + Tbg + Tbia — Tby3,

60 — 7bg — Tbr + Tbig + Tbig — Tbia + d(9 + Tbg + Tby — Tbg — Th1a + Thys),

42 4 21bg + 21b7; — 21bg — Thyg + 14b1; — 21b1o + 21by3 + Ty — Thys.
From the first line we deduce by < bg + b7 + 2, bip < by and by; < 2. From the second,
bio < bg+ b7 + 8 and b3 < —2 — bg — by + by + byo, so that b3 < byo. Finally, the last two

lines y1€ld b14 S 8 — b6 - b7 + blO + b12 S 16 -+ blO and b15 S 6 + 3b6 + 3b7 - 3b9 - blO +
2b11 — 3612 + 3b13 + 614 S 16 + 2b11. ]

3.5. Decomposition matrices for SO{;(¢). Finally, we consider the three blocks of
®4-defect ®2 for the groups G = SO;(¢q). They are again labelled by the symbol for their
4-Harish-Chandra source in a 4-split Levi subgroup of type SOy (¢).
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Theorem 3.9. The (-modular decomposition matrices for the unipotent blocks of SO{s(q)
of defect @3, for primes £ with (¢* + 1), > 5, are as given in Tables 4, 6, 10 and 11.

The two blocks of SOf,(q) and SOT4(q) in Table 4 are Morita equivalent, as well as the
two blocks in Table 6.

TaBLE 10. SOfy(q), block (;2), (¢* + 1), > 5

12.6 103Dy 1

2.51 %qq)5q)8q)14 1

3.41 $q2®%®6®10®14 1 11

2.42 5(13(1)%@8@10(1)14 1 11

12.32 %q6®5q)6q>8q>10q)14 1 1 .1

422 %q7q)§q)10q)14 T |

D4 . 122 %q8¢%®§¢5®6®14 e . 1

2.23 %q10¢5q)6q)8q)10q)14 .. 11 01 o1

D4 . 212 %qloq)ilq)gq)5q)10 e . . o1

3212 L R S A S

12.2212 %q15c1>§c1>8c1>10<1>14 AR R R 11
13.213 iqlsq)%(bﬁq)loq)lzl A . . . 1 . . 1 1
12.214 1P @0y . . . . . .02 . . 1111
16.2 1B P3Py oo 1 .12 1 1

ps ps ps ps ps Dy Dy ps Dy D3 ps Ag 1% .17
Here, all character degrees have been divided by ¢3®3®;®,.

Proof. Harish-Chandra induction sends the fourteen PIMs in the principal block of SO, (q)
to the fourteen listed projectives of the first block of SOfs(g) in Table 4, and it sends irre-
ducible characters to irreducible characters. Thus, by [2, Thm. 0.2] those two blocks are
Morita equivalent. Exactly the same assertions hold for the third block of SOf,(¢) and
the fourth block of SOfs(¢q) in Table 6.

In the second block of G, (HCi) yields all columns in Table 10, except for the second
one. This is then obtained from the projectives ¥y + Wy and ¥y 4+ ¥, via (Sum).

In the third block, we obtain all ¥; in Table 11 for ¢ ¢ {1,5,6,9}. Then, using (Sum)
\114 + \116 and \116 + \117 give \116, \1[2 + \Ilg and \117 + \Ijg + \I/H giVG \1197 \114 + \115 and \115 + \119
give VU5, and finally ¥y + ¥y and ¥y 4+ W5 give Uy, OJ

4. DECOMPOSITION MATRICES FOR Fjg(q)

We now turn to decomposition matrices for the exceptional Lie type groups. We first
consider G = FEg(q) for primes ¢|®4(q) in which case the Sylow ¢-subgroups are abelian
homocyclic of rank 2. Note that again we do not need and will not specify the isogeny
type of GG, since the decomposition numbers of the unipotent characters will not depend
on such a choice. The group Fs(q) has ten unipotent blocks of ¢-defect zero, one of cyclic
defect and the principal block containing 16 unipotent characters.
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TaBLE 11. SOf4(q), block (2%), (¢* + 1), > 5

62 1,0 1

.53 _qq)’?(bS(I)lO 11

D4 : 22. %q2q)4q)3q)5q)7 |

22.4 2q3(I)5(I) (1)7(1)8 1 1

2231 15D P57 DDy 1 1 11

12.412 2(]7@5@7@ 1 1

21312 2q8q)4q)3q) (I)7(I)10 1 111

1.413 10(I>4<I>5<I>2<I>1O ..o 1 1

212.22 —q10®3®5¢7¢8¢)10 1 1.1 .1

2.313 —q11®5<1)7<1)2 .02 .11 1 01

14,22 %q15<1>5<1>2®7<1>8 .2 . .1 111

D, : .22 ol 050, . . . . . . . . . . 1
.2312 2q21(I)7(I)8(I)10 1. e e 1. 1
2214 120, 0y . 1.1 02 11

pS ps D4 PS PS ps ps D3 ps 1% A3 D, D 1%
Here, all character degrees have been divided by ¢*®3®,P,.

Here, the decomposition matrix of the principal block has been determined by Miyachi
[24, Thm. 37] except for three missing entries, which coincide with entries of the decom-
position matrix for Dy(q), again under the assumption that ¢ is a power of a good prime.
We give an independent proof of his result, valid for all prime powers ¢, and find the
remaining entries using Theorem 3.1:

Proposition 4.1. Let ¢ be a prime. Then the {-modular decomposition matrices for the
unipotent blocks of E¢(q) of positive defect, for (¢*> + 1), > 5, are as given in Tables 12
and 13. In particular, the three undetermined entries in the (-modular decomposition
matriz of Fg(q) in [24, Thm. 37] are all equal to 2.

Proof. The Brauer tree for the block with cyclic defect is easily determined. We will
construct PIMs ¥y, ..., ¥4 with unipotent parts as given by the columns of Table 12.

