
London Mathematical Society ISSN 1461–1570

CONSTRUCTING REPRESENTATIONS OF HECKE ALGEBRAS FOR COMPLEX
REFLECTION GROUPS

GUNTER MALLE and JEAN MICHEL

Abstract

We investigate the representations and the structure of Hecke algebras as-
sociated to certain finite complex reflection groups. We first describe compu-
tational methods for the construction of irreducible representations of these
algebras, including a generalization of the concept of W -graph to the situation
of complex reflection groups. We then use these techniques to find models for
all irreducible representations in the case of complex reflection groups of dimen-
sion at most three. Using these models we are able to verify some important
conjectures on the structure of Hecke algebras.

1. Introduction

Let W 6 GL(V ) be a finite irreducible group on a complex vector space V generated by complex
reflections, that is, W is a finite complex reflection group. Let R ⊂W denote the set of reflections in W .
For any reflection s ∈ R let Hs ⊂ V denote its hyperplane of fixed points on V . Then V reg := V \∪s∈RHs

is connected in the complex topology, and W acts freely (and continuously) on V reg by the theorem of
Steinberg. The braid group associated to (W,V ) is the fundamental group

B(W ) := π1(V̄ , x̄0)

of the quotient V̄ := V reg/W with respect to some base point x̄0 ∈ V̄ .
Let H be the reflecting hyperplane of some reflection of W . Then its stabilizer WH is cyclic, consisting

solely of reflections (and the identity). The distinguished reflection sH ∈ WH of WH is by definition
the reflection whose non-trivial eigenvalue on V equals exp(2πi/d), where d := |WH |. Via the natural
projection map from B(W ) onto W induced by the quotient map V reg → V̄ , the distinguished reflection
sH can be lifted to so-called braid reflections s in B(W ). For each reflection sH choose d indeterminates
us,0, . . . , us,d−1 such that us,j = ut,j if s, t are conjugate in W . We write u for the collection of these
indeterminates, and let A := Z[u,u−1]. The generic cyclotomic Hecke algebra associated to W with
parameters u is the quotient

H(W,u) := A B(W )/I

of the group algebra A B(W ) of the braid group B(W ) by the ideal I generated by the
∏d−1

i=0 (s − us,i),
where s runs over the distinguished reflections and s over the associated braid reflections.

An important and well-studied special case occurs if W is actually a real reflection group, that is a
Coxeter group, in which case the cyclotomic Hecke algebra becomes the well-known Iwahori-Hecke algebra
of W . In this situation, all of the questions mentioned below have been settled quite a while ago, so here
we will be concerned exclusively with the non-real groups.
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Constructing representations of Hecke algebras for complex reflection groups

Bessis [3, 0.1(e)] has shown that B(W ) has a presentation of the form

〈s1, . . . , sn | pj(s1, . . . , sn) = qj(s1, . . . , sn)〉 (1.1)

where si are braid reflections whose images in W form a minimal system of reflections needed to generate
W (thus if W is irreducible we have n = dim V or n = dim V + 1) and where (pj , qj) run over a finite
set of pairs of positive words of equal length in the si. One obtains a presentation of W by adding the
relations s

dsi
i = 1 where dsi is the order of the reflection si ∈W , which is the image of si (cf. [3, 0.1(f)]).

A consequence is that the cyclotomic Hecke algebra specializes to the group algebra of W under the
map us,j 7→ exp(2πij/ds).

Explicit presentations of the form (1.1) of B(W ) and hence of H(W,u) are known for all irreducible
reflection groups, see Broué–Malle–Rouquier [9] and the references given there, Bessis–Michel [5] and
Bessis [4, Th. 0.6].

The properties of cyclotomic Hecke algebras have been studied due to their (conjectured) role in the
representation theory of finite reductive groups. Nevertheless, several important questions remain open
at present, or have been settled only for some of the irreducible reflection groups. We recall them in
Section 2.

Apart from these structural problems, there are questions of a more computational nature which
need to be settled. We would like to be able to write down an explicit A-basis of H(W,u), with known
structure constants. Furthermore, we would like to know explicit models for all irreducible representations
of H(W,u). Again, these two questions have been solved for the imprimitive reflection groups ([2, 16]). In
the present paper, we solve these computational problems for the primitive irreducible reflection groups
of dimension at most 3, which only leaves the five groups G29, G31, G32, G33 and G34 (in Shephard and
Todd’s notation for the irreducible reflection groups) to be considered.

It is easy to see that the reflection representation V of W can be realized over the field KW generated
by the traces of the elements of W on V . It is a theorem of Benard and Bessis that all representations of
W can be realized over KW .

Let O be the ring of integers of KW and let Ã = O[vs,i, v
−1
s,i ]s,i where vs,i are such that ve

s,i =
exp(−2πij/ds)us,i, where e is the order of the group of roots of unity in KW . It has been shown in
[14] that assuming Conjecture 2.2(a) below, the characters of H(W,u) take their values (on any basis
of H(W,u) consisting of images of a subset of B(W )) in Ã. A consequence of our results here is that,
whenever we can compute them, the representations of H(W,u) have a model where the matrices for the
generators si have entries in the field generated by the corresponding character values.

2. Some conjectures

We start by recalling some basic conjectures on the structure and representation theory of cyclotomic
Hecke algebras. The most basic conjecture states:

Conjecture 2.1. Let W be a complex reflection group, K = Frac(A). Then:
(a) H(W,u)⊗A K has dimension |W |.
(b) There exist pairwise non-isomorphic irreducible representations ρi of H(W,u) over Ã such that∑

i dim(ρi)2 = |W |.

Part (a) is known to hold for the infinite series by work of Ariki [1] and Broué–Malle [7], for the 2-
dimensional primitive groups by Etingof–Rains [11], and has been checked for the 3-dimensional primitive
groups by J. Müller (see Table 9 9). Our methods can prove (b) in some cases, which shows that the
dimension is at least that big, but we obtain no information on an upper bound. But, assuming these
weak statements, we will derive the validity of an important stronger assertion. For this, let now W be
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Constructing representations of Hecke algebras for complex reflection groups

irreducible. Then it is known by [4, remark 12.4] that, except possibly for the case of G31, the center of
B(W ) is cyclic, generated by some element z. We set π = z|ZW |, with ZW the center of W (an element
of the pure braid group π1(V reg, x0)).

Conjecture 2.2. Let W be an irreducible complex reflection group. Then:
(a) H(W,u) is free over A of rank |W |,
(b) H(W,u) carries a non-degenerate symmetrizing form t : H(W,u) → A which makes it into a

symmetric algebra, and such that

t(Tb−1)∨ = t(Tbπ)/t(Tπ) for all b ∈ B(W ), (2.3)

where we denote by b 7→ Tb the natural map from B(W )→ H(W,u) and x 7→ x∨ is the automorphism
of A given by u 7→ u−1.

Once Conjecture 2.2(a) has been established, it follows from Tits’ deformation theorem that H(W,u)
is a deformation of the group algebra of W , that is, it becomes isomorphic to the group algebra over a
suitable finite extension of the field of fractions of A.

It was shown in [8, 2.1] that assuming (a), there is at most one symmetrizing trace on H(W,u)
satisfying (b) which specializes to the canonical trace on CW .

Given a split semi-simple symmetric algebra H with a symmetrizing form t such that t(1) = 1, we
define the Schur element Sχ attached to χ ∈ Irr(H) by the property that

t(x) =
∑

χ∈Irr(H)

χ(x)/Sχ for all x ∈ H. (2.4)

Let us denote by s 7→ Ts the natural map B(W )→ H(W,u). In [13, 15], assuming Conjecture 2.2(a)
(which implies that H(W,u) is split semi-simple over a suitable extension of A), it was shown that for
all exceptional complex reflection groups there is a unique symmetrizing trace such that t(Tx) = 0 for
x ∈ E \ {1}, where E is a subset of B(W ) such that
• all character values on {Tx | x ∈ E} could be determined.
• equations (2.4) for x ∈ E are sufficient in number to have a unique solution. For instance, it is

enough that the image of E in W intersects all conjugacy classes.
Moreover, the corresponding Schur elements Sχ were determined in all cases. When specializing the Hecke
algebra to the group algebra CW , t specializes to the canonical trace tW on CW given by tW (w) = δw,1,
so the Schur elements computed in [15] specialize to |W |/χ(1).

