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Abstract. We investigate simple endotrivial modules of finite quasi-simple groups and
classify them in several important cases. This is motivated by a recent result of Robinson
[41] showing that simple endotrivial modules of most groups come from quasi-simple
groups.

1. Introduction

Let G be a finite group and k a field of prime characteristic p such that p divides |G|. A
kG-module V is called endotrivial if V ⊗V ∗ ∼= k⊕P , with a projective kG-module P . The
tensor product of kG-modules induces a group structure on the set of isomorphism classes
of indecomposable endotrivial kG-modules, called the group of endotrivial modules and
denoted T (G). Endotrivial modules have seen a considerable interest in the last fifteen
years, eventually leading to the determination of the Dade group for all p-groups (see, for
example, [45] and the references therein), and of T (G) for some classes of general groups
(see [7, 8, 9, 10, 36]).

A recent paper of Robinson [41] has put the focus on simple endotrivial modules for
quasi-simple groups. He shows that whenever the Sylow p-subgroups of a finite group
G are neither cyclic nor quaternion, then any faithful simple endotrivial kG-module
is either simple endotrivial for a quasi-simple normal subgroup, or induced from a 1-
dimensional module of a strongly p-embedded subgroup of G. Note that, in contrast,
for p-solvable groups of p-rank > 1 all simple endotrivial modules are 1-dimensional by
Navarro–Robinson [39].

The purpose of the present paper is to start a classification of simple endotrivial mod-
ules for quasi-simple groups. We obtain a complete description of such modules in several
important cases. Our first main result is a precise condition for the existence of faith-
ful simple endotrivial modules in the case of cyclic Sylow p-subgroups, depending on
their location on the Brauer tree (see Theorem 3.7), and a complete classification for all
such cases in quasi-simple groups not of classical Lie type or of rank at least 4, up to a
small number of cases in sporadic groups in which the information on Brauer trees is yet
incomplete.

Our second main result is the complete classification of simple endotrivial modules for
covering groups of alternating groups, see Theorem 4.9.
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The third main result concerns groups of Lie type: for p the defining characteristic we
obtain a complete classification of all simple endotrivial modules in Theorem 5.2; for non-
defining characteristic we determine all simple endotrivial modules of exceptional groups
of rank less than four and their covering groups.

Our results also indicate the validity of stronger statements: the existence of faith-
ful simple endotrivial modules seems to drastically restrict the structure of Sylow p-
subgroups:

Conjecture 1.1. Let G be a finite quasi-simple group with a faithful simple endotrivial
module. Then the Sylow p-subgroups of G have rank at most 2.

Here, the rank of a p-group H is the maximal rank of an elementary abelian subgroup
of H. In fact, in all known examples, the Sylow p-subgroups are either homocyclic of
rank at most 2, extraspecial of order p3 with p ≤ 11, or dihedral (in L2(q) with q ≡ −1
(mod 4), see Proposition 3.8). As a consequence of our classifications we obtain:

Theorem 1.2. Conjecture 1.1 holds in all of the following cases:

(a) if p = 2,
(b) if G/Z(G) is an alternating group,
(c) if G/Z(G) is a sporadic group,
(d) if G/Z(G) is a group of Lie type and p is its defining characteristic, and
(e) if G/Z(G) is an exceptional group of Lie type.

Part (a) of this claim is shown in Theorem 6.7, part (b) follows from Theorem 4.9,
part (c) from Theorem 7.1, part (d) from Theorem 5.2, and part (e) is Theorem 6.11. An
a priori proof of Conjecture 1.1 would considerably simplify the classification of simple
endotrivial modules.

The new feature of our approach is that the proofs rely mainly on character theoretic
methods. This is made possible through our generalization of a lifting result due to Alperin
[1] from the case of p-groups to arbitrary finite groups, which may be of independent
interest:

Theorem 1.3. Let (K,O, k) be a p-modular system and V be an endotrivial kG-module.
Then V lifts to an endotrivial OG-module.

Previous work on endotrivial modules for different classes of quasi-simple groups G was
concerned with the determination of the group T (G) of endotrivial modules. This includes
results on groups with cyclic Sylow subgroups [36], the symmetric and alternating groups
[8, 10], and groups of Lie type in their defining characteristic [9]. Nevertheless there are
three main obstructions to use these results to answer the current question of finding
the simple endotrivial modules. First, the aforementioned articles do not treat cover-
ing groups. Second, they determine the structure of T (G) but not the indecomposable
endotrivial modules themselves, in that their description involves Green correspondence,
which is not explicit and notoriously difficult to determine. Third, even in the simplest
cases where T (G) = 〈Ω(k)〉 ∼= Z (where Ω is the Heller operator), it is not clear whether
any of the modules Ωn(k) for n ∈ Z can be simple. Finally, even in those few cases where
the cited papers obtain explicit descriptions of some simple endotrivial modules, our ap-
proach seems more straightforward than the more intricate module theoretic methods.
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Finally, a comparison of our results with those of [7, 8, 9, 10, 36] seems to indicate a
strong link between the order of the torsion subgroup of T (G) and the number of simple
endotrivial modules. Therefore a classification of simple endotrivial modules may appear
to be an important step towards the final description of the group T (G). Our study
of sporadic groups via character-theoretic methods also provides us with new torsion
elements of T (G) unknown in the literature so far, see Remark 7.2.

The paper is built up as follows: in Section 2 we collect some basic facts and prove
Theorem 1.3. In Section 3 we obtain rather strong results in the case of cyclic Sylow
subgroups. In Section 4 we classify the simple endotrivial modules for covering groups
of alternating groups, and in Section 5 those for groups of Lie type in their defining
characteristic. In Section 6 we obtain partial results for simple groups of Lie type, mostly
of exceptional type, in cross characteristic, and in the final section we classify simple
endotrivial modules for sporadic groups and their covering groups, up to a few open cases
of very large dimension.

Acknowledgement: We thank the anonymous referee for her/his numerous detailed
remarks and comments which led to an improvement of our paper.

2. Preliminaries

Throughout, unless otherwise stated, we assume G is a finite group and k an alge-
braically closed field of prime characteristic p such that p divides |G|. We let (K,O, k) be
a splitting p-modular system, and let p := J(O). For a block B of kG we write se(B) for
the number of isomorphism classes of simple endotrivial B-modules. For background ma-
terial on endotrivial modules we refer to [7, 8, 9, 10, 36]. We first collect some elementary
facts.

Lemma 2.1. Let V be an endotrivial kG-module, with k a field of characteristic p. Then
dimV ≡ ±1 (mod |G|p) for p ≥ 3, respectively dimV ≡ ±1 (mod 1

2
|G|2) when p = 2.

Proof. Since V is endotrivial, V ⊗V ∗ ∼= k⊕ (projective), so (dimV )2−1 ≡ 0 (mod |G|p).
When p > 2, this means that either dimV + 1 or dimV − 1 is divisible by |G|p, while for
p = 2, at least one of the factors is divisible by 1

2
|G|2. �

Lemma 2.2. Let V be a kG-module and H ≤ G containing a Sylow p-subgroup of G.
Then V is endotrivial if and only if V |H is endotrivial.

Proof. The claim follows immediately from the fact that a kG-module is projective if and
only if its restriction to a Sylow p-subgroup of G is projective. �

Corollary 2.3. Let V be a kG-module which is liftable to a simple CG-module with
character χ, say. If V is endotrivial, then |χ(g)| = 1 for all p-singular elements g ∈ G.

Proof. By assumption χχ̄ ≡ 1 + ψ (mod p), where ψ is the character of a p-projective
module. Thus, ψ(g) = 0 for all p-singular elements g ∈ G. The claim follows. �

We now prove Theorem 1.3 from the introduction. This result is due to Alperin for p-
groups [1] (for which the image of any representation lies in the special linear group). His
proof generalises easily. We sum up here the main ideas, based on a detailed exposition
of the proof for p-groups written in [47].
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Proposition 2.4. Let V be an endotrivial kG-module such that the image of the corre-
sponding representation ρ : G → GLn(k) lies in SLn(k). Then V lifts to an endotrivial
OG-module.

Proof. Denote by SLn(O,m) the congruence subgroups of SLn(O), i.e., the set of deter-
minant 1 matrices congruent to the identity matrix In modulo pm. They form a central
series of SLn(O) with successive quotients all isomorphic to sln(k) (the n× n-matrices of
trace zero) as SLn(k)-modules. Since V is endotrivial, Endk(V ) ∼= k ⊕ (projective), and
n ≡ ±1 (mod p) by Lemma 2.1, thus we also have Endk(V ) ∼= k ⊕ U where U is the
kernel of the trace map on Endk(V ). Hence sln(k), seen as a kG-module via ρ, must be
projective.

Taking a pull-back X2 of ρ and the homomorphism induced by reduction modulo p
from SLn(O)/SLn(O, 2) → SLn(k), which has kernel SLn(O, 1)/SLn(O, 2) ∼= sln(k), yields
a group extension 1 → sln(k) → X2 → G → 1. This extension splits because sln(k) is
a projective (= injective) kG-module. As a consequence, ρ lifts to a homomorphism
ρ2 : G→ SLn(O)/SLn(O, 2). Inductively, for every m > 2, one thus constructs a homo-
morphism ρm : G → SLn(O)/SLn(O,m) lifting ρm−1 : G → SLn(O)/SLn(O,m − 1).
Finally SLn(O) ∼= lim

←− m≥2SLn(O)/SLn(O,m), so that the universal property of the pro-

jective limit yields the desired group homomorphism ρ̃ : G −→ SLn(O) lifting ρ.
Moreover if M is an OG-module lifting V , then rkO(M) = dimk(V ) ≡ ±1 (mod p)

by Lemma 2.1, so that EndO(M) ∼= O ⊕ N with N the kernel of the trace map on
EndO(M). Reducing modulo p yields Endk(V ) ∼= k ⊕ N/pN , where N/pN is projective
by assumption. It follows that N is projective, see e.g. [44, §1 and §27]. Hence M is
endotrivial. �

Proof of Theorem 1.3. By passing to the image of the representation and choosing a basis
of V we may assume that G ≤ GLn(k). Let G1 := GC and G0 := G1 ∩ SLn(k), with

C := {aIn | an = det(g) for some g ∈ G}.
Then G1 is a central product of G with C, and of G0 and C. As |G1 : G| and |G1 : G0|
are prime to p, the embedding G0 ≤ SLn(k) is also endotrivial. Thus by Proposition 2.4
it lifts to an endotrivial OG0-module. Denoting the corresponding representation by ψ
we thus have ψ(G0) ≤ SLn(O).

Reduction modulo p induces a bijection between the group of p′-roots of unity in O
and roots of unity in k, sending ψ(G0) ∩ Z(SLn(O)) onto G0 ∩ Z(SLn(k)). The inverse
defines a lift of C into {aIn | a ∈ O×} ≤ GLn(O), which agrees with ψ on G0∩Z(SLn(k))
and which we also denote by ψ. Then G1 = G0C ∼= ψ(G0)ψ(C) ≤ GLn(O) is a faithful
representation of G1 which lifts G1 ≤ GLn(k). Again, as |G1 : G| and |G1 : G0| are prime
to p, this gives an endotrivial OG-module lifting the initial representation of G. �

3. Groups with cyclic Sylow p-subgroups

In this section k denotes an algebraically closed field of characteristic p > 0, and G
denotes a finite group with a non-trivial cyclic Sylow p-subgroup P ∼= Cpn for some
integer n ≥ 1.