The PIMs in the principal series can be read off from the ®,-modular decomposition
matrix of the Iwahori-Hecke algebra of type Eg given in [15, Tab. 7.13]. Note that by [16,
Thm. 3.10] this agrees with the ¢-modular decomposition matrix whenever ¢ > 5 (since
5 is a good prime for Eg and 20 does not divide any degree of Fjs). So we have columns
i in Table 12 for ¢ € {1,2,3,4,6,7,8,9}. Furthermore, ¥;; and W3 are Harish-Chandra
induced from Levi subgroups of types D5 and As.

The Hecke algebra for the ordinary cuspidal unipotent character of D, is of type A,
with parameter ¢, thus remains semisimple modulo ¢ and so is isomorphic to the group
algebra of the Weyl group &3. Now Harish-Chandra induction from the Levi subgroup
L of type Dy yields projective characters U5 + Vg and Vg + V4. Comparing with the
induction in &3 we see that both of these must be the sum of two projective characters.
Using (HCr) we find that W5, Wy, Uy, are the only subsums which can be projective.
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TABLE 12. E¢(q), (*+ 1), >5

®1,0 1 1

®6,1 qPs P 1

G155 léng)s‘b%‘bg‘bg S |

G154 5613@5@8‘1)9@12 1 .1

D4 03 %q3@%®§®5q}9 |

92581,6 q6(1)§(1)(2;q)9(1)12 11 . o1

¢80,7 %q7<1>§<1>5(138<1>961>12 .1 .1 . 11

¢1079 §q7(I)5(I)§(I)8(I)9(I)12 1 . .1 . |

¢90,8 §q7®§®5¢%¢8®12 A I |

D4 021 %q7¢)%¢)§@5®8@9 e e . R |

¢81,10 quQ)g(I)%@g@lz e .11 .1 . 1

¢15,17 1%(]15(135(1)%(1)8(1)9 s 1 1

¢15,16 §q15®5®8®9®12 T 11 . . . . 1

D4 . 13 %q15®%¢§¢)5¢)9 e e . P . . . . 1
¢6,25 q25(I>8<I>9 e e . 100 201 . 1 . 1
¢1,36 q36 . . 1 . . 1 2 . 1

ps ps ps ps Dy ps ps ps ps Dy As .1* A3 D, 1% 17

TABLE 13. Eg(q), block of defect 1, 2 # £|(¢* + 1)

¢20,2 — ¢60,5_ ¢60,11_ ¢20,20_ O
ps DS DS As

Since all other Harish-Chandra series have been accounted for, and G cannot have
cuspidal Brauer characters by (Csp), the missing three PIMs must lie in the series of the
cuspidal Brauer character p i1 of Dy. Its relative Weyl group is the symmetric group Ss,
so the corresponding Hecke algebra must be semisimple. Now Harish-Chandra induction
yields Wig + W5 and Wy5 4+ Wyg, and via (HCr) there is a unique way for each of these to
split into sums of two non-zero projective characters. This completes the construction of
Wy, ..., ¥4 and thus the proof. O

5. DECOMPOSITION MATRICES FOR FE7(q)

We next consider the four unipotent ®4-blocks of E;(q) of positive defect (see [3,
Tab. 2]), which we name by their 4-Harish-Chandra sources in a Levi subgroup of type

Al(Q)g-

Theorem 5.1. The ¢-modular decomposition matrices for the unipotent blocks of F7(q)
of positive defect for primes £ with (¢*> + 1), > 5 are as given in Tables 14—17.

Proof. For the principal block, all columns but the sixth are obtained by (HCi). The
projectives Wg + W7 and Wg 4+ Wy then yield Ug via (Sum).
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TABLE 14. E;(q), block 2®@2® 2, (¢*+ 1), > 5

®1,0 1 1

$s6,3 SPPIDED D1 P14P 5 o1

D4 : 3. %q3®%®§¢5¢7®9@14 A |

®210,6 P57 PPy D19 P14 D15 .1

$105,6 PP PP 1P PPy 1 1 . .1

®405,8 %q%%%@%@s@g@mfbm@lg 1 111

$189,10 15(]8@%@2@7‘1’8@9@10@12@18 e

h33611 | 50 PP PPy PPy Pys . . . 1 . 1 1 1

D4221. %q10q>‘11q>§q>5q)7c1)8c1)9c1314<1>18 R . e e . 1

D31516 | £G4 0PIP5 D7D P1pP1pPryPrs . . . . 11 .1 .1

¢35722 %q16®5®g¢7®8®9®10®12®14 A Y o1

¢70,18 %q16¢5@7®8©9®10®12q>14®18 1 . . A . . . 1

¢189,22 q22®§@%@7¢)9¢)12®14@18 R 1 1 1
¢120725 %q25q>§@5@§@9¢10@14@18 . . . . . . .1 21 . .11
D4 : ].3. %q25q)ilq)§q)5q)7q)gq)1oq)18 . . e . . . . . . . 1
®21,36 q36®7®9®14¢)18 11 . 2 1

ps ps Dy ps ps ps ps Az Dy ps 1% ps A; 17 D, .17

TABLE 15. E;(q), block 2®2® 12, (¢* + 1), > 5

O71 qP7P12P 1y 1

G15,7 2 5P PP PPy Pys 1 1

®105,5 1 DD PPy PP P1s . . 1

P189,7 G PIPED7 Dy D12 P14 D15 .. 11

®280,8 T PP DD DD PryPrs 1 . 1 .1

D4 1 2.1 %q7@%®g®5®7®9®10q>12®14 .. . . . 1

®378,9 q9@§¢§®7¢8©9®12@14®18 .11 1

$210,13 PO PP PP PPy Py 11 . .1 . L1

®105,15 PP Py P PPy Prs . . . 1 . .1 1

¢216,16 %qlg)q)%q)gq)gq)gq)loq)uq)plq)lg .. .. .1 . 11 .1

D4 . 121 %q15®%®§@5@§®7®9q>12©18 e . R . . 1

¢35,31 lq30<I>5<I>7(I>8(I>1g<I>14<I>18 R . 1. . |
¢21’33 iqgoq)'yq)gq)gq)loq)lgq)hl .. . . .21 .11 . o1
¢27737 q37(I)§(I)§(I)9(I)12q)18 . 1. 1 2 1 . 1

ps ps ps ps ps Dy ps ps As As Dy Az 1% 17

For the second block, all but the ninth column are gotten by (HCi) and then Wg + Wyq
and \I’g + l1112 give \Ifg.

