THE NAVARRO-TIEP GALOIS CONJECTURE FOR p =2
GUNTER MALLE

ABSTRACT. We prove a recent conjecture of Navarro and Tiep on the 2-rationality of
characters of finite groups in relation with the structure of the commutator factor group
of a Sylow 2-subgroup. On the way we complete the characterisation of characters of
odd degree in quasi-simple groups of Lie type.

1. INTRODUCTION

In this note we prove the case p = 2 of a recent conjecture of Navarro and Tiep [7]
relating rationality properties of irreducible characters of a finite group to the exponent
of the commutator factor group of a Sylow p-subgroup. To phrase it, we introduce the
following notation: Fix a prime p. For an integer e > 1 let o, = 0, . be the automorphism
of the maximal abelian extension Q® of Q that fixes p’-roots of unity and sends any
p-power root of unity ¢ to ('*P°. As values of irreducible characters of a finite group G
lie in Q**, any o, acts on Irr(G).

The following was conjectured in [7, Conj. A] (in fact for all primes p, but here we only
solve the case when p = 2), adding to the large body of expected relevance of characters
of p'-degree:

Theorem 1. Let G be a finite group and P < G a Sylow 2-subgroup. Let e > 1. Then the
exponent of P/ P’ is less or equal to 2° if and only if all x € Irry (G) are o9 -invariant.

Here, for a finite group G, Irr, (G) denotes the set of irreducible characters of G of
degree not divisible by p. In fact, Navarro and Tiep [7, Thm. B| already show the “if”-
direction of Theorem 1 (again for an arbitrary prime p), and they also give a reduction
of the “only if”-direction to a question on quasi-simple groups [7, Conj. 5.4]:

Conjecture 2 (Navarro-Tiep). Let p be a prime and S be a quasi-simple group with
|Z(S)| not divisible by p. Let A be a p-group acting on S centralising Z(S) and let P < S
be an A-invariant Sylow p-subgroup of S. If every A-invariant linear character of P 1is
Ope-invariant, then every A-invariant x € Irry, (S) is o, -invariant.

It is this assertion on quasi-simple groups that we verify in this note. More precisely, in
Section 2 we show that Conjecture 2 holds for all primes p if S is not of Lie type in cross
characteristic, while in Section 3 we discuss the remaining cases when p = 2. For this, we
extend the characterisation of odd degree characters in groups of Lie type to include the
groups of type A, see Theorem 3.3.
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As pointed out in [7], Theorem 1 would follow from Navarro’s Galois-McKay conjecture
[6], but this seems currently far out of reach; thus, our result should be seen as a further
confirmation for the validity of this “stunning” (according to J. Alperin) conjecture.

Acknowledgement: The Chevie system provided by J. Michel [5] proved extremely
useful for computations on component groups of centralisers of quasi-isolated elements. I
like to thank Mandi Schaeffer Fry for her comments on an earlier version.

2. NON-LIE TYPE GROUPS

In this section we prove Conjecture 2 for all cases apart from groups of Lie type in non-
defining characteristic, for all primes. For odd primes, these results were essentially also
already obtained in [7, Thm. 5.8]. Our proofs in particular for the defining characteristic
case are partly different and also work for p = 2.

Proposition 2.1. The assertion of Conjecture 2 holds for any prime p when S s a
covering group of a sporadic simple group or *Fy(2)’.

Proof. It can be checked from the known ordinary character tables that all irreducible
p/-degree characters of the groups in question are o, fixed for all primes p, except for
the characters of 24(2)" of degrees 27 and 351, which are not o, ;-fixed (but oqo-fixed).
All four extend to Aut(*Fy(2)") = ?Fy(2). Explicit computation shows that a Sylow 2-
subgroup P of ?Fy(2)" has P/P' = C4 x Cy, and this is centralised by the stabiliser in
Aut(?Fy(2)") of P. O

Proposition 2.2. The assertion of Conjecture 2 holds for any prime p when S is an
exceptional covering group of a simple group of Lie type, or of Ug or As.

