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Abstract. We give a classification of irreducible characters of finite groups
of Lie type of p′-degree, where p is any prime different form the defining
characteristic, in terms of local data. More precisely, we give a classification in
terms of data related to the normalizer of a suitable Levi subgroup, which in
many cases coincides with the normalizer of a Sylow p-subgroup. The McKay-
conjecture asserts that there exists a bijection between characters of p′-degree
of a group and of the normalizer of a Sylow p-subgroup. We hope that our
result will constitute a major step towards a proof of this conjecture for groups
of Lie type, and, in conjunction with a recent reduction result of Isaacs, Malle
and Navarro, for arbitrary finite groups.

1. Introduction

Let G be a finite group and p a prime. The McKay-conjecture from the 1970th in
its simplest form asserts that the number |Irrp′(G)| of irreducible complex characters
ofG of degree prime to p equals the corresponding number for the normalizerNG(P )
of a Sylow p-subgroup P of G. There also exists a block-wise version counting
characters of height zero in blocks of G and in the normalizer of their defect groups.
Moreover, there are various further deep conjectures in representation theory of
finite groups which would imply the validity of the McKay-conjecture, the most
elaborate ones probably being Dade’s conjectures.

The McKay-conjecture was proved for solvable groups and more generally for
p-solvable groups as well as for various classes of non-solvable groups, like the
symmetric groups and the general linear groups over finite fields, but it remains
open in general. Recently, Isaacs, Navarro and the author [15] proposed a reduction
of McKay’s conjecture to simple groups. More precisely, it is shown that the McKay
conjecture holds for a finite group G if a certain quite complicated property holds
for every simple group involved in G. In view of the classification of the finite simple
groups this opens the way to a possible proof of the conjecture by checking that all
simple groups have the required property. This has been done in [15] for example
for the simple groups PSL2(q), and in [23] for alternating and sporadic groups.

In the present paper we consider this question for the remaining non-abelian
simple groups, the finite groups of Lie type.

For G a finite group of Lie type and p a prime different from the defining char-
acteristic of G we obtain a natural parametrization of Irrp′(G) in terms of p-local
data. More precisely, let S be a Sylow d-torus of G for a suitably chosen d, and L its
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centralizer in G. Then the normalizer N = NG(L) of L is a proper subgroup of G
containing the normalizer of a Sylow p-subgroup of G. It has recently been shown
by Späth [24] (see also [25]) that all characters of L extend to their inertia groups
in N . With this, we obtain a character bijection Irrp′(G)←→ Irrp′(N) of the kind
needed for the inductive setup in [15]. If one assumes that the McKay-conjecture
has been proved for all smaller groups, then, since N contains the normalizer of a
Sylow p-subgroup of G, this also implies the McKay-conjecture for G. (This has
now been shown unconditionally for groups of exceptional Lie type by Späth [25],
using the results of this paper.)

In our proof we start from Lusztig’s parametrization of irreducible characters of
finite reductive groups. This parametrization involves characters of not necessarily
connected groups. In order to handle the latter, we introduce the concept of dis-
connected generic groups in Section 3. In Section 4 we generalize several results on
d-Harish-Chandra theory to these disconnected groups (see Theorems 4.6 and 4.8).
This may be of independent interest. We then show in Theorem 5.9 that central-
izers of Sylow p-subgroups in groups of Lie type are contained in the centralizers
of suitable Sylow Φd-tori, and the same assertion holds for centralizers replaced by
normalizers under very mild assumptions on p (for example p ≥ 5 will always do)
(see Theorem 5.14). This extends earlier results valid only for large primes. The
proofs only involve case by case arguments for primes p ≤ 3.

After these preparations we start the investigation of unipotent characters of
height 0 in Section 6. A characterization in non-defining characteristic is given
in Corollary 6.6. The corresponding statement for the defining characteristic is
obtained in Theorem 6.8. Finally, in Section 7 we put together the various pieces
obtained so far to prove in Theorem 7.5 a parametrization of characters of p′-degrees
in terms of local data, that is to say, in terms of data attached to the normalizer of a
Sylow torus. We further show in Theorem 7.8 that there is a natural bijective map
between p′-degree characters of G and of the normalizer of a Sylow torus. In the
last section we prove that the corresponding result for the Suzuki and Ree groups
holds.

The main ingredients of our proofs are Lusztig’s parametrization of irreducible
characters together with an extension of d-Harish-Chandra theory to disconnected
groups.

2. Characters of groups of Lie-type

In this section we recall some of Lusztig’s results on the parametrization and the
degrees of the irreducible complex characters of groups of Lie type.