For the third block, all PIMs are Harish-Chandra induced. Finally, all projectives in
the fourth block except for the fifth come from (HCi). The projectives W5 + W; and
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TABLE 16. E;(q), block 2® 12 ® 12, (¢* + 1), > 5

¢27,2 q2@§@§@9¢12®18 1

®35.4 TP D5 D7 D5 D12 D 14 P15 L1

21,6 50 PP PP P12 P 1y |

®216,9 TPPIPIDED D DDy Prs 1 . 11

D4 0 1.2 %qsq)ilq)g(b5®gq)7q)9q)12q)18 |

®210,10 PP P PPy PP P14Pis 1 1 . 1 .1

®105,12 PP PPy PP 1o PPy . . 1 . . L1

$378,14 HOIDED Dy PP 1o PPy . . 11 . .11

Pasonr | 5q10PDDED PP 0P Ps . . . 1 .1 .11

D4 . 112 %q16®%®§®5®7®9¢10¢12q}14 e e . .. . 1

¢189,20 q20¢)§@%@7@9®12®14¢)18 .. . . . .11 . o1

¢15728 %q25(1)5q)8q)9(1)10(b12(1)14q)18 A . o1
¢105,26 %q25q)5q)7q)8q)9q)10(1)12q)18 .. . .2 .11 1 1
(Z)7,46 q46(I)7(I)12q)14 e 10 01 2 . 1 . 1

ps ps ps ps Dy ps ps ps As Dy Az Az 1% 1%

TABLE 17. E;(q), block 1? @ 17 ® 1%, (¢* + 1), > 5

®21,3 PP Py D14 P13 1

®1204 S DLD DDy DDy Prs . 1

D4 . 3 %q4®%q)§q)5q)7q)9q)loq>18 . . 1

®189,5 POIDID Py D12 P14 Py 1 1 .1

G157 | 2 PID5D; DD PPy Py . 1 . 11

®70,9 3G P50 PP PP Py Pys 1 . . 1 . 1

¢35,13 éq7®5®2®7¢8¢9®1o®12@14 R |

¢336,14 %QIB(I)%(I)%@?@S@Q(PNCI)M@B . . . 1 0101

D4 . 2]_ §q13¢%®§®5®7®8®9®14®18 . . . . . . . . ]_

¢405715 ?q15®§®5®§¢8®9®12®l4®18 . . . 1 1 . . 1 . 1

¢189,17 §q15¢§®%¢7@8®9®10¢12®18 . . 2 . . 11 . . 1

$105,21 PO Dy PP 9Py Py . . . 1 L1 L. 1 1

¢56,30 %q30¢%¢§®7®10®14¢18 . . . . . . . . 2 1 . 1 1 1
D4 . .13 %q30®%®§®5@7@9@14 . . . . . . . . . . . . . . ]_
¢1,63 q63 1 . 1 . . 2 1

ps ps Dy ps ps ps ps ps Dy ps 1% A3 As 17 D, 1%

U5 + Uy then give V5 via (Sum). Then (HCr) shows that all of these projectives are
indecomposable. l
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6. DECOMPOSITION MATRICES FOR Fg(q)

Finally, we determine the decomposition matrices of the unipotent ®4-blocks of G =
Es(q) of non-maximal defect. Since 5 is a bad prime for GG, and hence the basic set results
do not apply in this case, we assume that ¢ # 5 throughout. There are four unipotent
(-blocks of ®4-defect two, see [3, Tab. 2]. These are labelled by the four ®,-cuspidal
unipotent characters of the ®,-split Levi subgroup of type Dj,.

Theorem 6.1. The (-modular decomposition matrices for the unipotent blocks of Es(q)
of defect ®3 for primes £ > 5 dividing ¢*> + 1 are as given in Tables 18-21.

Proof. In the block above (‘Z’), all columns ¥; except for i € {7,9,10, 15} are obtained by
(HCi). Using (Sum) the projectives Wy + Wy + W7 and Wy + Wyy yield ¥z, U, + Uy and
\Ilg + \Illz y1€1d \Ifg, \I]6 + 2‘1’7 + \Iflo and \Ijlo + \1111 y1€1d \Ij107 and \1111 + \1115 and ‘1114 + \1115
yleld \1115.

In the block above (}2), (HCi) yields all columns ¥; except for indices i € {3,6,11}.
Here, the projectives \1111 -+ ‘1/12 and \1111 + \1/14 yleld \1111, \113 -+ ‘1/5 + \1111 and 2‘1/3 yleld
\1137 and \Ijﬁ + 2\119 and 2\116 Yleld \116.

In the block above ((2)?), (HCi) yields the columns W; with i € {3,4,6,11,12,13}.
The information obtained in this way does not seem to yield strong enough conditions
to determine the decomposition matrix completely. So here we use in addition the de-
composition matrix of the Hecke algebra of type Eg. In characteristic zero this can be
found in [15, Tab. 7.15]. By [16, Thm. 3.10] this agrees with the decomposition matrix
in characteristic ¢ for all £ > 7. This yields in addition the principal series PIMs ¥; with
i €{1,2,5,10}. To construct the missing projectives, let us first consider the characters
in the Harish-Chandra series of the ordinary cuspidal character of a Levi subgroup of type
Dy. Here, the relative Weyl group W has type Fj, and the Hecke algebra H has parame-
ters ¢*, g. But then all characters of H relevant for our block lie in semisimple blocks of
H for all £ > 5 by [1, Thm. 3.13]. Thus, the decomposition of induced projectives from
a Levi subgroup of type E7 can be read off from the character table of W. In the third
block, we find ¥; + Wg, W; + Wy, which should have a projective summand in common.
The only splitting of these projectives compatible with (HCr) is as given. This accounts
for the projectives Wy, Wg, gy in the Dy-series. Finally, we consider the characters above
the cuspidal character .1 of the Levi subgroup of type D,. Here again, the relative Weyl
group has type Fjy; the parameters of the corresponding Hecke algebra are already deter-
mined locally inside D5 and D4A; to be the same as for the ordinary cuspidal character
considered above. So again by [1, Thm. 3.13], all characters in the .1*-Harish-Chandra
series correspond to blocks of H of defect 0. Harish-Chandra induction from FE; yields
Uiy + ¥y5 and ¥y + Wyg, with a common summand. Visible, the only possible splitting
is as claimed.