Proof. Again it can be verified from the known ordinary character tables that all irre-
ducible p’-degree characters of the groups in question are o, ; fixed for all primes p. [

Proposition 2.3. The assertion of Conjecture 2 holds for any prime p when S s a
covering group of an alternating group.

Proof. For p > 2 this has been argued in [7, Thm. 5.8], so now assume that p = 2. By
assumption we only need to consider covering groups with centre of odd order, and so by
Proposition 2.2 we may assume that S = 2, with n > 5. As all characters of &,, are
rational, all of its conjugacy classes are rational. So the irrational conjugacy classes of 2,
are precisely those classes of G,, contained in 2, whose centraliser is entirely contained
inside 2A,,. It is easily seen (and well-known) that such classes contain permutations with
all cycle lengths odd and mutually different. Thus the values of any irreducible character
of 2(,, on such a class lie in an extension of Q by 2'-roots of unity and these are o9 ;-fixed.
The claim follows. ]

Proposition 2.4. Let S be a quasi-simple group of Lie type in characteristic p. Then the
assertion of Conjecture 2 holds for S.

Proof. By Proposition 2.2 we may assume that S is not an exceptional covering group of
S/Z(S), and by Proposition 2.1 moreover we have S # ?F;(2). Thus there is a simple
algebraic group G of simply connected type, with a Steinberg map F': G — G such that
S =G/Z with G = G and Z < Z(G) such that |Z(9)] is prime to p.



THE NAVARRO-TIEP GALOIS CONJECTURE FOR p =2 3

Let x € Irry(G). Then, apart from some exceptions which we will deal with below,
there is a semisimple element s € G*I" such that y € £(G, s) is a semisimple character
(see [2, Thm. 6.8]). Let ¢ : G < G be a regular embedding with dual epimorphism
* : G* = G*, and denote by F a Steinberg map on G extending that on G. Let § € G*F
be a semisimple element with +*(5) = s, and let ¥ € £(GT, 3) be the semisimple character
of GF lying above y. Then ¥ is o.-fixed being the unique semisimple character in the
o-stable Lusztig series £(GF, 3) (see [9, Lemma 3.4]). Now |¢ is a multiplicity-free sum
of k irreducible characters for some £k dividing |GF : G|, hence prime to p, while the
order of o, is a power of p. Since conjugation commutes with o, all constituents of \|q
are thus also o.-fixed, in particular so is y.

The exceptions mentioned above occur for

S/Z(S) € {’Ba(2), 2G2(3), Ga2(2), Ga(3), *Fu(2), Fa(2)}

and for Sp,,,(2), n > 2. The group ?By(2) is solvable of order 20, and %F;(2) was excluded.
The character tables of the remaining four groups in the list are known and the claim can
be checked directly. Note that 2G(3)" = Ly(8) has P/P’' = Cy for p = 3 and there are
three characters of degree 7 that are fixed by o392 but not by o3;. Finally, to deal with
Sps,(2), we use that the unipotent characters of groups of classical type are determined
by their multiplicities in Deligne-Lusztig characters, which are p-rational (again by |9,
Lemma 3.4]). Since Sp,, has connected centre in characteristic 2, all centralisers of
semisimple elements in the dual group SO,, 1 are connected, and clearly of classical type.
So by Jordan decomposition, all irreducible characters of Sp,,(2) are determined by their
multiplicities in the oy -invariant Deligne-Lusztig characters, and thus are o9 -fixed. [

3. GROUPS OF LIE TYPE IN ODD CHARACTERISTIC

Here we consider Conjecture 2 for groups of Lie type in odd characteristic for the prime
p = 2. Ultimately, for these groups, the validity of the conjecture hinges on the fact that
the commutator factor group of a Sylow 2-subgroup has the same exponent as the centre
of a Sylow 2-subgroup of the dual group (see Proposition 3.2).

We introduce the following setup. Let G be a simple algebraic group of simply con-
nected type over an algebraically closed field of characteristic r > 0 and F': G — G a
Steinberg map such that G = G is quasi-simple. Let G* be dual to G with correspond-
ing Steinberg map also denoted F' and G* = G*¥'. For the first result, the characteristic
r of G can be arbitrary:

Proposition 3.1. Let G be as above and let p # r be a prime. Let s € G*F' be semisimple
with connected centraliser and assume that (G, s) is o, .-stable.