We fix this symmetrizing form t described above. All of our computational verifications will depend
on a suitable choice of basis for the cyclotomic Hecke algebra.

Lemma 2.5. Assume Conjecture 2.1. Let C ⊆ H(W,u) be of cardinality |W | and specializing to W ⊆ CW
under the specialization of H(W,u) to the group algebra. Then C is a K-basis of H(W,u)⊗A K.

Proof. Indeed, by (2.4) the matrix M := t(xy)x,y∈C has entries in the localization of Ã at the collection of
the Schur elements. Since the specialization of Schur elements is non-zero, we may specialize M to obtain
the corresponding matrix M := tW (vw)v,w∈W for W , which is a permutation matrix. Thus, det(M) is
non-zero, and hence C is K-linear independent. The claim then follows from Conjecture 2.1.

An obvious way to construct a set C as above is by lifting the elements of W to B(W ). We are looking
for lifts which satisfy an additional property with respect to t:

Conjecture 2.6. There exists a section W →W, w 7→ w, of W in B(W ) such that W 3 1, and such
that for any w ∈W \ {1} we have t(Tw) = 0.
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According to Lemma 2.5, {Tw | w ∈W} is a K-basis of H(W,u)⊗A K. Note, however, that in general
it will not necessarily be an A-basis of H(W,u). Now (2.3) and Conjecture 2.6 are related as follows:

Proposition 2.7. Assume Conjecture 2.6. If either all irreducible representations of H(W,u) have models
over Ã, or else {Tw | w ∈W} is an A-basis of H(W,u) then property (2.3) is equivalent to:

for any w ∈W − {1} we have t(Tw−1π) = 0. (2.8)

Proof. Let us extend ∨ to Ã so that it does complex conjugation on O and sends vi,j to v−1
i,j . Using

equation (2.4) for x = T−1
b and x = Tbπ, condition (2.3) reads

t(Tπ)
∑

χ∈Irr(H(W,u))

χ(T−1
b )∨

S∨χ
=

∑
χ∈Irr(H(W,u))

ωχ(Tπ)
χ(Tb)
Sχ

where ωχ is the central character of χ. Under the standard specialization ϕ : Ã → C, vs,j 7→ 1, we
obviously have the following compatibility with complex conjugation: ϕ(a∨) = ϕ(a) for all a ∈ Ã. Thus

ϕ(χ(T−1
b )∨) = ϕ(χ(T−1

b )) = χ(b−1) = χ(b−1) = ϕ(χ(Tb))

whence χ(T−1
b )∨ = χ(Tb) (note that by our assumptions all character values χ(Tb) lie in Ã). Our first

equation then reads

t(Tπ)
∑

χ∈Irr(H(W,u))

χ(Tb)
S∨χ

=
∑

χ∈Irr(H(W,u))

ωχ(Tπ)
χ(Tb)
Sχ

,

which is a linear condition in Tb. Thus
• if it holds for the image of B(W ) it holds for any element of H(W,u);
• it is sufficient to check it for a basis of H(W,u)⊗A K.

Note that {T−1
w | w ∈W} is still a basis of H(W,u)⊗A K since it is the image of {Tw | w ∈W} by the

anti-automorphism a1 of [8, 1.26]. Writing the condition on this basis we get

t(Tw)∨ =
t(Tw−1π)

t(Tπ)
.

This holds trivially for w = 1, and for the others t(Tw)∨ = 0 whence the result.

Definition 2.9. We say that a section W is good if for any w ∈W−{1} we have t(Tw) = t(Tw−1π) = 0,
and the matrix {t(Tww′)}w,w′∈W is in GL|W |(A).

The notion of good section is the tool which will allow us to prove conjecture 2.2 in quite a few cases,
using the next proposition:

Proposition 2.10. Assume that W is a good section and that for a generating set S of B(W ) we have
for all s ∈ S,w,w′ ∈W that t(Tsww′) ∈ A. Then H(W,u) satisfies conjecture 2.2, and {Tw | w ∈W}
is an A-basis of H(W,u).

Proof. Let M be the matrix {t(Tww′)}w,w′∈W. From the assumption M ∈ GL|W |(A) it follows that the
dual basis {T ′w} of {Tw} with respect to t lies in A[Tw]w∈W. It follows that h ∈ H(W,u) lies in A[Tw]w∈W

if and only if for any w we have t(hTw) ∈ A; indeed the coefficient of h on Tw is t(hT ′w) which is in A if
all the t(hTw) are in A.

Thus the condition in the statement shows that Tsw ∈ A[Tw]w∈W, i.e. that Tw is an A-basis.
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3. Imprimitive groups

Before turning to the main subject of the present paper, the exceptional complex reflection groups,
we recall the current situation for the infinite series, that is, the imprimitive groups and the symmetric
groups. Conjecture 2.2(a) has been verified in these cases by Ariki–Koike [2], Broué–Malle [7] and Ariki
[1, 1.6(2)]. The properties of a symmetrizing form on H(G(de, e, r),u) have been investigated in Malle–
Mathas [16]. It is not clear, though, that it satisfies the additional properties mentioned in Conjecture 2.2.
Conjecture 2.6 has been verified for G(d, 1, r) by Bremke–Malle [6].

Explicit models for the irreducible representations of the generic cyclotomic Hecke algebra for the im-
primitive complex reflection group G(d, 1, r) have been given by Ariki–Koike [2], and have been extended
to G(de, e, r) by Ariki [1]. However, these models are over KW (u1/e

s,i )s,i.
Models for the case G(d, 1, r) are known over A, using the fact that this is a cellular algebra, and

that the generators act with coefficients in A on a cellular basis. For example this can be seen from
Dipper–James–Mathas [10]. Let the generators of H(W,u) correspond to the diagram

©
T0

©
T1

©
T2

· · · ©
Tr−1

,

where T0 has parameters Q1 = u0,0, . . . , Qd = u0,d−1 and the Ti (i 6= 1) have parameters q = u1,0,−1 =
u1,1. Then the action of the Ti in a cellular basis is given by [10, 3.15 and 3.18], while the action of T0 is
given by [10, 3.20] (note that only the term x1 of loc. cit. subsists in the model for the representation λ).

We are not aware of similarly nice integral/rational models for the representations of H(G(de, e, r),u),
where e > 1.

4. Two-dimensional primitive groups

In this section we describe the construction of models for the irreducible representations of the Hecke
algebrasH(W,u), where W is a primitive 2-dimensional reflection group, so one of the groups G4, . . . , G22.
We first describe several reductions.
Step 1: It is sufficient to find models in the case of G7, G11 and G19.

The braid groups of G7, G11 and G19 are isomorphic to the same group

B := 〈s1, s2, s3 | s1s2s3 = s2s3s1 = s3s1s2〉

(see [9, §5]). Let u = (x1, x2; y1; y2; y3; z1, . . . , zk), where k = 3 for G7 (resp. 4, 5 for G11, G19). The
cyclotomic Hecke algebra H(W,u) of G7 (resp. G11, G19) is the quotient of the group algebra of B over
Z[u,u−1] by the relations

(s1 − x1)(s1 − x2) = 0, (s2 − y1)(s2 − y2)(s2 − y3) = 0,

i=k∏
i=1

(s3 − zi) = 0.

In turn the Hecke algebras for G4 to G6 are subalgebras of suitable partial specializations of that for G7

(the same holds for G8 to G15 with respect to G11 and for G16 to G22 with respect to G19) (see [13,
Prop. 4.2]). More precisely, in each case, these algebras are generated by suitable conjugates of a subset
of the generators (or of some power of them), while the other generators are specialized to the group
algebra. The necessary generators are collected in Table 1.

Moreover, each irreducible representation of the Hecke algebra of any of the groups G4, . . . , G22 can be
obtained as the restriction of an irreducible representation of the Hecke algebra of one of G7, G11 or G19.
It follows that it is sufficient to determine the representations of the Hecke algebras of G7, G11 and G19

to determine the representations of the Hecke algebras of all 2-dimensional primitive reflection groups.
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Table 1: Generators for Hecke algebras of 2-dimensional primitive groups

W generators of H(W )
G4, G8, G16 s3,

s1s3

G5, G10, G18 s2, s3

G6, G9, G17 s1, s3

G14, G21 s1, s2

G12, G22 s1,
s2s1, ss21

G20 s2,
s1s2

G13 s2
3, s1, ss21

G15 s1, s2, s2
3

Step 2: It is sufficient to compute irreducible representations of B of dimension 2 6 d 6 6, with an
additional condition on the eigenvalues of the generators.