Finally, in the block indexed by (éfg), (HCi) yields all columns W; except for ¢ €
{2,3,7}. The projectives U5 + V7 + Uy and 2V, + Vg yield V7, Uy + U7 and 2V, + Uy
yleld ‘112, and \Ill + \Dg + 2\117 and ‘112 + \1’3 give ‘113.

It is now a routine computation using (HCr) to check that none of the projectives
constructed above can be decomposable. l



20

P81
®s560,5
$1344,8
Dy : ¢4,1
$1400,11
$840,13
$4536,13
$3200,16
Dy : g5
$4200,21
$2240,28
Dy : df,?
$3240,31
$1400,37
$1008,39
®56,49

OLIVIER DUDAS AND GUNTER MALLE

TABLE 18. Es(q), block (3), 5 < €|(¢* + 1)

|
11 . 1
..o .12 1 1
1 21 1

. . 1
2 1 1 1

®84.4

Dy : <Z5/2,4
®700,6
¢2268,10
¢4200,12
$2100,16
(448,25
$2016,19
®5600,19
Dy : ¢4,8
$4200,24
$2100,28
¢2268,30
$700,42
D4 .
P84,64

Z

2,16

ps ps ps Dy ps ps ps Az Dy ps ps Dy Az 1% 1% 17

TABLE 19. Es(q), block (}2), 5 < €|(¢* + 1)

1

—_ = =

1

2 1 11

2 1 1 1
1

1 1 2 1

6.1. The ®,-blocks

ps Dy ps ps ps ps 1% ps ps Dy ps As 1% A3 D, .17

in untwisted groups. In the following table, we have collected

some numerical information on the various ®,-blocks of defect ® and ®3 whose decom-
position matrices we have determined: the relative Weyl group W (b) of the block (see
[3, Tab. 1]) and the distribution of its Brauer characters into Harish-Chandra series:
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TABLE 20. Es(q), block (3%), 5 < €|(¢> + 1)

Pas 8 1
®160,7 o1
$300,8 o1
$o72,12 111
$840,14 |
®700,16 1. . .1

Dy : ¢1274 B |

D4 : ¢/6,6 . . . . . . . 1

D42 g,6 . . . . . . . . 1

(,751344,19 1 01 01 . . o1

¢840,26 T . . . .1 . . |

700,28 . .. .1 . . . .1 .1
972,32 . . . .. .r . . .11 .1
$300,44 R A N |
?160,55 .. .21 11

028,68 .. .. rr . 2 . 1 . . .1
ps ps ps ps ps ps Dy Dy Dy ps ps Az Az 1% 1% 17

TABLE 21. Es(q), block (}23), 5 < ¢|(¢* + 1)

®s56,19 1
$1400,7 o1
$1008,9
$3240,9
$2240,10 : .
D4 . QSQL,? . |

$4200,15 R L |

$3200,22 T . . . . . 11

D4 : ¢g79 . . . . . . . . 1

453623 ... .1 . .11 .1

¢1400729 ... .11 . . . .11

¢840,31 r . . . .2 .1 . . .1
$1344,38 ... . 2 .1 .1 011
D4 : ¢4713 . . . . . . . . . . 1

¢s6047 | - - - - . . . .2 11 . 1 .1
®s8.91 R 1 2 01

ps ps ps ps ps Dy ps ps Dy ps Az 1% As Dy 1% 17

—_ = .
—_ =

Remark 6.2. (a) It emerges that the distribution into modular Harish-Chandra series in
all examples considered only depends on the relative Weyl group.
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TABLE 22. HC-series in ®4-blocks of defect ®3 and @3}

G b WG(b) |IBI‘(b)‘ pSs A3 D3 D4 14 A3D3 Cc
D, G4,2,2) 10 |5 2 1 1 1
Ds 2 5 2 1 1 1
D G4,1,2) 14 |7 1 2 2 2
D¢ 1,3 T 1 2 2 2
D, 2 701 2 2 2
Dy 1-4 T 1 2 2 2
E; 2,3 7 3 2 2
Eg Gs 16 8 2 3 3
B 1,4 8 2 3 3
Eg 14 8 2 3 3
D 1 |G4,1,3) 40 |15 3 5 6 6 1 4

Note that the series A3 and D3 fuse in Eg (and hence in F; and Eg).

(b) In addition to the first block of SOf,(¢) and the first block of SO{;(¢), and the third
block of SO,(q) and the fourth block of SOf;(q), which form Morita equivalent pairs
by Theorem 3.9, the following four pairs of blocks have identical decomposition matrices
(after suitably reordering the characters): the principal block of Eg and the 3rd block of
Ey; the 2nd and the 3rd block of E;; the first blocks of E; and of Ejy; the 4th blocks of
E; and of Eg. It is claimed (without proof) in [24, Rem. 34] that the first listed pair of
blocks are in fact Morita equivalent. It would be interesting to see whether this is true
for all pairs mentioned above.

(c) The decomposition matrix for SO¢ (¢) and the one for the second block of SO, (q)
have automorphisms induced by the non-trivial graph automorphisms of the underlying
groups. But note that also the decomposition matrix for the principal block of Eg has
an automorphism fixing ¢g 1, ¢g0,7, D4 :2.1 and ¢g 25 and interchanging the other charac-
ters in pairs, and similarly, the decomposition matrix for the second block of E7 has an
automorphism of order two with fixed points ¢950 s and ¢916.16-

7. DECOMPOSITION MATRICES FOR TWISTED TYPE GROUPS
We now turned to simply-laced groups of twisted type, viz. 2Ds, 2Dg and *Ej.