For any group G, denote by T (G) its group of endotrivial modules and by X(G) the
subgroup of T (G) consisting of the one-dimensional kG-modules (with group law induced
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by ⊗k). This group can be identified with the group of k×-valued linear characters of G
so that X(G) ∼= (G/[G,G])p′ , the p′-part of the abelianization of G.

Let Z denote the unique subgroup of P of order p and let H := NG(Z). The structure
of the group T (G) is described in [36] as follows: since H is strongly p-embedded in
G, T (G) ∼= T (H) via restriction and inverse map induced by Green correspondence.
Furthermore, there is an exact sequence

0 −→ X(H) −→ T (H)
ResH

P−→ T (P ) −→ 0

so that

T (H) =

{
X(H) if |P | = 2;

〈X(H), [Ω(kH)]〉 if |P | ≥ 3.

In addition, T (P ) = 〈[Ω(kP )]〉 ∼= Z/2 if |P | ≥ 3 and T (P ) = {0} if |P | = 2 by [14].
Unless otherwise stated, we assume for the rest of the section that |P | ≥ 3, in which case
|T (H) : X(H)| = 2.

3.1. Endotrivial modules and blocks of kG. Indecomposable endotrivial modules
have dimension prime to p, thus have the Sylow subgroups as vertices and lie in blocks
with full defect. Henceforth B denotes a block of kG with defect group P , and eB denotes
its inertial index, which corresponds to the number of simple modules in B. Moreover let
B0 denote the principal block of kG and set e := eB0 = |NG(Z) : CG(Z)|, so that e | p−1.

If M is an indecomposable non-projective kG-module, denote by f(M) its kH-Green
correspondent. If L is an indecomposable non-projective kH-module, denote by g(L) its
kG-Green correspondent. If M belongs to B, then f(M) belongs to the Brauer corre-
spondent b of B.

The stable Auslander–Reiten quiver Γs(B) of B is a finite tube (Z/eBZ)Apn−1, so
that any non-projective indecomposable kG-module has Ω-period 2eB. For background
material and standard notation and terminology on the Auslander-Reiten quiver, we refer
the reader to [2, Chap. 4 & Sec. 6.5]. We recall that Green correspondence sets up an Ω2-
equivariant graph isomorphism between Γs(B) and Γs(b). Furthermore the structure of
the kH-Brauer correspondent b of a block B of kG is well-known: b has eb = eB simple
modules, all of the same k-dimension. These eb simple modules form one boundary
Ω2-orbit of Γs(b) [2, Sec. 6.5]. Nonetheless, the kG-Green correspondent of a simple kH-
module is not necessarily simple. Simple B-modules lie in the e top and bottom Ω2-orbits
of Γs(B), each of them on a different diagonal [3, Prop. 4.2].

Lemma 3.1. Let B be a block of kG containing an indecomposable endotrivial module V .
Then:

(a) eB = e.
(b) B contains 2e endotrivial modules. They are exactly the modules forming the two

boundary Ω2-orbits of Γs(B).
(c) The Ω2-orbit of Γs(B) containing V consists of the modules Ω2n(V ), 1 ≤ n ≤ e,

while the other boundary Ω2-orbit consists of the modules Ω2n−1(V ), 1 ≤ n ≤ e.

Proof. The connected component AR(V ) of V in the stable Auslander–Reiten quiver of kG
is Γs(B), a finite tube (Z/eBZ)Apn−1. Now by [4, Thm. 2.3], AR(V ) ∼= AR(k) = Γs(B0)
which is a tube (Z/eZ)Apn−1. Hence eB = e. By [4, Thm. 2.6], the endotrivial modules
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in Γs(B) are exactly the modules lying on the two boundary Ω2-orbits. Whence there are
2e of them. Part (c) is well-known (see e.g. [3, §4]). �

Lemma 3.2. Let B be a block of kG. Then:

(a) B contains an indecomposable endotrivial module if and only if its Brauer corre-
spondent b contains a one-dimensional kH-module.

(b) If V is an indecomposable endotrivial B-module, then there exists U ∈ X(H) such
that either V ∼= g(U) or V ∼= g(Ω(U)).

(c) There are |X(H)|/e blocks of kG containing indecomposable endotrivial modules.
Each of them contains at least one simple endotrivial module.

Proof. By [36, Thm. 3.6], T (G) ∼= T (H) via Green correspondence on the indecomposable
endotrivial modules, i.e., an indecomposable B-module V is endotrivial if and only if f(V ),
lying in b, is endotrivial. Now, the simple modules in b are all of the same dimension
and form one boundary Ω2-orbit of Γs(b). Thus parts (b) and (c) of Lemma 3.1 together
with the fact that |T (H) : X(H)| = 2, imply that T (H) contains exactly |T (H)|/2 simple
modules, all of dimension one. Whence (a). Part (b) then follows from parts (b) and (c)
of Lemma 3.1. Finally again since |T (G)| = |T (H)| = 2|X(H)|, parts (a) and (b) of
Lemma 3.1 force the number of blocks containing endotrivial modules to be |X(H)|/e.
Moreover each of them contains a simple endotrivial module by [3, Thm. 3.7], which
proves that there is at least one simple B-module lying on an end Ω2-orbit of Γs(B). �

Corollary 3.3. The number of simple endotrivial modules over kG is bounded below by
|X(H)|/e and bounded above by |X(H)| = |H/[H,H]|p′.

Proof. The lower bound is given by Lemma 3.2(c). The upper bound follows by Lemma 3.1
from the fact that |T (H) : X(H)| = 2. �

3.2. Location of simple endotrivial modules on the Brauer tree. Let B be a block
of kG and let σ(B) denote its Brauer tree. Using notation of [24], the nodes of σ(B) can
be labelled by noughts ◦ and crosses ×, such that a nought can only be joined to a cross
and a cross to a nought. Moreover, let χ0 denote the exceptional node of σ(B), if it has
exceptional multiplicity mB := (pn−1)/eB > 1 and otherwise let χ0 be any node of σ(B).
If S is a simple B-module labelling an edge of σ(B), let n(S) be the number of nodes of
σ(B) which are not connected to χ0 after removal of the edge S. Let l(f(S)) denote the
length of the kH-Green correspondent of S. Then the following holds:

Lemma 3.4. Let S be a simple B-module labelling an edge of σ(B) and let χ be the node
adjacent to S, which is not connected to χ0 after removal of the edge S. Then

l(f(S)) =

{
n(S) if χ has type ×,
pn − n(S) if χ has type ◦ .

Proof. See [24, Lem. 4.4.11] and [16, Lem. 9.3]. �

If S is a simple B-module, let ×(S) denote the number of nodes on the part of σ(B)
to which the node adjacent to S of type × belongs after removal of the edge S, with the
exceptional node counted (pn − e)-times.

Lemma 3.5. Let S be a simple B-module. Then l(f(S)) = ×(S).
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Proof. [24, Lem. 4.4.12] states and proves the case n = 1. Their proof can be generalized
to an arbitrary n: Let S be an edge of B and let χ be the node adjacent to S, which is
not connected to χ0 after removal of S. If χ is of type ×, then ×(S) = n(S) = l(f(S))
by Lemma 3.4. If χ is of type ◦, then by Lemma 3.4 we get

l(f(S)) = pn − n(S) = pn − (e+ 1− (×(S)− (pn − e) + 1)) = ×(S).

�

Lemma 3.6. Let B be a block of kG containing an endotrivial module and let S be a
simple B-module. Then S is endotrivial if and only if l(f(S)) ∈ {1, pn − 1}.

Proof. Let b be the Brauer correspondent of B. Then the claim follows from the fact that
the boundary Ω2-orbits of Γs(b) are made of the indecomposable kH-modules of length
1 and pn − 1, together with Lemma 3.1 and 3.2. �

Let us call a leaf of a Brauer tree σ(B) an exceptional leaf if the exceptional node is
sitting at the end of this leaf and has exceptional multiplicity mB > 1. Then we can state
the main result of this section.

Theorem 3.7. Let B be a block of kG containing an endotrivial module and assume
e > 1. Let S be a simple B-module. Then S is endotrivial if and only if S corresponds to
a non-exceptional leaf of σ(B).

Proof. By definition the leafs of σ(B) correspond to liftable simple B-modules whereas
the inner edges correspond to non liftable simple modules. Hence by Theorem 1.3 only
leaves of σ(B) can be endotrivial. So let S be a simple B-module corresponding to a leaf
of σ(B) and let χ denote the end node of this leaf. Then by Lemma 3.6, S is endotrivial if
and only if l(f(S)) ∈ {1, pn−1}. Applying Lemma 3.5, we obtain that the length l(f(S))
is as follows:

If χ 6= χ0 and is of type ×, then l(f(S)) = 1.
If χ 6= χ0 and is of type ◦, then l(f(S)) = (e− 1) + pn − e = pn − 1.
Notice that if χ0 has multiplicity one, then we may always assume that χ 6= χ0. There-

fore, now assume that χ0 has multiplicity mB > 1, so 1 < e < p− 1.
If χ = χ0 and χ is of type ×, then l(f(S)) = pn − e /∈ {1, pn − 1}.
If χ = χ0 and χ is of type ◦, then l(f(S)) = e /∈ {1, pn − 1}. Hence the resultby

Lemma 3.6. �

3.3. SL2(q) in cross characteristic. As an application we classify simple endotrivial
modules for G = SL2(q), q = pn, p a prime, in non-defining characteristic ` dividing the
order of G. For the exceptional covering groups of L2(9) ∼= A6 see Theorem 4.9. For
` = p, see Theorem 5.2.

Proposition 3.8. Let G = SL2(q), q = pn with p a prime. Let V be a non-trivial simple
kG-module, where k is algebraically closed of characteristic ` 6= p. Then V is endotrivial
if and only if one of:

(1) 2 6= ` | q − 1 and V lies in an `-block of full defect and inertial index 2 (cyclic
defect);

(2) p 6= 2 6= ` | q + 1 and V lies in the non-principal `-block of full defect and inertial
index 2 (cyclic defect);
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(3) 3 = ` | q + 1, |G|` = 3 and V lies in the principal `-block (cyclic defect).

Moreover, if ` = 2, q ≡ −1 (mod 4) and V lies in the principal `-block, then V is
endotrivial as a kL2(q)-module, but not as a kG-module.

This proposition is essentially proven in [42] via character theory. Only the cases
p 6= ` = 2, q ≡ −1 (mod 4) and p 6= 2 6= ` | q + 1 for the non-principal `-block of full
defect and inertial index 2 were left open. We give here a summary proof using the
techniques of this section and some results of Craven’s [13].