The irreducible representations of G7 have dimension 1,2 or 3, those of G11 dimension 1 to 4 and those
of G19 dimension 1 to 6. It follows that any 2-dimensional representation of B gives a representation
of H(W,u) where W is any of G7, G11, G19; any 3-dimensional representation of B where s1 has only 2
distinct eigenvalues gives a representation of the same algebras; any 4-dimensional representation of B
where s1 has only 2 distinct eigenvalues and s2 has only 3 distinct eigenvalues gives a representation of
H(W,u) where W is any of G11, G19; finally any 5 or 6-dimensional representation of B where s1 has
only 2 distinct eigenvalues, s2 has only 3 distinct eigenvalues and s3 has only 5 distinct eigenvalues gives
a representation of H(G19,u).

Step 3: It is sufficient to compute one irreducible representations of B in each dimension 2 6 d 6 6.
For each dimension (from 1 to 6) and each W ∈ {G7, G11, G19}, the irreducible representations of

H(W,u) (up to isomorphism) form a single orbit under the Galois automorphisms corresponding to
permuting the xi, the yi, the zi among themselves. It transpires that we just need to find one representation
of B of the right dimension with the required number of eigenvalues.

It turns out that one can find such representations of B by matrices of the form

s1 7→


∗ . . . . . . ∗

0
. . .

...
...

. . . . . .
...

0 . . . 0 ∗

 , s2 7→


∗ . . . . . . ∗
... . . . 0
... . . . . . .

...
∗ 0 . . . 0

 , s3 7→


0 . . . 0 ∗
... . . . . . .

...

0 . . .
...

∗ . . . . . . ∗

 .

A solution for the 2-dimensional representation is

s1 7→

(
x1

y1+y2
y1y2

− (z1+z2)x2
r

0 x2

)
, s2 7→

(
y1 + y2 1/x1

−y1y2x1 0

)
, s3 7→

(
0 −r

y1y2x1x2

r z1 + z2

)
where r =

√
x1x2y1y2z1z2. Note that the irrationality r occurring in the matrices is necessary [14,

Tab. 8.1].
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A solution for the 3-dimensional representation is

s1 7→

x1 0 ((z2z3 + z1z3 + z1z2)x2x1r
−1 − (y3+y1+y2)r

y1y2y3
)z−1

1

0 x1 −r(y1y2y3z1)−1

0 0 x2

 ,

s2 7→

y1 + y2 + y3 − r(x1z1)−1 az1
−1 −1

1 r(x1z1)−1 0
y1y2y3x1z1r

−1 0 0

 ,

s3 7→

 0 0 z2z3x1r
−1

0 z1 0
−rx1

−1 a z3 + z2

 ,

where a = (y1 + y2 + y3)rx−1
1 − (y1y2 + y1y3 + y2y3)z1 + y1y2y3(x1z

2
1 − x2z2z3)r−1 and

where r = 3
√

x2
1x2y1y2y3z1z2z3.

A solution for the 4-dimensional representation is

s1 7→


x1 0 x1a− x1x2y1

b
r x1(1 + y1

y3
)− r

y3

∑
i

1
zi

0 x1
1
y1

+ 1
y2

−x2
r3

0 0 x2 0
0 0 0 x2

 ,

s2 7→


y3 + y1 x1y1y2a y1a y1

0 y1 + y2 1/x1 0
0 −x1y1y2 0 0
−y3 0 0 0

 ,

s3 7→


0 0 0 −r/(y3x2)
0 0 −r/(y2x1x2y1) 0
0 r 0 1/r2

r/(x1y1) −ra b
∑

i zi

 ,

where

a = x1x2y1y2

∏
j

zj(
∑

i

1
zi

)− r2
4∑

i=1

zi, b = x1x2y1(y2 + y3)
∏

i

zi − r2
∑
i<j

zizj

and where r = 4
√

x2
1x

2
2y1y2y2

3z1z2z3z4.
We refer to the GAP-part of the Chevie system [17] for solutions for the 5-dimensional and 6-

dimensional representations of B. By our above reductions, this completes the construction of the ir-
reducible representations of all cyclotomic Hecke algebras attached to 2-dimensional exceptional complex
reflection groups.

5. Hensel lifting and Padé approximation

We now describe computational techniques used to obtain models for irreducible representations of
Hecke algebras for higher dimensional primitive complex reflection groups. It is not an algorithm in the
sense that it does not always succeed, but in the case of one-parameter algebras, it turned out to have
a good rate of success. It consists of Hensel lifting representations of W to H(W ), combined with Padé
approximation.
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We note that for groups generated by true reflections which are all conjugate, such as G24, G27,
G29, G31, G33 and G34, there are only two parameters us,0 and us,1, and with the usual normalization
us,1 = −1 (corresponding to replacing s by −s/us,1) there is only one parameter q = −us,0/us,1. We will
write H(W, q) for such an algebra.

5.1. Hensel lifting representations of W
We start with a presentation of B(W ), of the form

〈s1, . . . , sn | pj(s1, . . . , sn) = qj(s1, . . . , sn)〉

as explained in (1.1).
If ρq : H(W, q) → Ml×l(C(q)) is a representation of H(W, q) over C(q), and if Mi = ρq(si), the

idea consists in writing Mi as a series in the variable r := q − 1. If we have such an expansion Mi =
M

(0)
i + rM

(1)
i + r2M

(2)
i + . . . where M

(j)
i ∈Ml×l(C), then M

(0)
i is the specialization ρ1 of ρq at q = 1, a

representation of W .
Conversely, if we start with a representation ρ1 of W , we may try to extend it to a representation of

H(W, q) by solving the system of equations

(Mi + 1)(Mi − r − 1) = 0 and pj(M1, . . . ,Mn) = qj(M1, . . . ,Mn),

where Mi = M
(0)
i + rM

(1)
i + r2M

(2)
i + . . . ∈ Ml×l(C((r))) are formal power series with M

(0)
i = ρ1(si).

The point here is that if we already have a solution M
(j)
i for j < j0 (where j0 > 1) then the equations

for M
(j0)
i form a system of linear equations, which, if v is the vector of all the entries (M (j0)

i )k,l of the
matrices M

(j0)
i , has the form Λv = Nj0 , for a matrix Λ which is independent of j0.

Unfortunately the matrix Λ does not have full rank in practice. To try to solve the above system, we
choose for j0 = 1 a matrix Λ′ of full rank extending Λ, and then solve iteratively each step j0 by setting
v = Λ′−1Nj0 . We thus get a representation of H(W, q) with coefficients in C[[r]]; actually in K[[r]] if K

is the field where the entries of the matrices M
(0)
i lie.

In our computations it happened quite often that this representation is actually over K(r) = K(q).
This is the point of the method. To increase the probability that this happens, we found a number of
heuristics:
• As equations added to Λ to make Λ′, we first try to add equations specifying that undetermined

entries in M
(1)
i where the corresponding entry in M

(0)
i is 0 should also be 0.

• If the chosen model of ρ1 given by the matrices M
(0)
i does not give good results, change the model

randomly (but such that it is still ‘simple’) until a better result occurs.

5.2. Recognizing the entries
To recognize that the obtained series Mi ∈ Ml×l(K[[r]]) lies in K(r), we use Padé approximation: if

a series h ∈ K[[r]], which can be assumed to have a non-zero constant coefficient, is the expansion of
f/g ∈ K(r) where f, g ∈ K[r] are of degree less than d and g(0) = 1, then f and g are determined by
solving linear equations involving only the first 2d terms of h. If these linear equations have a solution,
we say that f/g is a Padé approximant of h.

This is applied to the (approximate) entries of Mi as follows: We compute Padé approximants for
increasing d, until they become stationary, which generally means that we have found a solution in K(r).

Note that it is very easy afterwards to check whether the result of our computations does indeed define
a representation of H(W, q), by just evaluating the relations of H(W, q).

The representations of H(W, q) are in general not defined over C(q) but over C(q1/e) where e is the
order of the group of roots of unity in KW . To handle this case it is sufficient to take r := q1/e − 1 as a

8
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variable and apply the same construction.