7.1. Decomposition matrices for SOj,(q). The group G = SO7,(¢) has four unipotent
¢-blocks for primes 2 # £|(¢*> + 1), the principal block, one block with cyclic defect and
two blocks of defect zero.

Theorem 7.1. Assume that q is odd. Then the {-modular decomposition matrices for the
unipotent blocks of SO7y(q) of positive defect for primes ¢ with (¢* + 1), > 5 are as given
in Tables 23 and 24.

Proof. The Brauer tree for the block with cyclic defect is easily seen to be as given in
Table 24. We describe how to obtain projectives Wy, ..., W, W3, ¥y, for the principal
block as in Table 23.
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TABLE 23. SOp,(q), q odd, (¢* + 1), > 5

4. 1 1

31. qq)g(PlO 11

22. q2(I)8q)10 |

4 lng)(;q)gq)lo 1 . . 1

212 %q CI)?)CI)B(I)IO 1. . 1

21.1 2q3(I)4(I)6(I)10 . 1 . 1

2.12 q(bgq)bq)g e . 101

12.2 q5q)3q)8q)10 e . 1 . 1

14. lq7q)6q)8q)10 e . 1 . . . 1

1.21 2q7¢)4¢)6¢)10. 1 . 111 . 1

22 | T gO0gdyy . .1 . . . ... 11

212 qlS(I)g(I)lo A . 1 . . . . 1 . a 1

e ¢ A R AT, S B |
ps ps ps 2Dy ps ps 2Dy 2Dy As 2Dy ?Dy ¢ 2Dy c

Here, a € {0, 1}.

TABLE 24. SOj,(q), block of defect 1, 2 # £|(¢* + 1)

31 —13—0O—1.13—13.1
ps 2Dy 2Dy,  ps

Application of (HCi) yields ¥; with ¢ € {1,3,4,5,6,7,8,9,13}. Moreover, we obtain
Uy + Uy, Uy + Wy, so that (Sum) gives Wo. (Alternatively, the projectives in the principal
series are obtained from the Iwahori-Hecke algebra H of type By, with parameters ¢* and
q) Next (HCI) glVGS l1110 \Iflo + \P87 \1110 = \Ijlo + \1111 and \1111 = \1111 + \1113 ThUS
\iilo + \ifn = \Il 10+ ¥Ys + Vi3, which shows that Ug, U153 occur as summands of \1110 + \1111
Nonnegativity of decomposition numbers implies that WUg occurs in ‘1110 and ¥y in \Ifll,
so we obtain ¥y and Wy;. Application of (HCr) also shows that Wy, ..., ¥y, and W3 are
indecomposable. The last projective W14 is given by (St).

The Hecke algebra for the cuspidal Brauer character of 2Dy(q) = A;(¢?) is of type Bs,
and the parameters are seen locally in the Levi subgroups of types 2D, and D5 x A; to
be ¢* and ¢. From its decomposition matrix it follows that exactly eight simple modules
lie in the corresponding Harish-Chandra series in G. Since the unipotent block with
cyclic defect contains two of them, the principal block will contain the remaining six. We
have then accounted for all non-cuspidal Harish-Chandra series, so the remaining Brauer
character must all be cuspidal.

By (GGGR), the unipotent part of W15 is poz+ap.o12+bp 14, where a and b are unknown.
To compute b we use (Cox), which gives the relation b < a + 2. The relation b > a + 2
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is obtained from the ¢-reduction of the non-unipotent character obtained by Deligne-
Lusztig induction of an f-character in general position of a torus of order (¢ + 1)(¢? + 1)?
(such a character exists whenever (¢? + 1), > 5). Finally, to obtain an upper bound for
a, we consider the generalised Gelfand—Graev representations of SO7,(q) associated to
the family {p15.1, p13.13, p1.o21, p.321}, and more precisely the one whose projection to this
family is p.321 + p1.921. The character of this representation, cut by the block containing
p.321 is of the form p 301 + p1921 + apr1s by (GGGR). The Harish-Chandra restriction of
this character yields a < 1. U

Remark 7.2. If Kawanaka’s conjecture (see Remark 3.7) holds for the characters in the
family {p15.1, p13.13, p1.221, p.321  of SO7,(q), then the previous argument shows that a = 0.

Remark 7.3. The 5-modular decomposition matrix of SO;,(2) is known; there, the last
three entries in the partially unknown 12th column of Table 23 read (1,0, 1), whence the
case when (¢? + 1), = 5 does behave differently.

7.2. A decomposition matrix for SO7,(q). The group G = SOi,(q) has one non-
principal unipotent ®4-block of positive defect, which we label by its 4-Harish-Chandra
source in a Levi subgroup of type SOg (g).

Theorem 7.4. Assume that q is odd. Then the {-modular decomposition matrix for the
non-principal unipotent block of SO, (q) of defect ®%, for (¢* + 1), > 5, is as given in
Table 25.

TABLE 25. SO74(q), ¢ odd, block (°}%), (¢* + 1), > 5

5.1 4Py 1

1.5 %q2¢)3@8®10®14 1 1

32.1 lq2q)3q)5q)8q)14 1 . 1

321. qu(b%(DG(I)lO(Dlél . . 1

312]_ q4q)§(b6@8q)14 . . 101

2211 q5(1)3q)5q)6q>10(1)14 . . 1 . .1

13.3 q7(I)5(I)8(I)1O(I)14 . . R 1

1.32 qg(I)g(I)g)q)Gq)loq)yll 1 1 . . . . 1

3.13 qloq)g)q)gq)lo . . R . . 1

1312 quCI)g(I)6CI)8CI)14 . . 11 1 . 1 1

321 %q14®%@6@10®14 . . 1. . . . . 1 1

1.221] L@@y, . . 1 . .1 . 1 . . a 1
]_5.1 %q14q)3(1)8(1)10¢)14 . . A | . . . . . . 1
]_.]_5 q28q)3q)6 . . 1 . a2 1 1 1

ps 2Dy ps ps ps ps 2Dy 2Dy 2Dy 2Dy .22 2D, A5 1%
Here, a € {0,1} is as in Table 23, and all degrees have been divided by ¢*®,®5,.