Proof. Only blocks with full defect need to be investigated, for indecomposable endotrivial
modules have Sylow subgroups as vertices. In addition, in the cyclic defect case, only
blocks B with eB = e can contain endotrivial modules by Lemma 3.1. Let B0 denote the
principal `-block of kG. Recall that |SL2(q)| = (q − 1)q(q + 1).

If ` 6= 2 and ` | q − 1 or ` | q + 1, then a Sylow `-subgroup of G is cyclic and e = 2.
Moreover if p 6= 2, then G has exactly two `-blocks of full defect and inertial index 2, B0

and say B1. By [5, §6.2.1 and §6.2.2], |X(H)| = 4, thus the number of blocks containing
endotrivial modules is |X(H)|/e = 2 by Lemma 3.2. Now if ` | q − 1, the Brauer trees
σ(B0), σ(B1) both have the form ◦ • ◦ with exceptional node in the middle.
(See [5, Sec. 9.3 and §9.4.2]). Therefore, by Theorem 3.7, all non-trivial simple B0- and B1-
modules are endotrivial. If ` | q+1, σ(B1) has the form ◦ • ◦ with exceptional
node in the middle (see [5, Sec. 9.3]), hence both simple B1-modules are endotrivial by
Theorem 3.7. The tree σ(B0) has the form ◦ ◦ • with exceptional node sitting
on one end (see [5, §9.4.3]). Moreover the exceptional multiplicity is mB0 = 1 if and only
if ` = 3 and |G|` = 3. Thus, by Theorem 3.7, B0 contains a non-trivial simple endotrivial
module if and only if |G|` = 3. (The trivial module corresponds to the non-exceptional
end node.) Now if p = 2, the situation is similar, except that only the principal block has
full defect and inertial index 2 (see [5, §9.4.2]).

If p 6= ` = 2, then only the principal block has full defect: it contains two non-trivial
simple modules S1 and S2 with dim(S1) = dim(S2) = 1

2
(q− 1) (see [5, Chap. 9]). If q ≡ 1

(mod 4), then dim(Si) ≡ 0 (mod 2). Hence S1, S2 are not endotrivial by Lemma 2.1.
If q ≡ −1 (mod 4), then S1 and S2 are endotrivial kL2(q)-modules by [13, Sec. 4.4] for
q ≡ 3 (mod 8) and by [13, Prop. 4.26] for q ≡ 7 (mod 8). However, the inflation of S1

and S2 from L2(q) = G/Z(G) to G does not yield endotrivial kG-modules. Indeed, since
|Z(G)| = 2, we get for 1 ≤ i ≤ 2, Endk(Si) ∼= k ⊕ (IndG

Z(G)(k) ⊕ · · · ⊕ IndG
Z(G)(k)) as

kG-modules. �

4. Covering groups of alternating groups

In this section we classify simple endotrivial modules for covering groups of alternating
groups. Note that some (but not all) simple endotrivial modules for alternating groups
were described in [8, 10], using different methods. The faithful modules for proper covering
groups were not investigated previously.

Throughout p denotes a prime and k a large enough field of characteristic p.

4.1. Faithful modules for An. Recall that the simple QSn-modules are parametrized
by partitions of n. We first classify partitions possessing certain types of hooks.
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Lemma 4.1. Let n = mp + r with 0 ≤ r < p and assume that n ≥ 2p. Let λ ` n be a
partition such that the corresponding irreducible character χλ of Sn does not vanish on
elements of cycle shape (n− p)(p), (n− p− 1)(p)(1), nor on elements whose cycle shape
contains a cycle of length n− r. Then λ or its conjugate is one of the partitions

(1n) or (n− p, r + 1, 1p−r−1).

Proof. By the Murnaghan–Nakayama formula (see e.g. [29, 2.4.7]), if χλ does not vanish
on elements whose cycle shape contains an n− r-cycle, then λ must have a hook of length
n − r, and the partition µ obtained by removing such a hook must have hooks of any
length less or equal to r. Thus, by assumption µ is, up to conjugate, the partition (r),
and then λ is of the form

(r, b, 1n−r−b) (1 ≤ b ≤ r) or (r + a, r + 1, 1n−2r−a−1) (1 ≤ a ≤ n− 2r − 1),

or λ is the hook (r, 1n−r).
If χλ also vanishes on elements of cycle shape (n− p)(p), then λ has to possess a hook

of length n−p, and the partition obtained by removing such a hook must be a hook itself
(of length p). It is easily seen that for the above possibilities, if λ = (r, b, 1n−r−b) then we
have r = p − 1, so λ = (p − 1, 1n−p+1), if λ = (r + a, r + 1, 1n−2r−a−1) then only the two
partitions (n − p, r + 1, 1p−r−1) and (p, r + 1, 1n−p−r−1) are possible, and the only hook
satisfying our condition is (r, 1n−r).

If finally χλ does not vanish on elements of cycle shape (n − p − 1)(p), then λ has an
n − p − 1-hook, and the remaining partition has a p-hook. In our first case, this is seen
not to be possible. In the second case, it holds true when λ = (n− p, r + 1, 1p−r−1), and
finally, the hook (r, 1n−r) only has this property when r = 1, so λ = (1n). The claim is
shown. �

Proposition 4.2. Any simple faithful endotrivial kAn-module, n ≥ 2p, over a field k of
characteristic p > 2 is a constituent of the restriction to An of a QSn-module indexed by
λ ` n, where one of:

(1) 2p ≤ n = 2p+ r ≤ 3p− 1 and λ = (p+ r, r + 1, 1p−r−1);
(2) n = 2p, λ = (p, 2, 1p−2); or
(3) n = 2p+ 1, λ = (p+ 1, 1p).

Proof. By Clifford-theory any simple faithfulOAn-module occurs in the restriction of some
simple faithful OSn-module V . We distinguish two cases. First assume that V restricts
irreducibly. Then according to Lemma 2.2 it suffices to show that V is not endotrivial
for Sn to conclude the same for An. For this we will show that any non-linear character
χλ of Sn except for those listed in (1) of the claim vanishes on some p-singular element,
from which the assertion will follow by Corollary 2.3.

Note that permutations of cycle shape (n − p)(p), (n − p − 1)(p) and (n − r)(r) are
p-singular, where n = mp + r, 0 ≤ r < p. Thus, our claim already holds by Lemma 4.1
unless λ = (n − p, r + 1, 1p−r−1) or the conjugate partition. But λ does not have a
hook of length n − r − p if n ≥ 3p, so χλ vanishes on p-singular elements of cycle shape
(n− r − p)(p)(1)r. This only leaves the values of n listed in case (1).

Now we deal with the case that V does not restrict irreducibly to OAn. Then V is a
simple OSn-module indexed by a self-conjugate partition. Here we will show that unless
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we are in cases (2) or (3) the corresponding character χλ vanishes on some p-singular
conjugacy class C of Sn contained in An which forms a single An-class. Then both
constituents of χλ|An will vanish on C, and again we are done by Corollary 2.3.

Recall that a class of Sn splits into two An-classes if and only if its elements have a
cycle shape consisting of odd cycles of mutually distinct lengths. First assume that n is
odd and r is even. If χλ belongs to an endotrivial module, then by Corollary 2.3 it cannot
vanish on elements of cycle shapes (n− p− 2)(p)(1)2, and (n− r)(r− 2)(1)2 when r > 1,
respectively (n − p − 3)(p)(1)3 when r = 1, which forces λ to possess n − p − 2-hooks
and moreover either n − r and r − 2-hooks, or n − p − 3-hooks. But there are no such
self-conjugate partitions. Similarly, when n is even and r is odd, we look at the values on
elements of cycle shapes (n−r)(r−2)(2) (resp. (n−2)(1)2 when r = 2), (n−p−2)(p)(2),
and (n− p)(2), (2p− 2)(p)(2) when r = 0, to see that there are no relevant self-conjugate
λ.

If n and r are both even, the values on elements of type (n−r)(r) for r > 0, respectively
of type (n− p), (n− p− 2) and (n− p− 3)(2) show that only λ = (p, 2, 1p−2) can possibly
index an endotrivial module, in which case moreover n = 2p. Finally, for n and r both
odd, we argue with the cycle shapes (n− r)(r − 1) (for r > 1) respectively ((n− 1)/2)2,
(n−p−1)(1)p+1, (n−p−3)(p)(1)3 to see that necessarily n = 2p+1, and λ must either be
as in (3), or p = 5, λ = (4, 32, 1), or p = 7 and λ = (43, 3). When λ = (4, 32, 1), then the
corresponding character vanishes on elements of cycle shape (5)(3)2, while for λ = (43, 3),
it vanishes on elements of cycle shape (7)(6)(2). This completes the proof. �

Proposition 4.3. The group G = An does not have simple faithful endotrivial kG-modules
for k a field of characteristic 2 when n ≥ 8.

Proof. We show that any irreducible character χλ of Sn vanishes on some even order
element contained in An (which is sufficient since Sn-classes of even order elements never
split considered as An-classes).

First assume that n is even. For n = 8 we have A8 = L4(2), so the claim follows
from Theorem 5.2; for n = 10 it can be checked from the known character table of S10.
For n ≥ 12 we use that An contains elements of cycle shapes (n − 2)(2), (n − 4)(4) and
(n − 5)(22) to see that λ necessarily has to possess hooks of lengths n − 2, n − 4 and
n − 5. Up to conjugates this only leaves λ = (n − 1, 1), (n − 2, 2) and (n − 4, 3, 1). But
the characters indexed by these partitions vanish on elements of cycle shapes (n− 5)(22),
(n− 6)(6), (n− 6)(6) respectively.

If n is odd, then the cases n = 9, 11 can again be checked from the character tables.
Now let n ≥ 13. Then non-vanishing on elements of cycle shapes (n− 3)(2), (n− 4)(22),
and (n − 5)(4) implies that λ has hooks of lengths n − 3, n − 4 and n − 5, whence
λ = (n−1, 1), (n−2, 12) or (n−4, 4) up to conjugates. But the corresponding characters
vanish on elements of cycle shapes (n− 3)(2), (n− 5)(4), (n− 7)(6) respectively. �

Let us next consider the cyclic defect cases:

Proposition 4.4. Let G = An with 5 ≤ n ≤ p < 2p.

(a) If n = p, p+ 1 then kG has no non-trivial simple endotrivial module.
(b) If p + 2 ≤ n < 2p then kG has exactly one non-trivial simple endotrivial module,

namely the Specht module indexed by the partition (p+ 1, 1n−p−1).
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Proof. Let P be a Sylow p-subgroup of G and H = NAn(P ). By our assumptions on n, P
is cyclic of order p. Write n = p+ r, with 0 ≤ r < p. Then NSn(P ) ∼= (Cp o Cp−1)×Sr

and it follows that

e = |H : CAn(P )| =

{
p−1
2

if n = p, p+ 1,

p− 1 if p+ 2 ≤ n < 2p.

Furthermore, an easy computation shows that

|X(H)| =

{
p−1
2

if n = p, p+ 1,

p− 1 if p+ 2 ≤ n < 2p.