(a) If GT' is of classical type, then any x € E(G, s) is 0, -invariant.

(b) If x € (G, s) NIrry (GQ) lies in the principal series of G then x is 0y -invariant.

Proof. First assume that GI is of classical type. Then Cg-(s) is also of classical type
and connected by assumption. Now the unipotent characters of classical type groups are
uniquely determined by their multiplicities in the Deligne-Lusztig characters, hence by
Lusztig’s Jordan decomposition the same is true for the characters in £(G, s). As E(G, s)
is 0, -stable, so is the G*/-class of s and hence are the corresponding Deligne-Lusztig
characters. Hence x as in (a) is also o, .-invariant.
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In (b), x lies in the principal series of G. That is, if T denotes a maximally split
maximal torus of G, then there exists A € Irr(T¥) such that y lies in the Harish-Chandra
series of (T, ). Let (T*, s') be dual to (T,\), so A € £(TF,s'). As Deligne-Lusztig
induction preserves labels of Lusztig series we have that s’ and s are conjugate. Thus
by [8, Lemma 4.5(1)] the relative Weyl group Wg (T, \) identifies to W (s), the F-fixed
points of the Weyl group of Cg+(s).

The action of Galois automorphisms on Harish-Chandra series has been determined by
Schaeffer Fry [8, Thm. 3.8]: 0, . acts by permuting the Harish-Chandra sources A, and if
it fixes A (up to G-conjugation) then it acts by o,. on the irreducible characters of the
Hecke algebra Hq(T, ). Note that the characters 7, and &) , occurring in [8] are both
trivial as Cg+(s) is connected and thus W (T, ) = W°(s) = R(X) by [8, Lemma 4.5(2)].
Now the characters of all Hecke algebras of Weyl groups having no factor of type E; or Eg
are rational. Furthermore, the non-rational characters in types 7 or Eg only involve /g,
where ¢ is a power of the underlying characteristic. Thus they are o, ;-invariant unless
p = 2. But for p = 2 they do label characters of even degree. As x was supposed to be of
p'-degree the action of o, on x is trivial. 0

From now on we assume that the characteristic v of G is odd.

Proposition 3.2. Let G, G* be as above. Let P € Syly(G) be a Sylow 2-subgroup of G
and P* € Syl,(G*) a Sylow 2-subgroup of the dual group G*. Then the exponent of Z(P*)
is bounded above by the exponent of P/P’.

Proof. We prove this case-by-case. First assume that G is of exceptional type. Then
Z(P*) is elementary abelian, for P* € Syl,(G*), unless G = Fg(eq) with 4|(q — e),
see Table 1. (The structure of Z(P*) can easily be deduced from the shape of a Sylow
2-subgroup of the centraliser of a suitable 2-central element ¢ € G*¥ as given in the table.)

TABLE 1. Centres of Sylow 2-subgroups P* € Syl,(G*) in exceptional types

G | Calt) Z(P)|| G | Cglt)  zZ(P)
2G2(q2) Al(q2> X 2 CS EG(Q) D5(q).T1 O|q—1|2
Ga(q) Ai(q)? Cy || %Es(q) | *Ds(q). Ty Cigeap,
Dy(q) | Ai(@®)Ar(q)  Co | Ex(q) | Ds(q)Ai(q) 2
Fy(q) Biy(q) Cy || Es(q) Ds(q) Co

Assume that G = FEg4(eq) with ¢ = € (mod 4). Let t € G be an involution with
centraliser of type Ds. Then the quotient of C'g(t) by the Djs-factor is a 1-dimensional
torus, with F-fixed points a cyclic group of order C,_., whence P/P’ has exponent at
least |q — €|, the exponent of Z(P*).

Next assume that G is of classical type B,, C, or D,. Then the centre of a Sylow
2-subgroup of G*f" is again elementary abelian, as follows from the description given in
[1, Thm. 4.10.6], so the claim follows.