Proof. All columns but the 11th are obtained by (HCi), as well as Wg + aWyy + ¥y; and
U1y + (1 —a)Wqy. Thus, independent of the value of a we also recover Uy; via (Sum). O
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7.3. Decomposition matrices for ?Fs(q). We now turn to the ®,-blocks of the excep-
tional groups of type 2Eg. There are 10 unipotent ¢-blocks of defect zero, one of cyclic
defect and the principal block.

Theorem 7.5. Let (q,6) = 1. The decomposition matrices for the unipotent (-blocks of
2Es(q) of positive defect, where (¢> + 1), > 5, are as given in Tables 26 and 27.

TABLE 26. %Eg(q), (¢,6) =1, (> + 1)y > 5

P10 1 1

P4 qPsPis 1

Gop | 3PPIPsPpPis 1 . 1

L1 | 3PP PraPis . . .1

Qbé,s %ng’gq’%@m@m R |

(/5576 q6@§¢2®12¢>18 B |

2E6[1] l617(:[)411(1)8(1)10‘1)12(1)18. e |

Do §q7@§@8@10®12@18- o1 g 1

6.6 %q7®§®2®8¢10¢1z e . |

D165 | 34" P3PFPsProPis . . 1 . .1 . . .1

be | qC®IPIDLD 1 . 1 . . e . . 11

o %q15@8@10¢12@18 1. . . . e . . . 11

®9,10 %qlsq)%q)s@m@m R R L R S

Z 5qPPPED1 P . 1 . 1 e 11 . L dy o1
/2/,16 q25(1)8q)18 N Cg . . . . dg . 11
®1,24 q>° . 1 co . d, 1 . 21

ps ps ps ps ps ps 2Bg 2Dy 2Dy 2Dy 2Dy ¢ 2Dy 2Dy ¢ ¢
Here, ¢; € {0,1,2}, dy € {0,1}, cg = 4+ 2¢; + 3¢y — 3¢5 + c6 — 2¢7 + 2¢5 and
dy = —3 — 2dy + 2ds.

TABLE 27. 2Es(q), block of defect 1, 2 # £|(¢* + 1)

Pa1 — ¢Z,7— O— b4, 13— 92521,7
ps Dy 2D, ps

Proof. The Brauer tree for the block with cyclic defect is easily obtained, see also [1,
Thm. 3.10]. We now discuss how to find projective characters ¥;, for i € {1-6,8-
11,13,14,16}, with unipotent parts as given in the columns of Table 26. (HCi) yields
U, with i« € {1,3,4,6,11,13}, which are indecomposable by (HCr). Further, we obtain
Uy + Uy and Uy + Uy + Uy, yielding Uy by (Sum). Similarly, U5+ 204 and W5 + Uy 4205
lead to W5; W3+ Vg + Wy and Vg + Wy provide the projective character Wy, and W3 + Wy
and Wg+Wo+ W3 lead to ¥y. Furthermore, U+ W5 and Wo+ Vg give Wy, and Wip+ Py
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and Wy; + Wy, give rise to Wy4. By inspection using (HCr) all projectives constructed so
far are indecomposable.

We claim that we have now accounted for all non-cuspidal Harish-Chandra series. In-
deed, the decomposition numbers for the Hecke algebra of type F, with unequal param-
eters have been calculated in [1, Thm. 3.10] for all ¢ > 5, showing that there are six
principal series PIMs. The relative Weyl group of the cuspidal unipotent Brauer charac-
ter of 2Dy(q) = A1(¢?) has type Bs. We have already found all projective indecomposable
summands in the principal block of the Harish-Chandra induction from proper Levi sub-
groups in that series, viz. Ug, Wg, W1, U1y, U3 and ¥y4. Two further PIMs in that series
lie in the block of cyclic defect. This accounts for all non-cuspidal Harish-Chandra series.
Hence the four missing columns must correspond to cuspidal Brauer characters.

For the remaining columns we consider the following three GGGRs, whose existence is
given by [6, Thm. 6.5(ii)], assuming that p is good:

e the GGGR associated to the family containing ?Fj[1] and with projection *Eg[1] +
2¢s 6 + P12,4 on this family;
e the GGGR associated to the family {¢) 4, $9,10, @7 12, #59} and with projection
112+ ¢g o on this family;
e the GGGR associated to the family {¢} 4}.

From (GGGR) we deduce the unitriangularity of the decomposition matrix. In addition,
if we denote by cq,...,c9 the unknown entries in the 7th column then ¢y = ¢3 = 0 and
c1 < 2. Similarly, if dy,...,ds denote the entries in the 12th column then d; = 0 and
dy < 1. The last unknown entry (in the 15th column) will be denoted by ds.

A Sylow ®4-torus of G has a regular /-character § whenever (¢>+1), > 5. By (Red), the
{-reduction of a non-unipotent character induced from 6 yields relations on the ¢;’s and
d;’s, namely ds > 2, 342dy —2d3+ds > 0 and —4 —2c¢; — 3¢y + 3¢5 — cg+2c7 —2c8+c9 > 0.
To obtain the opposite inequalities we use (DL) successively for the elements s;528384,
515253515453 and §152545351555453565554S53. O

As in Proposition 3.8, we can use [9, Conj. 1.2] to obtained conjectural upper bounds
on the unknown entries in the decomposition matrix which do not depend on q.

Proposition 7.6. Assume Conjecture 1.2 in [9] holds. Then in the decomposition matriz
of the principal ®4-block of *E¢(q), we have ¢y = 0, ¢4 < 3, ¢5 < 26, cg < 29, ¢7 < 50,
cg < 156 and d3 < 6.