5.3. Finding good models for representations of W
To start the process we needed to get a complete set of models for the irreducible representations of

W . For this, we used the following techniques:
• Get new representations from known representations by tensoring by linear characters and applying

Galois actions.
• Get new representations as Schur functors of known representations (when such Schur functors

happen to give an irreducible representation; an example is that the exterior powers ΛiV are always
irreducible and the symmetric square S2V is irreducible if W is not real). We have written a Chevie-
program to compute general Schur functors to do this.

For example only 7 of the 90 representations of dimension 6 60 of G32 cannot be obtained by the
above process starting from the reflection representation. To get the remaining representations, we need
one more technique:
• Obtain the desired representation as a component of multiplicity 1 in the tensor product of two

known representations. Then compute a model by explicitly computing the projector on the desired
isotypic component.

It turns out that all irreducible representations of exceptional complex reflection groups can be obtained
from the reflection representation applying these three steps. To compute the projector on the isotypic
component, we explicitly compute the image of the class sums of W in the representation, by enumerating
the elements of W as words in the generators and computing their images. We have carried out this
computation for all groups considered except G34 where this would need to add together billions of
matrices of rank several tens of thousands, which is a larger computation than those we have attempted.

For the questions to be considered below, but also for other computational purposes, it is desirable to
have a model with few non-zero entries, which are integral if possible. We try to achieve this by performing
suitable base changes on the first model. A good heuristic which tends to simplify the model a lot is to
use a basis consisting of one-dimensional intersections of eigenspaces of the matrices M

(0)
i .

An example of a representation obtained by the methods of this section and that we could not obtain
in another way is the representation φ8,5 of H(G24, {x, y}) (here v =

√
−xy, and s, t,u are the generators

in the presentation P1 given below in 6.1):

s 7→



. . . . . . . −x

. x + y . . y . . .

. . x −vy + xy . . −x2 .

. . . y . . . .

. −x . . . . . .

. . . x . x −v − y .

. . . . . . y .
y . . . . . . x + y


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t 7→



x . . v . . . −y
. x . v x . . .
. . x + y . . . −xy .
. . . y . . . .
. . . . y . . .
. . −1 x −v x x v
. . 1 . . . . .
. . . . . . . y



u 7→



y . . . . . . .
. x . . x . −v .
−xy . x . −vy vy vy − xy − x2 .

. . . x . −y −v − y .

. . . . y . . .

. . . . . y . .

. . . . . . y .
x . . . . . x x


Another example is the representation φ8,6 of H(G27, {x, y}) where again v =

√
−xy, and s, t,u are

the generators in the presentation P1 given below in 6.2):

s 7→



x . −y . . . v − y 1+
√

5
2 .

. x + y . y . . . .

. . y . . . . .

. −x . . . . . .

. . . . . . . x

. . v + x 1+
√

5
2 . . x x .

. . . . . . y .

. . . . −y . . x + y



t 7→



x . −y y . v v −y

. x −x 3+
√

5
2 x . . . .

. . y . . . . .

. . . y . . . .

. . x . x . . y

. . . . . x + y y .

. . . . . −x . .

. . . . . . . y



u 7→



. . −x . . . . .

. x . x . . −y 3+
√

5
2 .

y . x + y . . . . .
. . . y . . . .
. . . . y . . .
v . v −y v x x .
. . . . . . y .
. . . . −x . v x


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6. Presentations of B(G24) to B(G34)

In [5] we considered presentations of exceptional complex braid groups, and proposed several presen-
tations for B(G24), B(G27), B(G29), B(G33) and B(G34). In the context of our current work, it will
be important to consider alternative presentations, since at least two of the properties we consider (the
existence of W -graphs and the vanishing of the trace on minimal length elements) turn out to depend on
the presentation, with each time a presentation faring better than the others with respect to these prop-
erties. We have noticed a framework in which these various presentations fit and can be systematically
recovered.

Since the groups above are well-generated, they have a unique maximal reflection degree h called the
Coxeter number of W . We proved in [5] that in each case, the product δ = s1 · · · sn of the generators
of the braid group in a certain order is an h-th root of the generator of the center of the pure braid
group. The image c of δ in W is e2iπ/h-regular in the sense of Springer, and if choosing for basepoint
a e2iπ/h-regular eigenvector x of c, the element δ corresponds to a path joining x to e2iπ/hx (these two
points coincide in V reg/W ).

We consider the Hurwitz action of the ordinary Artin braid group Bn, the group with presentation

〈σ1, . . . , σn−1 | σiσj = σjσi if |i− j| > 1, σiσi+1σi = σi+1σiσi+1〉

on decompositions δ = s1 . . . sn of δ, given by

σi : (s1, . . . , sn) 7→ (s1, . . . , si+1, s
si+1
i , . . . , sn),

so that
σ−1

i : (s1, . . . , sn) 7→ (s1, . . . ,
sisi+1, si, . . . , sn).

We thus obtain new decompositions of δ into a product of n braid reflections.
Bessis has shown in [4] that the orbit of the Hurwitz action on decompositions of δ is finite, of

cardinality n!hn/|W |. What we noticed is that all the presentations of [5] correspond to taking as a set of
generators the ones which appear in one decomposition in the Hurwitz orbit; in the case of G24 and G27

any element of a Hurwitz orbit corresponds up to some permutation to one of the presentations given in
[5]; in the other cases some other presentations may appear.

We give now the results in each case. We found that the “quality” of a presentation seems to be
correlated to how “spread out” their “Poincaré” polynomial

∑
w∈W ql(w) is (where l(w) is the minimal

length in terms of the generators needed to write w); the presentations where the Poincaré polynomial
has a higher degree are better.

6.1. Presentations for B(G24)
A Hurwitz orbit of δ has 49 elements. Three different presentations appear along an orbit.

P1

The presentation P1 is

〈s, t,u | sts = tst, tutu = utut, sus = usu, (tus)3 = utu(stu)2〉

It appears 21 times in a Hurwitz orbit. Its Poincaré polynomial is

q15 + 3q14 + 6q13 + 12q12 + 27q11 + 46q10 + 55q9 + 54q8 + 44q7

+ 31q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1

11
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P2

The presentation P2 is

〈s, t,u | stst = tsts, tutu = utut, sus = usu, t(stu)2 = (stu)2s〉

We get P2 from P1 by taking {s, tut−1, t} as generators. It appears 21 times in a Hurwitz orbit. Its
Poincaré polynomial is

q13 + 4q12 + 16q11 + 39q10 + 56q9 + 58q8 + 52q7 + 42q6 + 29q5 + 18q4 + 11q3 + 6q2 + 3q + 1

P3

The presentation P3 is

〈s, t,u | stst = tsts, tutu = utut, susu = usus, (tus)2t = (stu)2s = (ust)2u〉

We get P3 from P1 by taking {t,u,u−1t−1stu} as generators. It appears 7 times in a Hurwitz orbit. Its
Poincaré polynomial is

q13 + 5q12 + 12q11 + 24q10 + 45q9 + 54q8 + 59q7 + 57q6 + 36q5 + 21q4 + 12q3 + 6q2 + 3q + 1

6.2. Presentations for B(G27)
A Hurwitz orbit of δ has 75 elements. Five different presentations appear along an orbit, each 15 times.

P1

The presentation P1 is

〈s, t,u | tst = sts,usu = sus,utut = tutu,utu(stu)3 = (tus)3tut〉

Its Poincaré polynomial is

q25 + 5q24 + 12q23 + 26q22 + 51q21 + 88q20 + 125q19 + 150q18 + 168q17 + 191q16 + 218q15

+ 223q14 + 200q13 + 168q12 + 139q11 + 114q10 + 87q9 + 62q8

+ 44q7 + 31q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1

P2

The presentation P2 is

〈s, t,u | sus = usu, stst = tsts, tutut = ututu, (uts)2t = s(uts)2〉

We get P2 from P1 by taking {t, tut−1, s} as generators. Its Poincaré polynomial is

q21 + 6q20 + 22q19 + 59q18 + 107q17 + 152q16 + 208q15 + 256q14 + 270q13 + 255q12 + 218q11

+ 177q10 + 137q9 + 100q8 + 71q7 + 49q6 + 32q5 + 19q4 + 11q3 + 6q2 + 3q + 1

P3

The presentation P3 is

〈s, t,u | sts = tst, tutut = ututu, sus = usu, tutu(stu)2 = u(tus)3〉

12
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We get P3 from P1 by taking {s, s−1us, t} as generators. Its Poincaré polynomial is

q23 + 3q22 + 6q21 + 21q20 + 60q19 + 121q18 + 164q17 + 192q16 + 228q15 + 256q14 + 245q13

+ 210q12 + 175q11 + 138q10 + 106q9 + 78q8 + 57q7 + 38q6 + 25q5 + 16q4 + 10q3 + 6q2 + 3q + 1

P4

The presentation P4 is 〈
s, t,u |

stst = tsts, tutut = ututu, susus = ususu,

(tus)2t = s(tus)2,us(tus)2 = (stu)2su

〉
We get P4 from P1 by taking {t,u,u−1t−1stu} as generators. Its Poincaré polynomial is

q19 + 5q18 + 16q17 + 54q16 + 127q15 + 211q14 + 257q13 + 277q12 + 288q11 + 266q10 + 217q9

+ 164q8 + 117q7 + 73q6 + 42q5 + 23q4 + 12q3 + 6q2 + 3q + 1

P5

Finally P5 just presents the opposite group to P2 (the first 3 relations are the same and each side of the
fourth is reversed). It is obtained from P2 by exchanging the generators u and t.