In both cases |X(H)| = e, meaning that all the indecomposable endotrivial modules lie
in the principal block B0 of An. The Brauer tree of B0 is a straight line, with exceptional
node sitting on one end in case n = p, p+ 1. Thus the claims in (a) and in the first part
of (b) are a direct consequence of Theorem 3.7. It follows from the explicit knowledge
of the Brauer tree that for n ≥ p + 2 the end node corresponds to the Specht module
indexed by the hook partition (p+1, 1r−1). This gives the remaining assertion in (b). �

4.2. Faithful modules for Ãn. We now discuss faithful simple kG-modules for G = Ãn,
n ≥ 5, the double covering group of An, with center of order 2.

We recall some facts from the ordinary representation theory of S̃n, where S̃n denotes
any of the two double covering groups of Sn. Let D(n) denote the set of partitions of n
into distinct parts. We say that a partition λ is odd if its number of even parts is odd,
and else we call it even.

The faithful complex irreducible characters of S̃n are parametrized by partitions λ ∈
D(n) as follows: if λ is even there is one irreducible character ψλ ∈ Irr(S̃n) which splits

upon restriction to Ãn into two distinct constituents ψ±λ ; if λ is odd, there are two ir-

reducible characters ψ±λ ∈ Irr(S̃n) which have the same restriction to Ãn, see e.g. [25,
Thm. 8.6].

Theorem 4.5. The group G = Ãn does not have faithful simple endotrivial kG-modules
for k a field of characteristic p > 0 when n ≥ min{2p, p+ 4}.

Proof. Note that Z(G) lies in the kernel of any simple 2-modular kG-module, so we may
certainly assume that p > 2. Let first λ ∈ D(n) be odd and assume that n ≥ p + 4.

Then the irreducible characters ψ±λ of S̃n restrict irreducibly to Ãn, so we may argue in

S̃n by Lemma 2.2. Let g ∈ S̃n be an element whose projection to Sn has cycle shape
µ = (p)(2)(1)n−p−2. Then ψ±λ vanishes on g unless λ = µ, by the theorem of Schur (see [25,
Thm. 8.7(ii)]), while when λ = µ, ψ±λ vanishes on elements of cycle shape (p)(4)(1)n−p−4.
Since these elements are p-singular, ψ±λ cannot be endotrivial by Corollary 2.3. When
n = 2p < p + 4, so p = 3, n = 6, the only candidate is ψ±λ with λ = (3, 2, 1), and this
vanishes on (3-singular) elements of cycle shape (6).

If λ ∈ D(n) is even, we need to look at the constituents ψ±λ of the restriction of ψλ to

Ãn. By [25, Thm. 8.7], ψ+
λ (g) = ψ−λ (g) whenever g has cycle shape different from λ. Now

elements with cycle shape (p)(2)2(1)n−p−4 are contained in Ãn and ψλ vanishes on these
again by [25, Thm. 8.7(iii)]. �
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Note that faithful simple modules for the exceptional six-fold covering groups 6.A6,
6.A7 only exist in characteristic p ≥ 5, so for covering groups of An with centre of even
order we are only left with cases with cyclic Sylow p-subgroup. We will deal with the
exceptional covering groups in the next subsection.

Proposition 4.6. Let G = Ãn with 5 ≤ p ≤ n ≤ p + 3. Then the faithful simple
endotrivial kG-modules are precisely those indexed by the following partitions:

(1) ((p+ 1)/2, (p− 1)/2) when n = p;
(2) (p+ 1) and ((p+ 1)/2, (p− 1)/2, 1) when n = p+ 1;
(3) (p+2) (two non-isomorphic modules) and, for p > 5, ((p+1)/2, (p−1)/2, 2) (two

non-isomorphic modules) when n = p+ 2; and
(4) (p+ 2, 1) (two non-isomorphic modules) and, for p > 5, ((p+ 1)/2, (p− 1)/2, 2, 1)

(two non-isomorphic modules) when n = p+ 3.

In characteristic p = 3, kÃ5 has two faithful simple endotrivial modules, both of dimen-
sion 2.

Proof. It is easily seen that for 5 ≤ p ≤ n ≤ p+ 3 the normalizer H of a (cyclic) Sylow p-
subgroup of An has cyclic Sylow 2-subgroups, so the normalizer H̃ of a Sylow p-subgroup
of Ãn has abelian Sylow 2-subgroups. In particular, |X(H̃)| = 2|X(H)|, and thus by

Corollary 3.3(c) there exists exactly one non-trivial faithful p-block of Ãn containing
simple endotrivial modules. (In contrast, for n ≥ p+ 4 we have |X(H̃)| = |X(H)| and so
there do not exist faithful simple endotrivial modules, in accordance with Theorem 4.5.)

First assume that p ≥ 5. The Brauer trees for the faithful blocks of Ãn have been
calculated by Müller [37]. In our situation, there are five blocks to consider, corresponding
to the p-bar cores (), (1), (2), (2, 1), and (3). These have associated sign and s-invariant
(+, 0), (+, 1), (−, 2), (−, 2), (+, 1) respectively. By [37, Thm. 4.4] the Brauer tree is a
straight line in the cases of sign “+”, or with sign “−” and p = 5, with the exceptional
node at the end when s = 0. Moreover, the end nodes are as given in the statement.
Otherwise, the Brauer tree is a star with four arms of positive length and no exceptional
node.

For the p-bar core (3), the degree of the character parametrized by the partition (p+3)
is twice the degree of the character for the p-bar core (2) parametrized by the partition
(p+ 2) (see [25, Thm. 10.7]) and hence not congruent to ±1 (mod p), whence this block
cannot contain simple endotrivial modules. Thus, for n = p+3 the block with associated
p-bar core (2, 1) is the one with simple endotrivial modules. Again the labels of the end
nodes can be read off from [37, Thm. 4.4]. �

It ensues from [25, Thm. 10.7] that the dimensions of the endotrivial modules in Propo-
sition 4.6 are given as follows, where m := (p− 1)/2:

n χλ(1)

p 2m−1
(

p−1
m

)
p+ 1 2m and 2m

(
p−1
m−2

)
p+ 2 2m and 2m

(
p−1
m−3

)
(p+1)(p+2)

p−1

p+ 3 2m(p+ 1) and 2m−1
(

p−1
m−3

)
(p−3)(p+2)

3
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4.3. The result for alternating groups.

Lemma 4.7. Let n = 2p+ 1 > 5, and V be a kAn-constituent of the (irreducible) Specht
module for kSn indexed by the partition λ = (p+ 1, 1p). Then V is endotrivial.

Proof. By [40, Thm. 2] the Specht module for λ is irreducible modulo p. LetH = Ap+1×Ap

denote a Young subgroup of G = An. Then H contains a Sylow p-subgroup of G. Thus
by Lemma 2.2 it suffices to show that the restriction V |H of V to H is endotrivial. The
Littlewood–Richardson rule shows that the ordinary character of V |H is given by

1 � 1 +

(p−1)/2∑
i=1

χi � (ψi + ψi+1),

where χi denotes the character indexed by the hook partition (p + 1 − i, 1i) and ψi the
character indexed by the hook partition (p+ 1− i, 1i−1). (Here, � is the external tensor
product.) The only constituent in the principal block is the trivial character, and all the
χi are of defect zero for Ap+1, so sorting by blocks we get a direct decomposition

V |H = k ⊕
(p−1)/2⊕

i=1

Pi �Mi,

where Pi is the projective kAp+1-module with character χi and Mi is a kAp-module with
character ψi + ψi+1. It hence suffices to argue that all Mi are projective kAp-modules.
We have already seen that V |Ap+1 = 1+(projectives), so its restriction to Ap < Ap+1 also
has this form. But the Young subgroup Ap of Ap+1 is conjugate to the second factor of
H, so we conclude that

∑
iMi is projective, and hence that each Mi is. �

This has also been shown in [10, Prop. 8.3] by a more involved argument.

Lemma 4.8. Let n = 3p− 1 > 5, and V be the p-modular reduction of the Specht module
of Sn indexed by the partition λ = (2p− 1, p). Then V is simple and endotrivial.

Proof. The Specht module for the partition (2p−1, p) is irreducible modulo p by a theorem
of Fayers and isomorphic to the Young module Y (2p−1,p) (see [19, Prop. 1.1]). Restriction
of Y (2p−1,p) to the Young subgroup S3p−3 gives

Y (2p−1,p)|S3p−3 = Y (2p−3,p) ⊕ 2Y (2p−2,p−1)

by two-fold application of [20, Thm. 5.1]. As (2p − 2, p − 1) is p-restricted, the Young
module Y (2p−2,p−1) is projective by [15, Thm. 2], while Y (2p−3,p) is endotrivial by [10,
Prop. 8.2]. The claim follows since S3p−3 contains a Sylow p-subgroup of S3p−1. �

The proof of the endotriviality of Y (2p−1,p) given in [10] seems unclear to us.

Theorem 4.9. Let V be a faithful simple kG-module, for some covering group G of An,
n ≥ max{p, 5}, over a field k of characteristic p > 0. Then V is endotrivial if and only
if V is a constituent of the simple module for the corresponding covering group of Sn

indexed by λ ` n, where one of:

(1) G = An, 5 ≤ p+ 2 ≤ n < 2p and λ = (p+ 1, 1n−p−1) (cyclic defect);

(2) G = Ãn, 3 ≤ p ≤ n ≤ p+ 3 and λ is as in Proposition 4.6 (cyclic defect);
(3) G = An, p > 2, n = 2p+ 1 and λ = (p+ 1, 1p);
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(4) G = An, p > 2, n = 3p− 1 and λ = (2p− 1, p); or
(5) n = 6, 7, |Z(G)| ≥ 3 and (G, p, V ) are as in Table 1.

Proof. By Theorem 4.5 and Proposition 4.6 the only examples with |Z(G)| = 2 are those
in (2) of the conclusion. Let us now assume thatG = An. If n < 2p, the Sylow p-subgroups
of G are cyclic. Then Proposition 4.4 gives (1) of the conclusion.

So now assume that G = An, n ≥ 2p and p > 2. Then V is an An-constituent of the
p-modular reduction of the Specht module indexed by one of the partitions λ ` n listed
in Proposition 4.2. First consider the possibilities in case (1) of that result. Note that
the p-core of these λ is the partition (r), so V lies in the principal p-block. By James
[28, Cor. 2.11] the only Specht module in the principal block which remains irreducible
modulo p is the trivial module, unless n ≡ −1 (mod p). Clearly the same holds for the
module indexed by the conjugate partition, which is obtained by tensoring with the sign
representation. Thus, we only need to consider the case r = p − 1, λ = (2p − 1, p).
The corresponding Specht module is endotrivial by Lemma 4.8, leading to case (4). By
the same criterion, the Specht module for λ = (p, 2, 1p−2) as in Proposition 4.2(2) is
reducible. Finally, the Specht module parametrized by the partition λ = (p + 1, 1p) in
Proposition 4.2(3) is in fact an example by Lemma 4.7.

Now assume that G = An and p = 2. Then there are no examples for n ≥ 8 by
Proposition 4.3. For A5 = L2(4), there’s no example by Theorem 5.2, and for n = 6, 7,
use of Corollary 2.3 and the character tables shows that no cases arise.