Finally, we consider G = SL,(eq) with ¢ € {#1}. First assume that 4|(q — ¢) and
that n is a 2-power. As a Sylow 2-subgroup of GL,(eq) is contained in the normaliser
of a maximal torus of order (¢ — €)", it is isomorphic to the wreath product of Cj,_,
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with a Sylow 2-subgroup of G,,. Its centre consists of the diagonally embedded subgroup
Clq—e|, of the base group. Thus the centre of a Sylow 2-subgroup of PGL,(eq) has order 2,
consisting of (images of) elements of the form (1,—1,1,—1,...) in the base group, and
the same holds for L, (eq).

Now assume that n is not a 2-power, with 2-adic decomposition n = > 2%. Then we
use that a Sylow 2-subgroup of GL,,(eq) is contained in a subgroup [ [, GLai (eq), and our
previous considerations show that the centre of a Sylow 2-subgroup of GL,,(eq), PGL, (eq)
and L, (eq) has exponent |¢ — €|s. An entirely similar calculation shows that a Sylow
2-subgroup P of SL,(eq) or L,(eq) has P/P’ of exponent at least |¢ — €|s if n is not a
2-power.

On the other hand, if 4|(¢ + €) then a Sylow 2-subgroup of GL,(eg) is contained in the
normaliser of a maximal torus 7" of order (¢*> — 1)"(q — €)™ with n = 2r +m, m € {0,1}.
This is an extension of T" with the Weyl group of type B,. Thus the centre of a Sylow
2-subgroup of SL,,(eq), PGL,(€eq) or L, (eq) is elementary abelian, and we are done. [

We next complete our earlier characterisation of odd degree characters from [4] to
include groups of type A:

Theorem 3.3. Let G be simple of simply connected type with a Steinberg endomorphism
F : G — G. Then any odd degree character x of G = G lies in the principal series of
G, unless G = Spy,(q) with n > 1 odd and ¢ = 3 (mod 4), x € E(G,s) with Cg«(s) =
Bor(q) - ?Dy—ok(q).2 where 0 < k < (n—1)/2, and x lies in the Harish-Chandra series of
a cuspidal character of degree %(q — 1) of a Levi subgroup Spy(q) X C’g__ll.

Proof. For all types different from type A, this was shown in [4, Thm. 7.7]. So now assume
that G = SL,, with a Frobenius map F such that G = G = SL,(eq) with n > 3, where
e € {£1}. If ¢ =1 (mod 4) then the argument in the proof of loc. cit. applies. So now
let ¢ = 3 (mod 4). Assume that y € Irry(G) lies in the Harish-Chandra series of the
cuspidal character A. As the degree of A divides the degree of any member of its Harish-
Chandra series, A has to have odd degree as well. Thus we are done if we can show that
all non-linear cuspidal characters of all Levi subgroups of G have even degree.

For L < G an F-stable split Levi subgroup, L = L’ is isomorphic to SL,(q) N
[L>; GL,,(q) for suitable n;, with > n; = n when € = 1, and to SU,(¢) N GU,,(q) X
[1;>; GLy, (¢?) for suitable n; with ng+ 2> n; = n when e = —1. For convenience we set
ng = 0 when € = 1.

Let A\ be a cuspidal character of L of odd degree. Then the degree polynomial fy of A
is divisible by (X — 1)", where r = |n¢/2] + >_.~,(n; — 1) is the semisimple F,-rank of
L (see [4, Lemma 7.1]). Furthermore, there is some divisor m of |Z(G)| = n such that
mfy € Z[X] is a product of cyclotomic polynomials. First assume that L = G. Then by
the above, A\(1) is divisible by 2"~!/ny when € = 1, respectively 41"/2] /n, when € = —1.
(Recall that ¢ = 3 (mod 4).) In particular, A\(1) is even unless n = 2, which was excluded.
So G has no non-linear cuspidal characters of odd degree.