6.3. Presentations for B(G29)
For B(G29), in [5] we considered two presentations on generators {s, t,u,v}. These presentations

correspond actually to two different presentations of the parabolic subgroup generated by {t,u,v} which
is of type B(G(4, 4, 3)), so we first describe the situation for this last group.

For B(G(4, 4, 3)) a Hurwitz orbit of δ has 32 elements; two presentations occur along the orbit:

P1

The presentation P1 is

〈t,u,v | tvt = vtv,uvu = vuv, tutu = utut, (vut)2 = (utv)2〉

It appears 16 times in a Hurwitz orbit. Its Poincaré polynomial is

3q8 + 13q7 + 23q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1.

P2

The presentation P2 is

〈t,u,v | tvt = vtv,uvu = vuv, tut = utu,vt(uvt)2 = (uvt)2uv〉

We get P2 from P1 by taking {v−1tv,u,v} as generators. It appears 8 times in a Hurwitz orbit. Its
Poincaré polynomial is

11q8 + 21q7 + 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q + 1.

A presentation of B(G29) can be obtained in each case by adding one generator s and the extra
relations sts = tst, su = us, sv = vs.

13
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6.4. Presentations for B(G33) and B(G34)
For B(G33), in [5] we considered two presentations on generators {s, t,u,v,w} and for B(G34) two

presentations on generators {s, t,u,v,w,x}. These presentations differ only on the parabolic subgroup
generated by {t,u,v,w} which is of type B(G(3, 3, 4)), so we describe the situation for this last group.

For B(G(3, 3, 4)) a Hurwitz orbit of δ has 243 elements. Five different presentations occur along the
orbit.

P1

The presentation P1 is〈
t,u,v,w |

utu = tut,vtv = tvt,vuv = uvu,vwv = wvw,

tw = wt,uw = wu, (vtu)2 = (uvt)2

〉
It appears 108 times in a Hurwitz orbit. Its Poincaré polynomial is

8q12 + 40q11 + 82q10 + 108q9 + 109q8 + 95q7 + 79q6 + 57q5 + 35q4 + 20q3 + 10q2 + 4q + 1

P2

The presentation P2 is〈
t,u,v,w |

wtw = twt,utu = tut,uvu = vuv,wvw = vwv,

tv = vt,wu = uw,v(wtuv)2 = (wtuv)2w

〉
It appears 9 times in a Hurwitz orbit. Its Poincaré polynomial is

q12 + 20q11 + 74q10 + 128q9 + 130q8 + 100q7 + 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q + 1

We get P2 from P1 by taking {t,v,w,w−1v−1uvw} as generators.

P3

The presentation P3 is〈
t,u,v,w |

tw = wt,uwu = wuw,uvu = vuv,vwv = wvw, tut = utu,

tvt = vtv,uvwu = wuvw, (tuv)2 = (vtu)2

〉
It appears 72 times in a Hurwitz orbit. Its Poincaré polynomial is

34q10 + 88q9 + 122q8 + 132q7 + 111q6 + 75q5 + 45q4 + 25q3 + 11q2 + 4q + 1

We get P3 from P1 by taking {t,v,v−1uv,w} as generators.

P4

The presentation P4 is〈
t,u,v,w |

tvt = vtv,uwu = wuw, twt = wtw, twvt = vtwv,wvuw = uwvu,

tut = utu,wvw = vwv,uvu = vuv, (tuw)2 = (wtu)2, (tuv)2 = (uvt)2

〉
It appears 36 times in a Hurwitz orbit. Its Poincaré polynomial is

6q10 + 40q9 + 98q8 + 148q7 + 149q6 + 102q5 + 58q4 + 30q3 + 12q2 + 4q + 1

We get P4 from P1 by taking {t,u,v,vwv−1} as generators.

14



Constructing representations of Hecke algebras for complex reflection groups

P5

The presentation P5 is〈
t,u,v,w |

wu = uw, tvt = vtv,vuv = uvu, tut = utu, twt = wtw,

wvw = vwv, twvutw = utwvut, (vut)2 = (utv)2, (wvt)2 = (vtw)2

〉
It appears 18 times in a Hurwitz orbit. Its Poincaré polynomial is

q10 + 28q9 + 97q8 + 163q7 + 162q6 + 104q5 + 52q4 + 25q3 + 11q2 + 4q + 1

We get P5 from P1 by taking {t,v,u,uvwv−1u−1} as generators.
In each case we obtain a presentation of B(G33) by adding one generator s and the relations sts =

tst, su = us, sv = vs, sw = ws. We then obtain a presentation of B(G34) by adding one generator x
and the relations wxw = xwx,xs = sx,xt = tx,xu = ux,xv = vx, except for the representation
corresponding to P2 where the relations we should add are wx = xw, sxs = xsx,xt = tx,xu = ux,xv =
vx (this presentation can be obtained from the one corresponding to P1 by taking stut−1s−1, s, t,v,w,x
as generators).

7. Representations from W -graphs

The notion of a W -graph for a representation of a Weyl group originates from Kazhdan-Lusztig theory.
Here, we propose a generalization of this concept to the case of complex reflection groups. We then deal
with computational issues connected with this.

7.1. W -graphs
Let W 6 GL(V ) be a complex reflection group on V . We assume that W is well-generated, that is, W

can be generated by n := dim(V ) reflections s1, . . . , sn. We set I = {1, 2, . . . , n} and we let dj denote the
order of the reflection sj , j ∈ I, and d := max{dj}.

The following generalizes the concept of a W -graph for a representation of a finite Coxeter group, see
[12]. Let R : W → GLr(C) be an irreducible representation of W . A pre-W -graph Γ for R is a sequence
(γ1, . . . , γr) of r maps γk : I → {0, . . . , d− 1} satisfying γk(j) 6 dj − 1 for all 1 6 k 6 r, j ∈ I. The maps
γk are also called the nodes of Γ.

We now define the concept of an admissible pre-W -graph. If W is cyclic, then n = 1 and I = {1}. Any
irreducible representation is 1-dimensional, so r = 1, and the generating reflection s1 acts by R(s1) =
exp(2πim/d1) in R for some 1 6 m 6 d1. Then only the map γ1 with γ1(1) = m is admissible. Now
assume inductively that an admissible pre-W -graph has been chosen for each irreducible representation
of each proper parabolic subgroup WJ = 〈sj | j ∈ J〉, where J ⊂ I. The pre-W -graph Γ is then called
admissible (with respect to the chosen admissible pre-W -graphs of the parabolics), if for each parabolic
subgroup WJ < W the restriction of Γ to WJ is the union of the pre-W -graphs of the restriction of R to
WJ . (Here, restriction to a parabolic subgroup WJ , J ⊂ I, is obtained by restricting all γj to J .)

Let H(W,u) denote the generic cyclotomic Hecke algebra associated to W , where u = (uj,m | 1 6
j 6 n, 0 6 m 6 dj − 1) with uj,0, . . . , uj,dj−1 corresponding to sj as above. For each j we choose a total
ordering on the variables uj,0, . . . , uj,dj−1; for example uj,0 > uj,1 > . . . > uj,dj−1. We write Tj for the
image in H(W,u) of a braid reflection mapping to sj , 1 6 j 6 n. Given an admissible pre-W -graph Γ
for a representation R of W , we associate a pre-representation of H(W,u) as follows. For each j ∈ I,
let Tj be an r × r-matrix with diagonal entries Tj [k, k] = uj,γk(j). The off-diagonal entry Tj [k, l] is zero
unless Tj [k, k] < Tj [l, l] in the chosen ordering on u. The remaining entries of the Tj are independent
indeterminates, except that Tj [k, l] = Tm[k, l] if sj , sm are conjugate in W and both Tj [k, k] = Tm[k, k]
and Tj [l, l] = Tm[l, l], for k 6= l.
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Any specialization of these matrices which define a representation of H(W,u) which is a deformation
of a conjugate of the given representation R of W is called a W -graph for R. Note that, since W is
admissible, the characteristic polynomials of the Tj are by construction already as they should be if the
Tj did define a representation of H(W ) specializing to R.