Finally, if G is one of the 3- or 6-fold exceptional covering groups of A6 or A7, then the
claim for p = 5, 7 follows by the cyclic defect methods from Section 3, while for p = 2 the
character tables in [12] show that the only faithful candidate characters are those listed
in Table 1. Explicit calculation with these modules yields that all candidates are in fact
endotrivial. �

Table 1. Relevant blocks in 6.A6 and 6.A7

G p X(H) X(H)/e block dimV

3.A6 2 − − 4, 5 3, 3, 9

3.A6 5 6 3 5, 6 6
6.A6 5 12 6 12, 13 6, 6

3.A7 5 12 3 6, 7 6, 21
6.A7 5 24 6 15, 16 6, 6, 24
3.A7 7 9 3 6, 7 6, 15
6.A7 7 18 6 15, 16 6, 6

5. Groups of Lie type in defining characteristic

In this section we classify the simple endotrivial modules for quasi-simple groups of Lie
type in their defining characteristic. It turns out that these are extremely rare: they only
occur for rank at most 2. Carlson, Mazza and Nakano [9] determined the structure of the
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group of endotrivial modules in these cases. Again, our results are independent and do
not seem to follow in an obvious way from theirs.

Let G be a connected reductive linear algebraic group over the algebraic closure of a
finite field of characteristic p. Let Φ denote the root system of G with respect to some
maximal torus, and Φ+ ⊂ Φ a positive system. Let λ1, . . . , λl denote the corresponding
fundamental dominant weights of G, and ρ =

∑l
i=1 λi. We write N := |Φ+|. For a

dominant weight λ of G we denote by L(λ) the corresponding simple highest weight
module (see e.g. [35, §15]).

Proposition 5.1. Let G be as above. Let λ be a p-restricted dominant weight of G,
different from the Steinberg weight (p− 1)ρ. Then:

(a) dimL(λ) < pN .
(b) dimL(λ) < pN − 1, unless N = 1 and λ = (p− 2)ρ.
(c) If p = 2 then dimL(λ) < 2N−1 − 1, unless N ≤ 3.

Proof. By Weyl’s character formula, the dimension of the corresponding highest weight
module LC(λ) for an algebraic group GC of the same type over the complex numbers is
given by

dimLC(λ) =
∏

α∈Φ+

〈λ+ ρ, α〉
〈ρ, α〉

(see [26, 24.3]). It is well-known that the dimension of LC(λ) is an upper bound for the
dimension of L(λ). For λ = (p− 1)ρ the formula gives dimLC(λ) =

∏
α∈Φ+ p = pN . Since

the Steinberg module LC(λ) remains irreducible upon restriction to characteristic p, this
shows that dimL(λ) = pN . Any other p-restricted weight is of the form λ = (p− 1)ρ−ψ,

where ψ =
∑l

i=1 aiλi 6= 0 is a non-negative integral linear combination of fundamental
weights, with aj > 0, say. Then

dimL(λ) ≤ dimLC(λ) =
∏

α∈Φ+

〈pρ− ψ, α〉
〈ρ, α〉

=
∏

α∈Φ+

(
p− 〈ψ, α〉

〈ρ, α〉
)

≤
∏

α 6=αj

p
(
p− 〈ψ, αj〉

〈ρ, αj〉
)

= pN−1(p− aj),

using that 〈 , 〉 is linear in the first argument. Clearly, this is smaller than pN − 1 unless
N = 1, λ = (p− 2)λ1, which gives (a) and (b).

If p = 2, then the above argument shows that dimL(λ) ≤ 2N−1 when λ 6= ρ. If N > 1
then since Φ is indecomposable there is at least one further positive root αj + αm ∈ Φ+

which involves αj. Then we get

dimL(λ) ≤ 2N−2(2− 1)(2− 1

2
) = 3 · 2N−3,

which is smaller than 2N−1 − 1 when N > 3. �

We thank Frank Lübeck for showing us the proof of (a).

Theorem 5.2. Let G be a finite quasi-simple group of Lie type in characteristic p > 0.
Let V be a simple faithful kG-module, where k is algebraically closed of characteristic p.
Then V is endotrivial if and only if one of
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(1) p ≥ 5, G = SL2(p) and dimV = p− 1; or
(2) p = 2, G = SL3(2) and dimV = 3.

Proof. Note that the exceptional Schur multipliers of groups of Lie type all have order a
power of the defining characteristic p, so lie in the kernel of all kG-representations. Thus,
we may assume that V is a (not necessarily faithful) non-trivial simple kH-module, where
H is a group of simply connected type such that G = H/Z for some central subgroup
Z ≤ H.

According to Steinberg’s tensor product theorem (see e.g. [35, Thm. 16.12]) the simple
kH-modules are tensor products of Frobenius twists of p-restricted highest weight mod-
ules. If any of the factors in such a tensor product is a twist of the Steinberg module,
then dimV is divisible by p, hence not endotrivial by Lemma 2.1. All other p-restricted
highest weight modules have dimension at most pN−1, and even strictly smaller than this
unless H is of type A1, by Proposition 5.1. Thus V has dimension smaller than qN − 1,
where |H|p = qN , unless H is of type A1 and p = q. In the former case V cannot be
endotrivial by Lemma 2.1 for p > 2.

If p = 2 then either N = 3, in which case H = SL3(2) (note that SU3(2) is solvable),
or dimV < 2N−1 − 1 by Proposition 5.1. As |H|2 = 2N , the latter modules cannot be
endotrivial by Lemma 2.1. The natural representation of SL3(2) ∼= L2(7) is an example
by Proposition 3.8.

So finally assume that H = SL2(p) and dimV = p − 1. Let P ≤ H denote a Sylow
p-subgroup. Since V |P is indecomposable, and up to isomorphism there is a unique
indecomposable kP -module of dimension p− 1, namely Ω(k), we must have V |P ∼= Ω(k),
which is endotrivial. Thus this is indeed an endotrivial module by Lemma 2.2. �

6. Groups of Lie type in cross characteristic

In this section we investigate simple endotrivial modules for groups of Lie type in non-
defining characteristic `. Here our results are not complete. Throughout this section let
k denote a large enough field of characteristic `. We refer to the book of Carter [11] for
notation and background.

6.1. Auxiliary results. We first prove some general criteria to rule out endotriviality of
certain modules.

Our first observation makes use of Harish-Chandra theory. Let G be a finite group
with a split BN-pair of characteristic p 6= `. Let Q ≤ G be a parabolic subgroup, with
Levi decomposition Q = U.L, so that U is a normal p-subgroup of Q with complement
L. Let Ṽ be a CG-module with character χ, and V the `-modular reduction of a suitable
lattice in Ṽ . The restriction of Ṽ to Q decomposes into a direct sum Ṽ |Q = Ṽ U ⊕ Ṽ ′,

where no constituent of Ṽ ′ has U in its kernel. As customary, we’ll write ∗RG
L (Ṽ ) for the

L-module Ṽ U of U -fixed points, the Harish-Chandra restriction of Ṽ . Since all `-modular
constituents of ∗RG

L (Ṽ ) have U in their kernel, and none of the `-modular constituents of

Ṽ ′ have, these two summands lie in different `-blocks of G, and so there is a corresponding
decomposition of V |Q which (by abuse of notation!) we write V |Q = ∗RG

L (V )⊕ V ′. Thus
we have:
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Lemma 6.1. In the above setting, assume that V is endotrivial. Then exactly one of
∗RG

L (V ), V ′ is endotrivial, and the other is projective. In particular, one has dimension
congruent to ±1 (mod |L|`), and the other has dimension divisible by |L|`.

For finite groups of Lie type, the Harish-Chandra restriction of ordinary irreducible
characters can be computed from information inside relative Weyl groups. In order to
formulate this, we introduce the following setup. Let G be a simple algebraic group of
simply connected type over an algebraic closure of a finite field Fp, and F : G → G
a Steinberg endomorphism, with finite group of fixed points G = GF . Let G∗ be a
Langlands dual group to G, with corresponding Steinberg map also denoted by F . We
write q for the absolute value of the eigenvalues of F on the character group of an F -stable
maximal torus of G (this is a power of p, integral unless G is of Ree or Suzuki type). We
then also sometimes write G = G(q). Now Lemma 6.1 leads to the following:

Lemma 6.2. Let G = G(q) be a quasi-simple group of Lie type and χ ∈ Irr(G). Assume
that V is a simple endotrivial kG-module, for k a field of characteristic ` dividing q − 1,
whose Brauer character is the restriction of χ to `’-classes.

(a) Then χ lies in the Harish-Chandra series of some (linear) character θ of a maxi-
mally split torus T of G; let ψ ∈ Irr(WG(T, θ)) denote the corresponding irreducible
character of the relative Weyl group WG(T, θ) := NG(T, θ)/T .

(b) We have either χ(1) ≡ ψ(1) ≡ ±1 (mod |T |`) or ψ(1) ≡ 0 (mod |T |`).

Proof. By Lemma 2.1 we know that χ(1) ≡ ±1 (mod |G|`); in particular, χ is of `-height
zero. The first claim is then a consequence of [34, Thm. 7.5].

Let B be a Borel subgroup containing T , with unipotent radical U . By Lemma 6.1,
V |B = ∗RG

T (V ) ⊕ W for some kB-module W , and one of ∗RG
T (V ), W is projective. If

∗RG
T (V ) is projective then on the level of characters this means that ∗RG

T (χ)(1) ≡ 0
(mod |T |`), while if ∗RG

T (V ) is endotrivial, then ∗RG
T (χ)(1) ≡ ±1 (mod |T |`), where the

sign is the same as for χ.
Now assume that χ lies in the Harish-Chandra series of the character θ of T and

corresponds to ψ ∈ Irr(WG(T, θ)). Then we have ∗RG
T (χ) = ψ(1)θ, from which we may

conclude since θ is a linear character. �

For our second approach recall Lusztig’s partition Irr(G) =
∐

s E(G, s) of the irreducible
characters of G into disjoint Lusztig series, indexed by a system of representatives s of
the semisimple conjugacy classes of the dual group G∗ = G∗F .

For a prime ` not dividing q we let d`(q) denote the multiplicative order of q modulo `,
respectively d2(q) := 2 when ` = 2 and q ≡ 3 (mod 4). We need the following result:

Proposition 6.3. Let χ ∈ E(G, s) be the character of a faithful simple endotrivial kG-
module, where k is algebraically closed of characteristic `. Then s lies in some maximal
torus T ≤ G∗ containing a Sylow d`(q)-torus of G∗.

Proof. Observe that endotrivial modules are of height zero, by Lemma 2.1. By [34,
Prop. 7.2] any irreducible character of G of `-height zero lies in a Lusztig series E(G, s)
where CG∗(s) contains a Sylow `-subgroup of G∗. By [34, Thm. 5.9] such elements lie in
a maximal torus of G∗ containing a Sylow d`(q)-torus S∗. �

The following vanishing result (proved for example in [18, Lem. 3.2]) will be crucial:
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Proposition 6.4. Let x ∈ G be semisimple and χ ∈ E(G, s) with χ(x) 6= 0. Then there
exists a maximal torus T ≤ G with x ∈ T , and such that T ∗ ≤ CG∗(s) for a torus T ∗ ≤ G∗

in duality with T .