So now let L be proper and set L’ = [L, L]¥. Then there exists a surjection

L= H SL,,(q) = L',  respectively L := SU,,(q) x H SL,,(¢*) — L,

i>1 i>1
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with central kernel. Let X" be an irreducible character of L’ lying below A and denote the
inflation of X to L again by X. Then X is also cuspidal and of odd degree. Now we have
N = ), A\; with cuspidal characters A; of the direct factors of ﬁ, all necessarily of odd
degree. But by what we proved before, cuspidal characters of SL,, (+q) of odd degree are
linear unless n; = 2. So L' is a central product of factors SLy(q) and the \; are of degree
(¢—1)/2. But the diagonal automorphism induced by L on L’ does not fix the \;, so that
A has to be of even degree. This achieves the proof. 0

We are now ready to prove the main result of this section:

Theorem 3.4. Let S be a quasi-simple group of Lie type in odd characteristic. Then the
assertion of Conjecture 2 holds for S at p = 2.

Proof. Let S be a covering group of a simple group of Lie type in odd characteristic with
|Z(S)| odd. By Proposition 2.2, S is not an exceptional covering group, and there is G,
F as introduced above such that S = G/Z, for G = G and Z < Z(G). Let x € Irra(S).
Then by [2, Thm. 7.5] there is a semisimple element s € G*" in the dual group which is
2-central such that x € £(G,s). Now o, permutes the various Lusztig series according
to its action on the parametrising semisimple element (see [9, Lemma 3.4]); hence this
permutation action is determined already by the (order of the) 2-part of s.

Now first assume that G is of exceptional type. Then any odd degree character of G lies
in the principal series of G by [4, Thm. 7.7], above a linear character \, say. Moreover, by
Table 1 we see that the centralisers of all 2-central semisimple elements s are connected.
As argued in the proof of Proposition 3.1, A\ has the same order as s. Thus, if the
exponent of Z(P*) is bounded above by the exponent e of P/P’, then all x € Irre/(G)
are oc-fixed. It now follows from Propositions 3.1(b) and 3.2 that Conjecture 2 holds
with e = 1 when G is not of type Eg. In the latter case, we need to check the invariance
property under 2-automorphisms. Let A < Aut(G) be a 2-group of automorphisms of
G. Let t € G¥ be an A-invariant involution with centraliser of type Ds, and similarly
t* € G*f'. (More specifically, choose t, t* over the prime field and inside the centraliser of
a graph automorphism of order 2.) Then Cg(t) contains a Sylow 2-subgroup P of G, and
Ca-(t*)F contains a Sylow 2-subgroup P* of G* (see Table 1). Now field automorphisms
act on the torus

T, = Z°(Ca(t)) = Ca(t)/[Ca(t), Cal(t)]
by p-powers, and similarly on the torus T} = Z°(Cg-(t*)), while the graph automorphism
acts by inversion on T, as well as on T7. Thus, if A fixes all characters of P/P’ of order
at most 2°, then it also fixes all such elements in Z(P*). Thus o, fixes all characters in
the corresponding Lusztig series. This shows the claim in this case.

Next assume that G is of classical type B,, C,, D, or ?D,. If x lies in the Lusztig
series of a 2-central element s € G*f' with connected centraliser, the claim follows with
e = 1 using Propositions 3.1(a) and 3.2. The 2-central elements of G* with disconnected
centraliser are listed in [4, Table 1] for ¢ = —1 (mod 4); for ¢ = 1 (mod 4) it can be
obtained by Ennola twisting this list, see Table 2 (and also [3, Table 2]).

Let (L, \) denote the Harish-Chandra source of x. (By [4, Thm. 7.7], unless we are in
one special situation when G is of type C,, with n > 1, x lies in the principal series of G.)