If all reflections of W are conjugate and of order 2, such a representation can be encoded in an actual
labelled and directed graph as follows: the nodes of the graph are in bijection with the set {1, . . . , r},
labelled by γk(1) (note that here γk is already uniquely determined by γk(1)). There is a directed edge
from j to k, labelled by Tm[j, k], if Tm[j, k] 6= 0 for some m with γj(m) = 1 and γk(m) > 1. Note that the
value of Tm[j, k] does not depend on the choice of m, by our convention on pre-representations. Clearly
the representation can be recovered from this graph. Note also that there are just two possible total
orderings of the two variables u0, u1 in this case, and changing the ordering amounts to transposing the
representing matrices.

For instance, here is the graph for the representation of H(W,u) specializing to the reflection repre-
sentation, where W = G24, u = {u1,0, u1,1} = {x, y}. We consider the matrices for the 3 generators for
presentation P1 in Section 6.1. We have d = 2, r = 3.

12
x(−1−

√
−7)/2 //

−y

  A
AA

AA
AA

AA
AA

AA
AA

AA
A 13

y(1−
√
−7)/2

oo

−y

~~~~
~~

~~
~~

~~
~~

~~
~~

~~

23

x

``AAAAAAAAAAAAAAAAAA

x

>>~~~~~~~~~~~~~~~~~~

(7.1)

Remark 7.2. Assume for a moment that W is a real reflection group, i.e., a finite Coxeter group. In
this case Gyoja has shown [12] that any irreducible representation has a model which comes from a
pre-representation of a W -graph of W .

In general, for arbitrary complex reflection groups, admissible pre-W -graphs need not always exist.
But in cases where pre-W -graphs do exist, examples show that
(a) often, there exist corresponding representations,
(b) these representations tend to be very sparse,
(c) often the entries can be chosen to be Laurent-polynomials in the parameters,
(d) all n matrices are equally sparse.

7.2. Existence of pre-W -graphs and W -graphs
We say that a representation of W has an admissible pre-W -graph if there exists one for some pre-

sentation of the braid group and for some ordering of the variables. It is pretty straightforward to write
a program which enumerates all admissible pre-W -graphs for W , given those of the proper parabolic
subgroups. In order for this inductive process to work, we have to consider also some rank 2 groups.

It is much more difficult in general to find, given a pre-representation for a pre-W -graph of W , spe-
cializations of the entries so that it actually defines a representation of H(W ) (which specializes to the
representation R of W we started with).

Let us give some indications on how the W -graphs presented below were constructed. For small repre-
sentations (of dimension at most 4), this is straightforward, by solving the non-linear system of equations
obtained by requiring that the given pre-representation satisfies the relations of H := H(W,u). For larger
dimensions, this system becomes too large: if the representation R has dimension r and H has n gen-
erators, then the matrices of the generators for the pre-representation involve at least roughly nr2/4
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unknowns. A braid relation of length m in the generators produces algebraic equations of degree m be-
tween these unknowns. Furthermore, the coefficients in the equations involve all the parameters u of the
Hecke algebra. A simple minded application of the Buchberger algorithm to such a system of equations
is bound to fail.

Therefore, we had to use several tricks. A look at the final representations shows that they are very
sparse, containing many more zero-entries than required by the definition of pre-representation. Knowing
the positions of these zeros in advance would allow to solve the system of equations easily. Thus, in a
first step, we tried to conjugate the given representation of W into the form of a W -graph, with as many
zeros as possible. Note that the conditions on the entries of such a conjugating matrix are linear, hence
this system is easy to solve. In general, there will not be a unique solution, but we chose a solution with
as many zeros as possible. Then we looked for a W -graph representation of H with zero entries in the
same positions.

Alternatively, we started from a representation of H obtained by the methods of Section 5, for example,
and tried to conjugate this to a W -graph representation.

For dimensions larger than 10, say, even the determination of such a conjugating matrix becomes too
difficult. Here, one successful approach used information from maximal parabolic subgroups. Let WJ be
a maximal parabolic subgroup of W , and assume that the restriction of R to WJ splits as

R|WJ
= R1 ⊕ . . .⊕Rt

into a sum of irreducible representations Ri of WJ . By induction, we may assume that W -graphs of the Ri

for H(WJ) are already known. In order to use this information we made the additional assumption that
the block diagonal part of the Tj , with j ∈ J , agrees with the W -graphs of the Ri. (This doesn’t follow
from our axioms on pre-W -graphs, and it is in fact not always satisfied.) This ’Ansatz’ again reduces
the number of unknowns considerably. Clearly, the larger the dimensions of the Ri are, that is, the fewer
constituents occur, the more information we obtain.

7.2.1. Some rank-2 groups
We describe the situation in some detail for the case of the smallest well-generated exceptional group G4.
There is for each representation exactly one W -graph, as given in Table 2. The labelling of characters is
as in [15], for example.

Table 2: W -graphs for G4

character W -graph character W -graph
φ1,0 (12..) φ2,1 (.12., 12..)
φ1,4 (.12.) φ2,3 (..12, 12..)
φ1,8 (..12) φ2,5 (..12, .12.)
φ3,2 (.12., 1..2, 2..1)

Each 2-dimensional representation admits one further pre-W -graph, for instance φ2,5 admits (.1.2, .2.1);
however the only W -graph corresponding to it is a non-irreducible representation (which has same re-
striction to parabolic subgroups). For the 3-dimensional representation, there are 5 more pre-W -graphs:

(..12, .12., 12..), (..12, 1.2., 2.1.), (.1.2, .2.1, 12..), (.1.2, 1.2., 2..1), (.2.1, 1..2, 2.1.)

The first 3 give rise to non-irreducible representations, and the last two do not give rise to any represen-
tation.
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Similarly, for the group G3,1,2, each representation admits one pre-W -graph which is a W -graph,
except for the 2-dimensional representations which also admit another pre-W -graph giving rise to a
non-irreducible representation. The same situation holds for the Coxeter groups A2, B2 and I2(5).

7.2.2. Pre-W -graphs for G25

The inductive approach now gives the following:

Proposition 7.3. For G25, each irreducible representation admits a single pre-W -graph whose restriction
to each parabolic subgroup G4 is an actual W -graph. For each pre-W -graph, there exists a corresponding
W -graph.

Table 3 contains these W -graphs for one representation in each orbit under Galois automorphisms on
the parameters.

Table 3: W -graphs for G25

Character W -graph
φ1,0 (123..)
φ2,3 (13.2., 2.13.)
φ3,6 (.123., 13..2, 2..13)
φ3,1 (12.3., 13.2., 23.1.)
φ6,2 (1.23., 12..3, 13..2, 2.13., 23..1, 3.12.)
φ′′6,4 (.123., 1.23., 13..2, 2.1.3, 2.3.1, 3.12.)
φ8,3 (1.23., 12..3, 13..2, 13..2, 2.1.3, 2.3.1, 23..1, 3.12.)
φ9,5 (.123., 1.2.3, 1.3.2, 13..2, 2..13, 2.1.3, 2.3.1, 3.1.2, 3.2.1)

7.2.3. Pre-W -graphs for G26

Proposition 7.4. For G26, all but two 6-dimensional irreducible representations admit at least one pre-
W -graph whose restrictions to both parabolic subgroups of type G4 and G3,1,2 are actually W -graphs. For
each pre-W -graph, there exists a corresponding W -graph.