6.2. The case ` = 2. We first show that no new examples arise for ` = 2 and thus prove
Theorem 1.2(a) of the introduction.

Here we use the well-known fact that non-trivial self-dual simple modules in character-
istic 2 have even dimension. This implies in particular:

Corollary 6.5. Let G be a group all of whose elements are real (i.e., conjugate to their
inverse). Then G cannot have non-trivial simple endotrivial modules in characteristic 2.

Proof. Observe that any complex character χ of G is real valued, since its complex con-
jugate satisfies χ̄(g) = χ(g−1) = χ(g) by assumption. If V is a simple endotrivial module
for G in characteristic 2, then by Theorem 1.3 it is the 2-modular reduction of a simple
CG-module, which is self-dual since its character is real. But then V is self-dual and thus
either trivial or of even dimension; the latter being excluded by Lemma 2.1. �

Proposition 6.6. Let G be a finite simple group of Lie type. Let χ 6= 1 be a unipotent
character of G whose 2-modular reduction χ0 is irreducible. Then χ0 is not endotrivial.

Proof. For groups defined over a field of characteristic 2, this was shown in Theorem 5.2
(note that by [11, §13] the 3-dimensional characters of SL3(2) are not unipotent). So now
assume that G is defined in odd characteristic. Let χ be a unipotent complex character of
G. First assume that χ is uniquely determined by its multiplicities in the Deligne–Lusztig
characters. Since the latter are rational valued, χ is also rational and thus self-dual. Hence
the same is true for its 2-modular reduction. So χ0(1) is even by the previous remark,
and χ0 cannot be endotrivial.

Now by the fundamental results of Lusztig if G is a classical group, then all unipotent
characters do have the above property. For G of exceptional type, the only unipotent char-
acters not determined by their multiplicities are those for which the associated eigenvalue
of Frobenius is non-real. These are necessarily not in the principal series, and an easy
check shows that all of them have even degree, whence we may conclude as before. �

Theorem 6.7. Let G be a finite quasi-simple group. Then G has a non-trivial simple
endotrivial kG-module V over a field of characteristic 2 if and only if one of:

(a) G = L2(q) with 7 ≤ q ≡ 3 (mod 4) and dim(V ) = (q − 1)/2; or
(b) G = 3.A6 and dim(V ) ∈ {3, 9}.

In particular, Conjecture 1.1 holds for the prime 2.

Proof. We go through the various possibilities for G according to the classification. If G
is alternating, the claim is Theorem 4.9, for G sporadic there are no non-trivial simple
endotrivial modules in characteristic 2 by Theorem 7.1 below. If G is of Lie type over
a field of even order, the endotrivial simple modules were obtained in Theorem 5.2. If
G is an exceptional group of Lie type in odd characteristic, the claim will follow from
Theorems 6.8 and 6.11 below. Thus we only need to deal with classical groups of Lie
type. Moreover, by Proposition 6.6 we may assume that V is not the reduction of a
unipotent representation.
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First let G = SLn(q) with q odd. By Proposition 3.8 we may assume that n ≥ 3.
For n = 3 it follows from the explicitly known character table [17] that among the com-
plex irreducible characters the only candidates have dimension q(q2 + q + 1), and q ≡ 3
(mod 4). But by [23, App.] these characters do not remain irreducible modulo 2. For
n = 4, the only non-unipotent complex irreducible characters of odd degree are of degrees
Φ3Φ4/2, q

2Φ3Φ4/2 and lie in the Lusztig series of semisimple elements with centralizer
GL2(q

2).2/(q − 1) in the dual group. (Here, and later, we write Φd for the dth cyclo-
tomic polynomial evaluated at q.) They satisfy the congruence in Lemma 2.1 when q ≡ 3
(mod 4). But then there exist elements of order 2Φ4 in G/Z(G) (in a torus of order
(q4 − 1)/(q − 1)), while both characters are of Φ4-defect zero.

Now assume that n ≥ 5. By Proposition 6.3, V is the reduction of an ordinary rep-
resentation lying in the Lusztig series of a semisimple element s of G∗ = PGLn(q) con-
tained in the centralizer of a Sylow d-torus, with d ∈ {1, 2}. These have order Φn−1

1 ,
(Φ1Φ2)

b(n−1)/2c(Φ1)
δ respectively, with δ ∈ {0, 1}. Thus, the centralizers of elements in

such tori are contained in centralizers of Φ1- or Φ2-tori, so are (images under the natural
map GLn(q) → G∗) of products of groups GLm(q) and GLm(q2). If n is odd, a maximal
torus of type (n − 1)(1) of G∗ contains regular elements of even order in [G∗, G∗], so
|CG∗(s)| must be divisible by a primitive prime divisor of qn−1 − 1. This is only the case
for GLn−1(q) and GL(n−1)/2(q

2). But there also exist regular elements in maximal tori of
type (n − 2)(2) and as none of the candidate groups contains such a torus, we are done
by Proposition 6.4. If n is even, we argue similarly that no centralizer contains maximal
tori of types (n− 2)(2) and (n− 3)(3).

Next assume that G = SUn(q) with q odd, n ≥ 3. When n = 3, [17] shows that the
only candidates are characters of degree qΦ6 when q ≡ 1 (mod 4), but again these are
not irreducible mod 2. For n = 4, the only candidates are of degree Φ4Φ6/2, q

2Φ4Φ6/2,
with q ≡ 1 (mod 4). Again, these vanish on elements of order 2Φ4 of G/Z(G). Finally,
for n ≥ 5 we may argue as for SLn(q), replacing all tori by their Ennola duals, with order
obtained by simply replacing q by −q.

If G is of type Bn, Cn or D2n, then the Sylow d-tori of G∗ are maximal tori, hence
self-centralizing, and the only elements s centralizing a Sylow 2-subgroup are involutions.
By [17] no examples arise for G = Sp4(q). Now assume that G = Spin2n+1(q), n ≥ 3.
Recall that the G-conjugacy classes of maximal tori are parametrized by conjugacy classes
in the Weyl group (see e.g. [35, Prop. 25.1]), which in turn are naturally indexed by pairs
of partitions of n. The maximal tori of G∗ of type ((1), (n− 1)) contain regular elements
of even order, thus CG(s) is of type C1Cn−1, or 2An when n is even. On the other hand,
neither of these contains a maximal torus of type (−, (n− 2)(2)), so we may conclude by
Proposition 6.4. Next take G = Sp2n(q), n ≥ 3. Again arguing with the maximal torus
of type ((1), (n− 1)), we are left with the possible centralizers of type Bn−1,

2Dn−1B1, Dn

and 2Dn. Only the one of type Dn contains maximal tori of type (−, (n − 2)(2)), but it
does not contain a maximal torus of type ((2), (n− 2)).

Next let G = Spin+
2n(q), n ≥ 4. Arguing with the maximal tori of type (−, (n− 1)(1))

we see that only characters in Lusztig series parametrized by involutions with centralizer
of type 2Dn−1, or 2An−1 with n even, matter. But these do not contain tori of type
(−, (n− 2)(2)). The maximal tori in type 2Dn for n odd are just Ennola dual to those in
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type Dn, and then an analogous argument deals with this case. Finally, all elements in
Spin−4n(q), n ≥ 2, are real by [46, Thm. 1.2], so no examples arise by Corollary 6.5. �

6.3. Small rank exceptional groups. We now consider in more detail the exceptional
groups of Lie type, and first treat the five families of small rank, that is, the Suzuki and
Ree groups 2B2(2

2f+1), 2G2(3
2f+1) and 2F4(2

2f+1), and the groups G2(q) and 3D4(q). For
all of these complete ordinary character tables are available, which makes it relatively
easy to find the candidates for simple endotrivial modules in these cases.

Theorem 6.8. Let G be a covering group of one of the simple groups 2B2(2
2f+1) (with

f ≥ 1), 2G2(3
2f+1) (with f ≥ 1), G2(q) (with q ≥ 3), 3D4(q), or 2F4(2

2f+1) (with f ≥ 1).
Let ` 6= p denote a prime divisor of |G| and P a Sylow `-subgroup of G.

(a) If there exists a non-trivial simple endotrivial kG-module then P is cyclic.
(b) The simple endotrivial kG-modules for primes ` such that P is cyclic are precisely

as given in Tables 2 and 3 (where `|Φd).

Table 2. Simple endotrivial modules for low rank exceptional groups

G d |X(H)| |X(H)|/e block se(B)
2B2(q

2) 1′ 2 1 1 2
2B2(q

2) 8′ 4 1 1 3
2B2(q

2) 8′′ 4 1 1 3
2G2(q

2) 1′ 4 2 1, 2 2
2G2(q

2) 4 6 1 1 5
2G2(q

2) 12′ 6 1 1 5
2G2(q

2) 12′′ 6 1 1 5

G2(q) 3 6 1 1 4
G2(q) 6 6 1 1 4

3D4(q) 12 4 1 1 2
2F4(q

2) 12 6 1 1 4
2F4(q

2) 24′ 12 1 1 8
2F4(q

2) 24′′ 12 1 1 8

Here Φ′1 = q2 − 1, Φ′8 = q2 +
√

2q + 1, Φ′′8 = q2 −
√

2q + 1, Φ′12 = q2 +
√

3q + 1,
Φ′′12 = q2 −

√
3q + 1, Φ′24 = q4 +

√
2q3 + q2 +

√
2q + 1, Φ′′24 = q4 −

√
2q3 + q2 −

√
2q + 1.

Proof. We first deal with the case that G itself is simple. First assume that P is cyclic. It
turns out that |X(NG(P ))|/e = 1 in all cases except for 2G2(q

2) with `|q2 − 1, so that by
Lemma 3.2 the only `-block containing simple endotrivial modules is the principal block.
The position of endotrivial modules on the Brauer tree is then described by Theorem 3.7.
The Brauer trees for these groups have been determined by Hiß [22]. From this, the results
in Table 2 follow. For the case of 2G2(q

2) with `|q2− 1 we obtain |X(NG(P ))|/e = 2, and
again the corresponding Brauer trees can be found in [22].
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Table 3. Simple endotrivial modules for exceptional covering groups

G d |X(H)| |X(H)|/e dimV

2.2B2(8) 5 8 2 56, 56
2.2B2(8) 7 4 2 64
2.2B2(8) 13 8 2 40, 40

3.G2(3) 7 18 3 27, 27, 351, 351, 729 (2× each)
3.G2(3) 13 18 3 27, 27, 378, 378, 729 (2× each)

2.G2(4) 7 12 2 104, 104
2.G2(4) 13 12 2 12, 1260

So now assume that P is not cyclic. Note that all Sylow `-subgroups of 2B2(2
2f+1),

for ` 6= 2, are cyclic, so there is nothing to prove for these groups. First assume that
G = 2G2(q

2), with q2 = 32f+1. The only prime ` 6= 3 for which the Sylow `-subgroups
of G are not cyclic is ` = 2. From the known generic character table (see Chevie [17])
it is easy to check that only one non-trivial complex irreducible character χ, of degree
q4 − q2 + 1, has the property that its value on involutions is of absolute value 1. But
from the known decomposition matrix of G in [31] it follows that this character does not
remain irreducible modulo 2.