Proof. We consider virtual characters @),, afforded by the Alvis—Curtis dual of the inter-
section cohomology of suitably chosen Deligne—Lusztig varieties. In the following table,
we give, for each element w we consider, the multiplicity of a PIM ¥, in Q,[\]. In order
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to simplify notation, we denote s1,...,s¢ by 1,...,6.

w| A | i (Qu[A], i)

1231454236542314356 | 1 | 8 | —36¢;

123423145431 | 1 [11 |3 — ¢4
12123 +¢4 —c5

2342314354316543 | 1 | 13 | 6(29 — ¢5)
14 6(50 +c — d2(23 +cq4 — 05) — C7)

23143154316543 1 15 2(106 —C +cr+ (dg - d3)(23 +cq — 05) - Cg)
546542 | —1 | 15| 5+ dy — d3

Conjecture 1.2 in [9] predicts that the entries in the last column of the previous table
are non-negative. We deduce that ¢; = 0, ¢4 < 3, ¢5 < ¢y +23 < 26, ¢ < 29, ¢ <
50 + C1 — d2(23 —+cy — 05) S 50,

cg < 106 —Cc +cer+ (dg — dg)(23+04 —65) < 106 —C +C7—|—d2(23+04 —65) < 156
and d3 < dy +5 < 6 since dy € {0,1}. OdJ

7.4. The ®4-blocks in twisted groups. As in the untwisted case we collect some data
on the ®4-blocks studied above in Table 28.

TABLE 28. HC-series in ®4-blocks of twisted groups

G| Wg(b) |IBr(b)| |ps Dy Az 22 1% ¢
D5 | G4, 1L,2) 14 |5 6 1 1 1
2D, 5 6 1 1 1
’Fs Gy 16 6 6 4

Note that the decomposition matrices for the blocks in ?D5 and in 2D; of defect ®2
coincide after permuting rows and columns suitably. Again, it would be interesting to
see whether this is caused by a Morita equivalence between these blocks. On the other
hand, the multisets of entries of the matrices for twisted groups differ from those for any
of the untwisted ones, so if there exits a Morita equivalence between blocks for twisted
and untwisted groups, it would have to be with respect to a different choice of basic sets.

8. DECOMPOSITION MATRICES FOR SYMPLECTIC GROUPS AND Fy(q)

We now turn to groups with non-simply laced Dynkin diagram, where we start by
giving (approximations) to decomposition matrices for the unipotent blocks of small rank
symplectic groups Sp,,(¢) for primes £|(¢> + 1). Again, it is not known a priori in our
present situation that the decomposition matrix has triangular shape. This leads to
additional complications.

For completeness and for use in the subsequent proofs, we recall the known Brauer trees
for Sp,(q) and Spg(q) (see [11]). We also indicate the modular Harish-Chandra series of
the PIMs.
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Theorem 8.1 (Fong—Srinivasan). Let 2 # ¢|(¢* + 1) be a prime. Then the Brauer trees
for the unipotent (-blocks of Sp,(q) and Spg(q) are as given in Table 29.

TABLE 29. Sp,(¢) and Spg(q), 2 # £](¢* + 1)

Sp4(q) : 2. — 11 — 12— O — O
ps S c Cy
Spe(q) : 3. — 12 — 21 — O — (y:172
2. — 121 — 13 — O — (y:2
ps ps 12 O,

Next, let G = Spg(q).

Theorem 8.2. Let ¢ be a prime. Assume that q is odd. Then the decomposition matrices
for the unipotent {— blocks of Spg(q), (¢*> + 1), > 5, are as given in Tables 30 and 31.

TABLE 30. Spg(q), (¢*+1)¢>5

4. 1 1

02 : 12. %qzq)%q)gcbg |

212. _q4(1)3<1)6(1)8 A 1

Cy: 11| 3" ®IP3P3D6 . . . . 1 . . 1

].2.2 q4<I>3<I>6<I>8 1 .11 . . . o1

OQ 2.2 %qﬁq)%q)gq)g e e . . . 1 . 1

13.1 Tfp@2deds . . 1 . . 1 . . 1 a 1

14. lng)@q)g e e o1 . . a 11

212 o0 . . o1 . 1 .1 . .1

14 ¢ lat2 1511
ps ps ps ps Co ps 12 Cyps ¢ Az c . 1% ¢

Here, a € {0,1} and b € {0, 1,2, 3}.

Proof. The group G = Spg(q) has three unipotent blocks of ®4-defect zero, two blocks
of ®4-defect 1 with four characters each, and all other unipotent characters lie in the
principal block. The Brauer trees for the blocks of defect 1 are known by [11] and in any
case can easily be recovered by (HCi).

The projective modules ¥; for ¢ € {1,..,9, 11,13} are obtained by (HCi). Using (HCr),
we can check that there are indecomposable. Finally, (St) yields the last column, leaving
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TABLE 31. Spg(q), blocks of defect 1, 2 # ¢|(¢* + 1)

31— 22— 22 (O)—0Cy:.12

2 12121 1P O (2.
ps ps 12 O,

only two (necessarily cuspidal) PIMs to determine. A first approximation of these columns
is given by (GGGR) for the families {p1s.1, p12.12, p.22, pcye2} and {p1a,, pr.1s, p.212, Poyi12 }-
We deduce that the relevant submatrix for the last five projectives now has the form

02 201
13.1 a; 1
14 a1 1

212 as . as 1
14 as lagll

In addition, [6, Thm. 6.5(ii)] yields a; € {0,1} and a5 = 0.

As usual, relations on the a;’s are obtained by looking at suitable Deligne-Lusztig
characters: from (Cox) we deduce that a; —ay > 0 and a; +a3 —as+2 > ag(a; —az). But
from (Red) with the induction of an ¢-character of a Sylow ®4-torus in general position,
which exists whenever (q2 + 1), > 5, we get a3 + a3 —ag + 2 < as — a;. Consequently,
0 < ag(a; — az) < az —a; < 0 which forces a; = ag and ay = a3 + a3 + 2. With (DL)
applied to the element w = s159535951525354 of the Weyl group we obtain ag < 3.