Table 4 contains the unique pre-W -graph for the given representatives of the Galois orbits.

Table 4: W -graphs for G26

Character W -graph
φ1,0 (123..)
φ2,3 (12.3., 13.2.)
φ3,1 (12.3., 13.2., 23.1.)
φ3,6 (1.23., 12..3, 13..2)
φ6,2 (1.23., 12..3, 13..2, 13.2., 2.13., 23.1.)
φ8,3 (1.23., 12..3, 13..2, 13.2., 2.1.3, 2.13., 23.1., 3.1.2)
φ9,5 (1.2.3, 1.23., 1.3.2, 12..3, 13..2, 13.2., 2.1.3, 2.13., 3.1.2)
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7.2.4. Pre-W -graphs for G24

For G24, the situation depends on the presentation of the braid group B(G24) considered, see Section 6.1.

Proposition 7.5. For G24, for each of the presentations P1 to P3, each representation admits at most one
pre-W -graph whose restrictions to parabolic subgroups of type A2 and B2 are W -graphs. But for P2 and P3

(the same) eight of the twelve representations admit such a graph, while for P1 two more representations
admit such pre-W -graphs. For each pre-W -graph for P1, there exists a corresponding W -graph.

Table 5 contains the pre-W -graphs for the given representatives of the Galois orbits and presentation
P1.

Table 5: W -graphs for G24, presentation P1

Character W -graph
φ1,0 (132)
φ3,1 (13, 12, 32)
φ6,2 (13, 13, 12, 12, 32, 32)
φ7,6 (1, 13, 12, 3, 3, 2, 2)

The representations φ8,4 and φ8,5 do not admit any pre-W -graph.
A W -graph for φ3,1 has been given in 7.1. With the same conventions, here is a W -graph for φ6,2:
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Together with the matrices given above for φ8,5, this completes the description of the representations
of the Hecke algebra of G24.

7.2.5. Pre-W -graphs for G27

Proposition 7.6. For the presentations P1 to P5 of G27, each representation admits at most one pre-
W -graph whose restrictions to parabolic subgroups of type A2, B2 and I2(5) are W -graphs. For P1 26 out
of 34 representations admit such a graph, while for P2 (resp. P3, P4, P5) just 16, (resp. 20, 14, 16) admit
such a graph. Moreover, any representation which admits such a graph for any of P2–P5 admits one for
P1. For each pre-W -graph for P1, there exists a corresponding W -graph.

Table 6 contains the pre-W -graphs for P1 for representatives of the Galois orbits. The 8 and 15-
dimensional representations do not admit any pre-W -graph.

Table 6: W -graphs for G27

Character W -graph
φ1,0 (132)
φ3,1 (12, 13, 23)
φ′′5,6 (12, 13, 13, 2, 23)
φ′5,6 (12, 12, 13, 23, 3.12)
φ6,2 (13, 13, 12, 12, 23, 23)
φ9,6 (1, 12, 12, 13, 13, 2, 23, 23, 3)
φ10,3 (12, 12, 12, 13, 13, 13, 2, 23, 23, 3)

Here is a W -graph for φ3,1, where c = 1 + ζ2
3 (1−

√
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and here is one for φ6,2:
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Interchanging the generators u,t in the presentation P1 obviously defines an antiautomorphism of B(W ).
It can be checked that composition of this antiautomorphism with transposition interchanges the repre-
sentations φ′5,6 and φ′′5,6, so we need not give a W -graph for the latter.

We now give a W -graph for φ9,6 as the union of the following pieces. The nodes are 1, 2, 3, 12, 12 ,
13, 13 , 23, 23 (the last three occur twice and we box one of the occurrences to distinguish it from the
other). Here we set u = 3

√
x and v = 3

√
y.

3 u3

←− 12 v2−uv−−−−→ 13 −u3v−−−→ 12
(u−v)(u2+v2)−−−−−−−−−→ 1 −u3v3

−−−−→ 23 1−→ 2
(u−v)2←−−−− 23

13 −v2

←−− 2
v2(u−v)←−−−−− 12 −uv2

−−−→ 13
v2(u−v)−−−−−→ 1 1←− 23 −1−−→ 3

v(2u−v)←−−−−− 23 −u2v2

←−−−− 12

13 −u2v2

−−−−→ 23 uv−→ 12 v2

−→ 13
u2v(v−u)−−−−−−→ 3

v2(u−v)−−−−−→ 2

2 u3v←−− 13 u−v←−−− 23 uv−→ 13 u2v−−→ 12
u(uv−u2−v2)−−−−−−−−−→ 1

2
u2(v−u)←−−−−− 13

u2(u−v)−−−−−→ 3 −v3

−−→ 12

Here is, following the same conventions, a W -graph for φ10,3. The nodes are 13, 12, 13 , 12 , 13 ,

12 , 3, 2, 23, 23 :

13
y−→ 3 −1−−→ 12

−y−−→ 13
xy+x2+y2

−−−−−−−→ 12 x−→ 23 −1−−→ 13 x−→ 12
x−y−−−→ 2

−x+2y←−−−− 23

13 −1−−→ 23
−xy−y2

−−−−−→ 12
2x2+y2

←−−−−− 13 x−→ 12
xy−→ 3 1−→ 2

−y−−→ 13
3y←− 12

xy+x2

−−−−→ 23

2 x←− 13 x2

−→ 3 2x2

←−− 13
−2y←−− 12 −x−−→ 23

−y−−→ 12
xy+x2+y2

−−−−−−−→ 13 x−→ 23
−y−−→ 12
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13 2x−→ 2
−xy−−−→ 3

xy←− 12
xy+x2

−−−−→ 13
xy←− 23 2x−→ 13 x−→ 12

12
x+y−−−→ 2 −1←−− 23

xy←− 13 −x←−− 23
y−→ 12

23
y2

−→ 3 23 2−→ 13

We have found a model for φ15,5 by Hensel lifting with coefficients in FracÃ, that with meataxe
techniques we could reduce to have coefficients in Ã.

We now give some information on higher dimensional primitive groups:

7.2.6. Pre-W -graphs for G(4, 4, 3) and G29

For the presentation of G(4, 4, 3) corresponding to P1 the 6-dimensional representation does not admit a
pre-W -graph while for the one corresponding to P2 it is the 2-dimensional representation which does not
admit one.

Proposition 7.7. For the presentation corresponding to P1 of G29, 15 representations admit a pre-W -
graph, while for that corresponding to P2, 27 (out of 37) admit one. The two representations φ5,8 and
φ5,16 admit a pre-W -graph for P1 and not for P2.

All together all representations of W admit a pre-W graph except for two of the 4 of dimension 15,
and for those of dimension 20. We have found actual W -graphs for all the pre-W -graphs except the last
three of table 7.

Table 7 contains pre-W -graphs for representatives of Galois orbits of representations of the Hecke
algebra. The first 7 graphs in the table correspond to P1 and the rest to P2. To condense the table,
repeated nodes are represented once, the multiplicity being given by an exponent.

Table 7: pre-W -graphs for G29

Character W -graph
φ1,0 (1234)
φ4,4 (123, 124, 134, 234)
φ4,1 (123, 124, 134, 234)
φ5,8 (123, 134, 14, 23, 24)
φ6,12 (12, 13, 14, 23, 24, 34)
φ′′′6,10 (12, 13, 14, 23, 24, 34)
φ10,2 (1232, 1242, 1343, 23, 234, 24)
φ′6,10 (13, 134, 142, 32, 4, 2)
φ10,6 (13, 134, 132, 14, 142, 12, 34, 342, 32, 42)
φ′15,4 (13, 1343, 1322, 14, 1422, 34, 322, 422, 2)
φ16,3 (13, 1343, 1322, 14, 1422, 12, 34, 342, 322, 422)
φ24,6 (133, 1342, 132, 143, 142, 122, 3, 342, 323, 4, 423, 22)
φ24,7 (133, 1342, 132, 143, 142, 122, 3, 342, 323, 4, 423, 22)
φ30,8 (134, 1342, 132, 144, 142, 123, 3, 343, 324, 4, 424, 22)
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7.2.7. Pre-W -graphs for G32

For G32, 57 of the 102 irreducible representations admit a pre-W -graph. If one includes the Galois-
conjugates of these representations, one gets all representations but 12: the missing ones are 3 of the
60-dimensional ones, the 64-dimensional and the 81-dimensional ones.

7.2.8. Pre-W -graphs for G33

For the presentation P1 of 6.4 we find that 14 representations admit a pre-W -graph, and for presentation
P2 we find that 14 more admit one, for a total of 28 out of 40. The set of representations which admit a
pre-W -graph is stable under Galois action, so we do not get new ones. For the other presentations P3 to
P5 the representations which admit a pre-W -graph are a subset of the 14 which have one for P1.

7.2.9. Pre-W -graphs for G34

For the presentation corresponding to P1 of 6.4 we find that 18 representations admit a pre-W -graph,
and for the presentation corresponding to P2 we find that 13 more admit one, for a total of 31 out of
169. The set of representations which admit a pre-W -graph is stable under Galois action, so this does
not give new ones. For the presentations corresponding to P3, P4, P5 the representations which admit a
pre-W -graph are a subset of the 18 which have one for P1.

8. Checking the conjectures of section §2

We now use the representations obtained above for 2 and 3-dimensional exceptional groups in order