Next assume that G = G2(q) with q > 2. The relevant primes ` in this case are exactly
the prime divisors of q2− 1. From the character tables in [17] one sees that all non-trivial
irreducible characters χ ∈ Irr(G) satisfy |χ(g)|2 6= 1 on 2-central involutions (when p 6= 2)
and on 3-central elements (when p 6= 3), so we may assume that ` ≥ 5 divides exactly
one of q − 1 or q + 1. In both cases, the non-trivial characters of degree congruent to ±1
(mod `) are seen to take values either 0 or of absolute value bigger than 1 on suitable
`-singular elements.

For G = 3D4(q) the relevant primes are the prime divisors of q6 − 1. The argument is
now completely parallel to the one for G2(q) above, using the generic character tables.

Finally assume that G = 2F4(q
2) with q2 = 22f+1 ≥ 8. Here, the relevant primes

are the prime divisors of q8 − 1. We may argue as in the previous cases, using the
generic character table in [17]. The only remaining candidates occur for ` = 5. They are
characters of degree (q4 − 1)(q4 − q2 + 1)(q12 + 1)(q2 +

√
2q + 1) when f ≡ 1, 2 (mod 4),

or (q4 − 1)(q4 − q2 + 1)(q12 + 1)(q2 −
√

2q + 1) when f ≡ 0, 3 (mod 4). But according to
[21, Tables C3 and C4], these characters are reducible modulo `. (They are denoted χ8,1

respectively χ10,1 in loc. cit.)
The only proper covering groups in our situation are the groups 2.2B2(8), 3.G2(3) and

2.G2(4). When the Sylow p-subgroups are cyclic, we may conclude by using the criteria in
Theorem 3.7 and information on the Brauer trees. The Sylow p-subgroups of the groups
in question are non-cyclic only for p ≤ 5 for 2.G2(4), respectively p ≤ 3 for 2.2B2(8) and
3.G2(3). The ordinary character tables are known for all of these groups and the usual
criteria give the claim. �
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6.4. Exceptional groups of large rank. We now turn to the exceptional groups of rank
at least four, for which no complete generic character tables are available. We obtain an
almost complete picture for unipotent characters:

Proposition 6.9. Let G be a finite simple exceptional group of Lie type in characteristic p
of rank at least 4 and ` 6= p a prime for which the Sylow `-subgroups of G are non-
cyclic. Then the candidates for non-trivial unipotent characters with endotrivial `-modular
reduction are given in Table 4.

Table 4. Candidates for endotrivial unipotent characters

G d ` χ

F4 4 5 F II
4 [1]

E6 4 5 D4, r, φ80,7

E6 6 19 φ6,25
2E6 4 5 2E6[1], φ16,5

E8 10 31 φ28,68

Here, the notation for unipotent characters is as in [11, §13].

Proof. First note that we may assume ` 6= 2 by Proposition 6.6. Also, the Steinberg
character is not endotrivial. Indeed, since we assume that the Sylow `-subgroups of G
are non-cyclic, there exist `-elements g ∈ G with centralizer of positive semisimple rank.
Then CG(g) contains unipotent elements, and thus there exist p-singular elements in G of
order divisible by `. But the Steinberg character takes value 0 on all p-singular elements,
which shows that it cannot be endotrivial by Corollary 2.3.

The degrees of the unipotent characters of groups of Lie type are known; they can be
found in [11, §13] or in [17], for example. Let d := d`(q) where G = G(q). The condition
that the Sylow `-subgroups are non-cyclic forces Φd to divide the order polynomial of G
at least twice, which restricts the possible values of d. For each type and each such d, we
use the following criteria to eliminate candidates:

• we have χ(1) 6≡ 0 (mod Φd(q));
• if d = 1 then χ(1) has to satisfy the congruence in Lemma 6.2(b);
• the Harish-Chandra restriction of χ to proper Levi subgroups L of G must satisfy

the congruences in Lemma 6.1; and
• we have χ(1) ≡ ±1 (mod |G|`).

At this stage, usually only very few characters are left, which are then handled by ad hoc
methods. We give some indications for G = F4(q). For d = 1, 3, 6, no candidates remain.
For d = 2, we are left with the two cuspidal unipotent characters denoted F II

4 [1] and
F4[−1], with ` = 11 respectively ` = 5. These are of defect zero for a Zsigmondy prime
divisor (see [27, Thm. IX.8.3]) r of Φ6 respectively Φ3. Since B4(q) ≤ F4(q) contains
maximal tori of orders Φ1Φ2Φ3 and Φ1Φ2Φ6 (parametrized by the pairs of partitions
((3), (1)) and ((1), (3))) there exist elements of order r` in G, so these characters cannot
be endotrivial by Corollary 2.3. Note that q 6= 2 when ` = 11|(q+1), so there does exist a
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Zsigmondy prime for Φ6 in our situation. For d = 4, there remain the cuspidal unipotent
characters F4[±i] and F II

4 [1] with ` = 5. The character F II
4 [1] occurs in our list, while

the characters F4[±i] are of 3-defect zero, and G contains elements of order 15.
For G = E6(q), no candidates remain for d = 1, 3. For d = 2, all remaining candidates

are of Φ5- or Φ8-defect zero, so do not lead to examples as G contains tori of order Φ1Φ2Φ5

and Φ1Φ2Φ8. For d = 4, there remain the characters denoted D4, r and φ80,7 with ` = 5.
For d = 6, we are left with φ6,25. When G = 2E6(q), E7(q) or E8(q), a completely similar
argument leads to the other three candidates in Table 4. �

Remark 6.10. Using decomposition numbers of suitable Hecke algebras one can see that
the unipotent characters φ80,7 for E6(q) and φ16,5 for 2E6(q) are reducible modulo primes
` with d`(q) = 4, so they are not endotrivial. On the other hand, the unipotent character
F II

4 [1] is endotrivial modulo ` = 5 at least for q = 2 (see Remark 7.2). We do not see how
to decide endotriviality for the other cases in Table 4.

We are now ready to complete the proof of Theorem 1.2(d) of the introduction:

Theorem 6.11. Let G be a quasi-simple exceptional group of Lie type in characteristic
p, and ` 6= p a prime such that Sylow `-subgroups of G have rank at least 3. Then G does
not have faithful simple endotrivial kG-modules, where k is a field of characteristic `.

Proof. By Theorem 6.8 we may assume that G is of rank at least 4. If G is an exceptional
covering group 2.F4(2) or 2.2E6(2) then the condition on ` forces ` = 3. Here the claim
follows from the known ordinary character tables. Thus we have that G is a central factor
group of a finite reductive group of simply connected type. Let d = d`(q). Then the cases
to consider are: d = 1, 2 for F4(q), d = 1, 2, 3 for E6(q), d = 1, 2, 6 for 2E6(q), d = 1, 2, 3, 6
for E7(q) and d = 1, 2, 3, 4, 6 for E8(q).

Let V be a faithful simple endotrivial kG-module, the `-modular reduction of a CG-
module with character χ. Since all candidates in Proposition 6.9 occur for `-rank 2,
we know that χ is not unipotent, so χ lies in some Lusztig series E(G, s) with s 6= 1.
Furthermore, s must lie in the centralizer of a Sylow d-torus of G∗ by Proposition 6.3.
In all cases considered here, d is a Springer regular number for the Weyl group of G (see
e.g. [6, p. 260]), so the centralizer of a Sylow d-torus of G∗ is a maximal torus T ∗ of G∗.
Moreover, a Sylow d-torus of G∗ is already a maximal torus, whence equals T ∗, unless
G = E6(q) and d = 2, G = 2E6(q) and d = 1, or G = E7(q) and d = 3, 6. In Table 5
in each relevant case we list two or three maximal tori of G∗ (in Carter’s notation, see
also [17]). We have omitted 2E6(q) since the relevant tori in that group are obtained from
those in E6(q) by formally replacing q by −q (see [6, §3B]).

Now in all cases, except when G = E8(q) and d = 4, the only element s ∈ T ∗ such
that CG∗(s) contains conjugates of the two (or three) tori listed in the table, is s = 1.
This is easily checked by using that maximal tori are parametrized by (possibly twisted)
conjugacy classes in the Weyl group; thus one just has to verify that the Weyl coset of
any centralizer CG∗(s) does not contain representatives from all two or three conjugacy
classes. Since all listed tori do contain regular elements, Proposition 6.4 implies that
χ ∈ E(G, s) cannot be endotrivial when s 6= 1 and (G, d) 6= (E8(q), 4).

When G = E8(q) and d = 4, there is an isolated element s ∈ T ∗ of order 2 whose
centralizer D8(q) contains all listed maximal tori. It remains to show that E(G, s) for this
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Table 5. Large `-rank in exceptional groups

G d tori G d tori

F4 1 A2 + Ã1, Ã2 + A1, A3 E6 1 D5, A4 + A1

2 B3, C3, A3 2 D5, A4 + A1

E8 1 E7, A
′′
7 3 A2 + 2A1, E6

2 A8, A
′′
7 E7 1 E6(a1), A6

3 A8, D7 2 E7, E7(a1)
4 D7(a1), A7, A

′′
7 3 A4 + A2, E6

6 E8(a4), D7 6 E7(a2), E7(a3)

element s does not contain characters of endotrivial modules. As d = 4 we have ` ≥ 5.
Now the approach given for unipotent characters in the proof of Proposition 6.9 using
congruences and Harish-Chandra restriction rules out all characters in this series. �

7. Covering groups of sporadic simple groups

Theorem 7.1. Let G be a quasi-simple group such that G/Z(G) is sporadic simple. Let V
be a faithful simple endotrivial kG-module, where k is algebraically closed of characteristic
p, with p dividing |G|. Let P be a Sylow p-subgroup of G. Then one of the following holds:

(1) |P | = p and V lies in a p-block B of kG as indicated in Table 7; or
(2) (G,P, dimV ) are as in Table 6.

Conversely, all modules listed in Table 6 are endotrivial except possibly for those (of
dimension at least 5824) marked by a ”?” in the last column.

Table 7 also gives the number se(B) of simple endotrivial modules in the block B, except
for one block of 2.B in characteristic 47 and five blocks of M in various characteristics,
where the Brauer trees are not known completely. The numbering of the blocks is as given
by Hiß and Lux in [24].

Proof. First assume p2 divides |G|. Let χ be the ordinary irreducible character of G
belonging to the lift of V from Theorem 1.3. Using Lemma 2.1 and Corollary 2.3 and the
known ordinary character tables of the quasi-simple sporadic groups (see [12]) we obtain
the list of candidates for χ.