Finally, we use the GGGR of Sp,,(¢q) associated to the family {p14.1, p12.13, p.o21, pcy.21}
with projection pc,.01 + p141 to this family. Cut by the block containing these two
characters, the unipotent part of this GGGR is of the form pc,.21 + p1a1 + aps. Its
Harish-Chandra restriction to G forces a3 = 0. Setting a = a; and b = ag, we obtain the
decomposition matrix as shown in Table 30 0

Remark 8.3. Kawanaka’s conjecture [19, Conj. 2.4.5] would imply a = 0 (see also Remark

3.7).

Theorem 8.4. Let ¢ be a prime. The decomposition matrixz for the principal £-block of
Fy(q), (¢,6) =1, (¢* + 1), > 5, is as given in Table 32.

For the unipotent blocks with cyclic defect, see [20, Lemma 5.4].

Proof. We start from the approximation to the decomposition matrix which was obtained
in the thesis of Kéhler [20]. The relevant submatrix for the last eight projectives has the
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TABLE 32. Fy(q), (¢,6) =1, (¢*+ 1), >5

®1,0 1 1
¢4,1 %q<1>§<1>§<1>8
®9,2 P PIPEDy 1
¢12,4 2—1494‘1)%(1)3‘1)8‘1)12
Pag l614(1)421(1)%(1)8(1)12

,6/,6 §q4@§®g¢8¢12 1

By : 11| L' 02030202Dy .
Fi][l] 2—14q4(I)le(I)g(I)8(I)12
sz[l] %(fl@%@g@g@lg
Fy[—1] | 3q' 01050505

ml | lgtelolate?
duo | ot
¢4,13 %q (1)2(1)6(138
BQ : .12 §q13¢)%¢)§¢)8
¢1,24 q24

1
o1
1 .1
1 .1
1
o1
1
1

1

1
11
1

1
1
1
1
1
1
1 . . . cqp ¢ 1
ay . Cl—l 61—1 11
1 . bl C3 C3 1

1 . (05} 2b1—3 Cq Cy 1 d21

psps Bopsps 1°psByc ¢ ¢ ¢ 1%cce

Here, a; <5, a3 <134+ (5 —ay)d, c3 € {0,1}, ¢4 = ¢1 +2¢3 — 2 and d € {0, 1, 2}.

following form:
F1
Ff[1]
Fy[—1]
FyI]
®9,10
®4,13

a1

B2 : .12 . b1

®1,24

as by

1
1
Cy C2
C3 C3
Cq4 C4

1

1 1
|
1 d e 1

First relations come from the /-reduction of non-unipotent characters. For each uniform
character p € £(G, (s)) we construct, we give in the table below the type of Cg(s), the
Jordan correspondent p, of p and the relations that we will use:

Ca(s) Ps relations
B - (q2 +1) | pi2. + pB, cp > —1
(> +1)? 1 by > 2b; — 3

642301—202+263—4

e>2

Now we apply (DL) successively to obtain relations on the unknown entries. Starting
with the Deligne-Lusztig character associated with a Coxeter element w we find the non-
negative coefficients ¢; — ¢y — 1, 3 — 2¢3 and 2 4+ 2¢; — 2¢4 — 3e + 2cze in R, of the PIMs
corresponding to columns 9,10,14 and 16, so that ¢; = ¢; — 1 and ¢3 € {0,1}. The
second relation can then be written —2(4 — 3¢y + 2¢0 — 2¢3 +¢4) + (3 — 2¢3)(2 — €) > 0.
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Since it is a sum of two nonpositive integers, we obtain 4 — 3¢y + 2¢5 — 2¢3 + ¢4 = 0
and (3 —2¢3)(2 —e) = 0, so that ¢4 = ¢; + 2¢3 — 2 and e = 2. Consequently, the PIMs
corresponding to the columns 9, 10, 14 and 16 do not occur in R,,.

We continue with the Deligne-Lusztig character associated with w' = $152535451528384.
Using (DL) we find 2b; — by — 3 > 0 which forces by = 2b; — 3 by the previous inequalities.
In addition, the PIMs corresponding to the columns 9, 14 and 16 still do not occur in
R,.

Finally, with w” = $15953545152535451525354 we consider the characters R,»[A] for var-
ious eigenvalues A of F'. The multiplicities of the 14th and 16th PIM in these virtual
characters yield the relations

a1§5, d§27 a2§13+(a1—5)d
(in particular as < 13). O

Up to finitely many possibilities, the decomposition matrix given above depends only on
two unknown parameters, viz. by, ¢;. Moreover, these could be bounded above by suitable
polynomials in ¢ using GGGRs. As in Proposition 3.8, we can also produce conjectural
bounds independent of q.

Proposition 8.5. Assume Conjecture 1.2 in [9] holds. Then in the decomposition matriz
of the principal ®4-block of Fy(q) we have by € {2,3,4} and ¢; € {1,2}.

Proof. We compute the Alvis—Curtis dual of the intersection cohomology of two Deligne—
Lusztig varieties, corresponding to the elements w; = 51595354 and wy = $954535251535253.
Conjecture 1.2 in [9] predicts that the corresponding characters, denoted in [9] by @,
and (), are, up to sign, the unipotent part of projective characters. The same holds for
the generalised eigenspaces of F' on these characters. The multiplicity of Uy3 in @)y, is
5 — 2¢q, which forces ¢; < 2, and the multiplicity of W5 in the 1-eigenspace of F' on @y,
is 4 — by, which forces b; < 4. ]

We collect information on the Harish-Chandra series for the blocks considered in this
section in the subsequent Table 33.

TABLE 33. HC-series in ®4-blocks of defect 3

G| Wg(b) |IBr(b)| |ps By .12 Cy .12 Az c
By | G(4,1,2) 14 6 2 2 1 3
Cy 6 2 2 1 3
Fy Gs 16 5 1 1 1 1 7
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