to verify some of the conjectures on the structure of cyclotomic Hecke algebras stated in Section 2 for
some of the primitive complex reflection groups.

8.1. Computational difficulties
The main problem to carry out the computations implied by e.g. Proposition 2.10 is to compute the

form t on a large set of images of elements of B(W ) (a set of cardinality r|W |2 where r is the rank of
W ).

To compute t, we use formula (2.4), where the Schur elements are taken from [15] and χ(x) is computed
using the matrices for the representation of character χ that we computed in the previous sections.

To minimize the computations, we use a few tricks:
• We compute the orbits of the set of words we consider under the braid relations and rotations (which

give a conjugate element in the braid group). It is sufficient to compute the trace on one element
of each orbit.

• When all generators of W are of order 2, if in one of the orbits we have a word of length k
where there is a repetition . . . ss . . ., using the quadratic defining relation of the Hecke algebra
(Ts − us,0)(Ts − us,1) = 0 we can reduce the computation to that for one word of length k − 1 and
one word of length k − 2.

For instance, for G24 to compute the matrix {t(Tww′)} we have to compute the trace on 3362 = 112896
elements; they fall into 14334 orbits under rotations and braid relations, and after taking into account
quadratic relations we still have to handle 327 elements. For computing the matrix products corresponding
to these words, we look for the occurrence of common subwords so as to never compute twice the same
product, which means that for each representation we have about 600 matrix products to effect. We also
take into account the Galois action on representations so we need to compute the character value only
for one representation in each Galois orbit; for G24 there are 5 such orbits.

Even with these simplifications, the matrix products for algebras which have many parameters get
very costly, as well as the final step of evaluating the right-hand side of (2.4), since the gcd of the Schur
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elements is a large polynomial. In quite a few cases we could only make a heuristic check, by computing
in the algebra where the parameters are specialized to prime powers (to primes taken to the e-th power,
so the algebra splits over Q). The heuristic check for belonging to A becomes to belong to Z localized at
the chosen primes, and to be a unit in A becomes being an integer with only prime factors the chosen
primes.

8.2. Finding a section such that t(Tw) = 0
In order to find a section W ⊂ B(W ) such that t(Tw) = 0 for any w 6= 1, our first idea was, mimicking

the case of finite Coxeter groups, to lift elements of W by lifting minimal-length expressions for them as
positive words in the generators s1, . . . , sn. However, though this almost works, it does not always work;
we manage with a slight variation on this, as we shall explain.

Obtaining all minimal length expressions for elements of W is quite easy using standard methods for
enumerating elements of a group, and is feasible for all exceptional complex reflection groups but G34.

The Tables 8 and 9 below collect in the column “t(Tw) 6= 0” the results we got by computing the trace
on minimal length elements. The number in the column is the number of elements w ∈W such that some
minimal word w for w has t(Tw) 6= 0. If this number is not 0, the second number separated by a / is the
number of elements w ∈W such that no minimal word w for w has t(Tw) = 0.

When some minimal word for any w ∈ W has zero trace, we build a section by choosing arbitrarily
such a word for each element. We now describe how to build a section in the other cases:

For G11, with the notations of Section 4, all minimal lengths expressions of the two elements s2
3(s2s1s3)2,

(s2s1s3)2s3s2 have non-zero trace; but the longer lifts s1s2s1s3s2s1s2
3s1s3, s1s3s2s1s2

3(s2s1)2 have a zero
trace. By making these picks, we can find a section which satisfies t(Tw) = t(Tw−1π) = 0.

For G15, all minimal length expressions of the two elements s2(s1s3)2s2, s2s1(s3s2)2 have t(Tw) 6= 0;
but the longer lifts (s2s2s3)2s2, s2(s1s3)2s1s2

2 have a zero trace. All minimal expressions of s1s2(s3s2)2,
s1s2(s2s3)2, (s3s2)2s1s2 have t(Tw−1π) 6= 0. But the longer lifts s1(s3s2)3s3, (s3s2)3s3s1, s3(s2s1)3s3 work.
By making these picks, we can find a section which satisfies t(Tw) = t(Tw−1π) = 0 and t(Tww′) ∈ A, but
unfortunately det{t(Tww′)}w,w′ is not invertible in A for this choice.

However, there is another way to build a section which leads to a good section. Since G11 and G15

have the same hyperplane arrangements, the braid group B(G15) is a subgroup of index 2 of B(G11),
generated by s1, s2, s2

3. The elements in the above section for G11 where s3 occurs an even number of
times form a section for G15 which turns out to be good.

For G24 and G27 we only consider the presentation P1 as it is the best behaved. For G27, all minimal
lengths expressions of the element (sut)5 have non-zero trace. The center of B(W ) is generated by the
element z = (stu)5. The “bad” element (sut)5 is a lift of z−1. The lift z5 of z−1, which is much longer,
satisfies t(Tz5) = 0.

8.3. Checking that the section is good
To check (2.8) we avoid having to give an expression for w−1π in terms of the generators by using

that χ(Tw−1π) = χ((Tw)−1)ωχ(Tπ), where ωχ(Tπ) is easy to compute using e.g. the formula [8, 1.22].
In the column “good” in Tables 8 and 9 below we have recorded with a ’+’ if we could check that the

section built in the previous subsection is good, and satisfies the assumptions of Proposition 2.10, thus
providing an A-basis of H(W,u).

8.4. Tables
In Tables 8 and 9 below we collect the computational results that we got so far, together with results

from an unpublished note of Jürgen Müller [18]. Here, we write ’specialized’ in the column ’algebra’ when
we had to do the computation with parameters specialized to prime powers.
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Müller used Linton’s vector enumerator to construct the regular representation of some cyclotomic
Hecke algebras H(W ). From that, he is able to verify Conjecture 2.2(a) in several cases by exhibiting an
A-basis, marked by a ’+’ in the column ’rank’ of our tables. Furthermore, he can construct a symmetrizing
form over A satisfying Conjecture 2.2(b) in the cases marked ’+’ in the column ’form’.

Table 8: Hecke algebras for 2-dimensional primitive groups

W |W | |u| algebra t(Tw) 6= 0 t(Tw−1π) 6= 0 good rank [18] form [18]
G4 24 3 + 0 0 + + +
G5 72 6 spec. 0 0 + + +
G6 48 5 spec. 0 0 + + +
G7 144 8 spec. 3/0 1/0 + + +
G8 96 4 spec. 0 0 + + +
G9 192 6 spec. 0 0 + + +
G10 288 7 spec. 2/0 2/0 + + +
G11 576 9 spec. 22/2 12/0 + + ?
G12 48 2 + 0 0 + + +
G13 96 4 spec. 1/0 0 + + +
G14 144 5 spec. 0 0 + + +
G15 288 7 spec. 11/2 11/3 + + ?
G16 600 5 spec. 11/0 11/0 ? + ?
G20 360 3 spec. 2/0 2/0 + + ?
G21 720 5 spec. 6/0 6/0 ? + ?
G22 240 2 + 1/0 4/0 + + ?

Neither Müller nor we have been able to check any of the cases G17, G18, G19, for which the number
of parameters is at least 7 and the order of W at least 1200.

Table 9: Hecke algebras for 3-dimensional primitive groups

W |W | |u| algebra t(Tw) 6= 0 t(Tw−1π) 6= 0 good rank [18]
G24, P1 336 2 + 0 0 + +
G24, P2 2 + 3/0 4/0 + +
G24, P3 2 + 0 0 + +
G25 648 3 spec. 0 0 + +
G26 1296 5 spec. 0 0 ? +
G27, P1 2160 2 + 1/1 30/6 ?
G27, P2 2 + 41/1 97/28 ? +
G27, P3 2 + 31/9 44/24 ? +
G27, P4 2 + 19/2 42/1 ?

In his computations, Müller only looked at the presentations P2, P3 for the group G27.
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