Using the character tables given in [30, 43] we may discard the characters whose re-
duction modulo p is not irreducible. Thus Table 6 lists those characters whose restriction
modulo p is irreducible, or, in the case of J4, Fi

′
24, B and M , those for which the question

of irreducibility modulo p is still open (these cases are indicated by a question mark in
the corresponding line). The sheer size of these modules makes it impossible to do any
direct computations.

The modules for M11,M22, 2.M22,M23 with p = 3 are indeed endotrivial by [42, §2.3].
For the cases

(G, p, χ(1)) ∈{(2.M22, 3, 10), (3.McL, 5, 126), (2.Ru, 3, 28), (3.ON, 7, 342),

(2F4(2)′, 3, 26), (2F4(2)′, 5, 26)}
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Table 6. Candidate characters in sporadic groups

G P χ(1) G P χ(1)
M11 32 10, 10, 10 Fi22 52 1001
M22 32 55 2.F i22 52 5824 (4×) ?

2.M22 32 10, 10, 154, 154 3.F i22 52 351, 351, 12474 (4×) ?
M23 32 253 6.F i22 52 61776 (4×) ?
HS 32 154, 154, 154 Th 72 27000, 27000 ?

3.McL 51+2
+ 126, 126, 126, 126 Fi23 52 111826

He 52 51, 51 J4 111+2
+ 887778, 887778, 394765284 ?

Ru 31+2
+ 406 Fi′24 52 74887473024 ?

2.Ru 31+2
+ 28, 28 B 72 9287037474, 775438738408125 ?

Suz 52 1001 M 112 7226910362631220625000 ?
3.ON 71+2

+ 342, 342, 342, 342 2F4(2)′ 31+2
+ 26, 26

2F4(2)′ 52 26, 26, 351, 351

it can be seen from the character table that the tensor product χ ⊗ χ∗ has one trivial
constituent and one constituent of defect zero (see also [33, Table 7.1]), so clearly the
corresponding kG-module V is endotrivial. For the following configurations the restriction
of the corresponding ordinary character to a subgroup H containing a Sylow p-subgroup
of G has a unique trivial constituent, and all other constituents are of defect zero:

(G, p, χ(1), H) ∈{(M23, 3, 253,M22), (He, 5, 51, S4(4).2), (Ru, 3, 406, 2F4(2)′),

(Suz, 5, 1001, G2(4)), (Fi22, 5, 1001,O+
8 (2).S3), (3.F i22, 5, 351,O+

8 (2)),

(Fi23, 5, 111826,O+
8 (3).S3)}

so χ is the character of an endotrivial module by Lemma 2.2. Computations with Magma
[32] show that the modules (G, p, χ(1)) ∈ {(HS, 3, 154), (2F4(2)′, 5, 351)} are endotrivial.

Finally, we consider the cases with cyclic Sylow p-subgroup. The results are collected
in Table 7, whose entries are obtained as follows. Let H := NG(Z) as in Section 3,
|X(H)| = |H/[H,H]|p′ and let e denote the inertial index of the principal block. Then
|X(H)| and |X(H)|/e are the bounds for the number of simple endotrivial kG-modules
given by Corollary 3.3. We then determine the simple endotrivial kG-modules using the
descriptions of the Brauer trees in [24], resp. [38] for M in characteristic 29, as well as
Lemma 3.2, Lemma 3.1, Theorem 3.7, Lemma 2.1 and Lemma 2.3. �

Remark 7.2. If V is the reduction modulo p of a CG-module with character χ such that

(G, p, χ(1), H) ∈{(M23, 3, 253,M22), (He, 5, 51, S4(4).2), (Ru, 3, 406, 2F4(2)
′),

(Suz, 5, 1001, G2(4)), (Fi22, 5, 1001,O+
8 (2).S3), (3.F i22, 5, 351,O+

8 (2)),

(Fi23, 5, 111826,O+
8 (3).S3)}

as in the proof of Theorem 7.1, then V is not only endotrivial, but also a trivial source
kG-module because V |H ∼= k⊕(projective). Therefore the class of V in the group T (G) of
endotrivial modules is a torsion element. Another such example is given by the unipotent
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character F II
4 [1] of F4(2) of degree 1326 from Proposition 6.9 (with the subgroup H =

O+
8 (2).3.2).
Thus we have obtained a list of non-trivial torsion elements of T (G) unknown in the

literature so far. This is of particular interest because a main problem remaining in the
classification of endotrivial modules is the determination of the torsion subgroup of T (G).

Remark 7.3. Endotriviality is in general not preserved by Morita equivalences. Let us
point out the following example: the Janko group J1 has four 3-blocks with isomorphic
Brauer trees, that is, isomorphic as pointed graphs equipped with a planar embedding.
Hence the four blocks are Morita equivalent (see [24, pp. 69–70]). However, Table 7 shows
that only two of these blocks contain simple endotrivial modules.
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Table 7. Blocks of sporadic groups with cyclic defect containing simple
endotrivial modules

G p |X(H)| |X(H)|/e block B se(B)
2F4(2)′ 13 6 1 1 4

M11 5 4 1 1 4
M11 11 5 1 1 3

M12 5 8 2 1 2
M12 5 2 4
M12 11 5 1 1 1

2.M12 11 10 2 2 4

J1 3 4 2 1, 4 2
J1 5 4 2 1 2
J1 5 3 1
J1 7 6 1 1 2
J1 11 10 1 1 2
J1 19 6 1 1 2

M22 5 4 1 1 2
2.M22 5 8 2 2 2
3.M22 5 12 3 3, 4 2
4.M22 5 16 4 5, 6 2
6.M22 5 24 6 7, 8 4

12.M22 5 48 12 9, 10, 11, 12 3
M22 7 3 1 1 1

2.M22 7 6 2 2 1
3.M22 7 9 3 3, 4 1
4.M22 7 12 4 5, 6 1
6.M22 7 18 6 7, 8 1

12.M22 7 36 12 9, 10, 11, 12 2
M22 11 5 1 1 3

2.M22 11 10 2 2 3
3.M22 11 15 3 3, 4 4
4.M22 11 20 4 5, 6 4
6.M22 11 30 6 7, 8 2

12.M22 11 60 12 9, 10 2
12.M22 11 11, 12 4

J2 7 6 1 1 2
2.J2 7 12 2 2 4

M23 5 4 1 1 4
M23 7 8 2 1, 2 1
M23 11 5 1 1 3
M23 23 11 1 1 5
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G p |X(H)| |X(H)|/e block B se(B)

HS 7 6 1 1 2
2.HS 7 12 2 2 2
HS 11 5 1 1 1

2.HS 11 10 2 2 2

J3 5 4 2 1, 3 1
3.J3 5 12 6 4, 5, 6, 7 1
J3 17 8 1 1 2

3.J3 17 24 3 2, 3 6
J3 19 9 1 1 1

3.J3 19 27 3 2, 3 6

M24 5 4 1 1 2
M24 7 6 2 1, 3 1
M24 11 10 1 1 6
M24 23 11 1 1 7

McL 7 6 2 1, 2 2
3.McL 7 18 6 3, 4 1
3.McL 7 5, 6 2
McL 11 5 1 1 1

3.McL 11 15 3 2, 3 1

He 17 8 1 1 1

Ru 7 6 1 1 2
Ru 13 12 1 1 4
Ru 29 14 1 1 4

2.Ru 29 28 2 3 9

Suz 7 6 1 1 2
3.Suz 7 8, 9 2
Suz 11 10 1 1 2

2.Suz 11 20 2 2 4
3.Suz 11 30 3 3, 4 6
6.Suz 11 60 6 5, 6 6
Suz 13 6 1 1 1

2.Suz 13 12 2 2 1
3.Suz 13 18 3 3, 4 1
6.Suz 13 36 6 5, 6 3

ON 5 8 2 1 2
ON 5 2 4
ON 11 10 1 1 2

3.ON 11 30 3 2, 3 4
ON 19 6 1 1 2

3.ON 19 18 3 2, 3 3
ON 31 15 1 1 1

3.ON 31 45 3 2, 3 8
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G p |X(H)| |X(H)|/e block B se(B)

Co3 7 12 2 1 4
Co3 7 3 2
Co3 11 10 2 1, 2 1
Co3 23 11 1 1 5

Co2 7 12 2 1, 3 2
Co2 11 10 1 1 4
Co2 23 11 1 1 5

Fi22 7 12 2 1, 3 2
2.F i22 7 24 4 5, 6 2
3.F i22 7 36 6 7, 8, 9, 10 2
6.F i22 7 72 12 13, 14, 15, 16 2
Fi22 11 10 2 1, 2 1

2.F i22 11 20 4 3, 4 1
3.F i22 11 30 6 5, 6, 7, 8 2
6.F i22 11 60 12 9, 10, 11, 12 2
Fi22 13 6 1 1 1

2.F i22 13 12 2 2 4
3.F i22 13 18 3 3, 4 1
6.F i22 13 36 6 5, 6 2

HN 7 6 1 1 2
HN 11 20 2 1 2
HN 11 2 4
HN 19 9 1 1 1

Ly 7 6 1 1 2
Ly 11 10 2 1, 2 1
Ly 31 6 1 1 4
Ly 37 18 1 1 6
Ly 67 22 1 1 6

Th 13 12 1 1 8
Th 19 18 1 1 10
Th 31 15 1 1 11

Fi23 7 12 2 1, 4 2
Fi23 11 20 2 1 2
Fi23 11 3 4
Fi23 13 12 2 1, 3 2
Fi23 17 16 1 1 4
Fi23 23 11 1 1 1

Co1 11 20 2 1 2
Co1 11 2 4
Co1 13 12 1 1 4
Co1 23 11 1 1 1

2.Co1 23 22 2 2 5
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G p |X(H)| |X(H)|/e block B se(B)

J4 5 4 1 1 2
J4 7 6 2 1 1
J4 7 2 1
J4 23 22 1 1 10
J4 29 28 1 1 10
J4 31 10 1 1 2
J4 37 12 1 1 6
J4 43 14 1 1 8

Fi′24 11 10 1 1 2
3.F ′24 11 30 3 8, 9 4
Fi′24 13 24 2 1, 4 4
Fi′24 17 16 1 1 2

3.F i′24 17 48 3 2, 3 6
Fi′24 23 11 1 1 1

3.F i′24 23 33 3 2, 3 5
Fi′24 29 14 1 1 3

3.F i′24 29 42 3 2, 3 5

B 11 20 2 1, 7 2
B 13 24 2 1, 5 2
B 17 32 2 1 6
B 17 3 4
B 19 36 2 1 4
B 19 2 6
B 23 22 2 1, 2 1

2.B 23 44 4 3 5
2.B 23 4 7
B 31 15 1 1 1

2.B 31 30 2 2 9
B 47 23 1 1 5

2.B 47 46 2 2 ≥ 3

M 17 16 1 1 6
M 19 18 1 1 6
M 23 22 2 1 5
M 23 5 1
M 29 28 1 1 ≥ 10
M 31 30 2 1 3
M 31 3 5
M 41 40 1 1 ≥ 8
M 47 46 2 1 ≥ 3
M 47 2 9
M 59 29 1 1 ≥ 15
M 71 35 1 1 ≥ 7
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