First assume that G is of type C,. Let s € G*I' be 2-central with disconnected cen-
traliser. Let M < G be a Levi subgroup of type C,,_; containing L. From the description
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TABLE 2. Disconnected centralisers of 2-central elements, ¢ = 1 (mod 4)

GF Ca-(s)F conditions

B(q)ad | Bn-a(q) - Da(q)-2 1<d<n

Cn(q)ad On/2(Q) 12 n=2/

Dyn(q)aa | (Da(q) - Dn—a(q)).2 1<d<n/2 dn—-1)=0(2)
(Dn/Z(Q) : Dn/Q(Q))22 n= 2f

D(q)ad | (Da(q) - *Dn-a(q))2 [2<d<n—1, d#n/2

given in [1, Rem. 4.5.4], s lies in M*F" (up to conjugation), and it has disconnected cen-
traliser in M* as well, unless Cg-(s) is of type B,_1 with n odd. In the latter case, we
take for M instead a Levi subgroup of type C,_s x A;. Let § be a non-trivial outer
diagonal automorphism of G normalising M. Then § has orbits of length 2 on £(G, s) as
well as on £(M, s) as s has disconnected centraliser. By the Howlett-Lehrer comparison
theorem there is a bijection y — x° between the Harish-Chandra series above (L, \) and
the irreducible characters of the relative Weyl group Wg(L, A) such that Harish-Chandra
restriction *R$i(x) decomposes as the ordinary restriction of the associated characters of
Wea(L,\). As x has odd degree, the character x° of Wg(L, \) has odd degree (as in [4,
Lemma 7.9]). Thus there is some constituent ¢/° of x°|w,, . of odd degree with odd
multiplicity and such that §(¢0)° has even multiplicity. So *R$;(x) has a constituent 1 of
odd degree with odd multiplicity such that 6(¢)) has even multiplicity. Assume that yx
is not o.-fixed. As Galois automorphisms commute with Harish-Chandra restriction (in
fact, with Lusztig restriction, as can be seen for example from the character formula),
¢ cannot be o.-fixed either. But by Schur’s character table for Spy(q) = SLa(q), the
characters lying in the Lusztig series of an involution only involve the square root of
¢ = (—1)@@Y2¢ and this is o-invariant as g is odd. Thus, so is y by induction.

Next assume that G is of type B,,, n > 3. By Table 2 there exist 2-central elements s in
G*F with disconnected centraliser only when n is a 2-power. Let M < G be a split Levi
subgroup of type B,, /2 X A?/ 4. Then s € M*F (up to conjugation), and it has disconnected
centraliser there as well. By what we just proved before, the characters of B;(q) = Spy(q)
lying in the Lusztig series of s are o;-fixed and so again we may conclude by induction.

For G of (twisted or untwisted) type D,,, we take M a split Levi subgroup of (twisted
or untwisted) type D,,_1, respectively of type D, o X A; when Cg+(s) is of type D,
with n odd. Then a similar consideration applies except for the isolated elements s with
centraliser (D,,/5(q) - Dyj2(q)).2* in untwisted type D,, for n = 2/ a power of 2. In the
latter case take split Levi subgroups M;, ¢ = 1, 2, of G representing the two non-conjugate
A, _1-subsystems. Then s has disconnected centraliser in M;, with group of components
of order 2, and the two groups of components together generate the group of components
of Cg+(s). Arguing as before, for x € £(G, s)NIrry (G) we find ¢, € E(M;, s) of odd degree
below x. Then y is distinguished from its images under diagonal automorphisms by the
multiplicities of the 1; and 6;(¢;) in Ry (x), where d; is an outer diagonal automorphism
of M;. As M is of type A,_1 with n = 2/, the characters in £(M;, s) are o,-fixed, (as we
will see below), and hence so is .

Finally, assume that G is of type A,,_1, n > 3, so G = SL,(eq) with e € {£1}. Here, by
[1, Table 4.5.1], 2-central elements with disconnected centraliser exist in G* only when
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n = 27 is a 2-power. In this case, with M a split Levi subgroup of type A? /21 We may re-
duce inductively to the case of A;(q) = C1(q) treated above to conclude that all characters
in these Lusztig series are op-invariant. In all other cases, using Propositions 3.1 and 3.2
in conjunction with Theorem 3.3 we conclude except for the question of 2-automorphisms
when 4|(q — €) and n is not a power of 2. But then we may argue as in the case of Fg. O

This completes the proof of Conjecture 2 for the prime p = 2. Theorem 1 immediately
follows from this by virtue of [7, Thm. 5.7].
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