2.1. Lusztig’s parametrization. Let G be a connected reductive algebraic group
defined over a finite field Fq and F : G→ G the corresponding Frobenius endomor-
phism. Then G := GF is a finite group of Lie type. Let G∗ be a group in duality
with G, with corresponding Frobenius endomorphism F ∗ : G∗ → G∗ and group of
fixed points G∗ := G∗F∗

. Then G∗-conjugacy classes of semisimple elements s ∈ G∗
are in natural bijection with geometric conjugacy classes of pairs (T, θ) consisting
of an F -stable maximal torus T ≤ G and an irreducible character θ ∈ Irr(TF ) (see
for example [8, Thm. 4.4.6]).
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For any F -stable Levi subgroup L ≤ G Deligne and Lusztig have defined linear
maps

RG
L : ZIrr(LF ) −→ ZIrr(GF ), ∗RG

L : ZIrr(GF ) −→ ZIrr(LF ),

adjoint to each other with respect to the usual scalar product of characters. This
allows to define the Lusztig-series of a semisimple element s ∈ G∗ as the subset

E(G, s) := {χ ∈ Irr(G) | 〈χ,RG
T (θ)〉 6= 0 for some (T, θ)}

of Irr(G), where (T, θ) runs over pairs in the geometric conjugacy class correspond-
ing to s. According to Lusztig [17, Prop. 5.1] (see also [10, Prop. 13.17] for groups
with connected center) these series define a natural partition

Irr(G) =
∐

s∈G∗
ss/∼

E(G, s)

of Irr(G), where the disjoint union is over semisimple elements s ∈ G∗ up to conju-
gation. The constituents E(G, 1) of RG

T (1), where T runs over the F -stable maximal
tori of G, are called the unipotent characters of G. Lusztig’s Jordan decomposition
of characters now asserts that for each semisimple s ∈ G∗ there is a bijection

ψs : E(G, s) 1−1−→ E(CG∗(s), 1)

between the Lusztig series E(G, s) and the unipotent characters of CG∗(s), such
that the character degrees satisfy

(2.1) χ(1) =
|G|q′

|CG∗(s)|q′
ψs(χ)(1) for all χ ∈ E(G, s)

(for the unicity of this bijection see [9, Th. 7.1]). Note that, if the center of G is
not connected, the centralizers CG∗(s) in the dual group need not necessarily be
connected. Then, by definition, E(CG∗(s), 1) consists of the irreducible characters
of CG∗(s) whose restriction to the connected component (CG∗(s)◦)F is unipotent,
see also Section 3.5.

In our parametrization of characters we need to keep track of the restriction to
the center Z(G):

Lemma 2.2. Let s ∈ G∗. Then θ|Z(G) is the same for all pairs (T, θ) (consisting
of an F -stable maximal torus T ≤ G and an irreducible character θ ∈ Irr(TF )) in
the geometric conjugacy class determined by s, and we have

χ|Z(G) = χ(1) · θ|Z(G) for all χ ∈ E(G, s).

Proof. Since G is reductive, Z(G) consists of semisimple elements and is contained
in every maximal torus. Since Z(G) ≤ Z(G) the same is true for Z(G). By [8,
Prop. 4.1.3] the value of θ|Z(G) is independent of (T, θ) in the geometric conjugacy
class of s. The character formula [8, Prop. 7.5.3] now shows that

RG
T (θ)(t) = RG

T (θ)(1)θ(t) for t ∈ Z(G),

that is, RG
T (θ)|Z(G) = RG

T (θ)(1)θ. Since semisimple conjugacy classes are uniform
[8, Cor. 7.5.7], the value of any χ ∈ Irr(G) on the semisimple element t ∈ Z(G) is
determined by the values of RG

T (θ) on t. The claim follows. �
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3. Generic disconnected groups

We recall the notions of generic groups and generic unipotent characters as in-
troduced in Broué–Malle [1] and Broué–Malle–Michel [4], see also Broué–Malle [3].
We then generalize these notions to particular types of disconnected groups.

3.1. Generic groups. We start by recalling the notion of generic groups.
Let G be a connected reductive algebraic group defined over a finite field Fq

with corresponding Frobenius endomorphism F : G → G. Let T ≤ B be an F -
stable maximal torus contained in an F -stable Borel subgroup of G. We denote
by X the character group and by Y the cocharacter group of T, and by R ⊂
X, respectively R∨ ⊂ Y the set of roots respectively coroots relative to B. The
Frobenius endomorphism F acts on V := Y ⊗ZR as qφ, where φ is an automorphism
of finite order stabilizing R∨. Replacing B by a different F -stable Borel subgroup
containing T changes φ by some element in the Weyl group W of G. Thus we may
associate to (G,T, F ) the generic reductive group G = (X,R, Y,R∨,Wφ), where

(i) X,Y are Z-lattices of equal finite rank endowed with a duality 〈 , 〉 : X×Y →
Z,

(ii) R,R∨ are root systems in X, Y respectively, with a bijection ∨ : R → R∨

such that 〈α, α∨〉 = 2 for all α ∈ R, and
(iii) W is the Weyl group of the root system R∨ in Y , φ is an automorphism of

Y of finite order stabilizing R∨ (hence normalizing W ).
Conversely, a generic reductive group G, together with the choice of a prime

power q, gives rise to a triple (G,T, F ) as above. We then also say that (G, F ) has
type G. Thus a generic reductive group encodes a whole series

{G(q) := GF | q prime power}

of finite groups of Lie type.
The Ennola-dual of a generic reductive group G = (X,R, Y,R∨,Wφ) is by defi-

nition the generic group G− := (X,R, Y,R∨,W (−φ)). Clearly, if −1 ∈W then G−

equals G.
A Levi subgroup of G = (X,R, Y,R∨,WGφ) is a generic group of the form

L = (X,R′, Y,R′∨,WLwφ),

where w ∈WG and R′∨ is a wφ-stable parabolic subsystem of R∨ with Weyl group
WL. We call

WG(L) := NWG(L)/WL

the relative Weyl group of L in G. A generic torus T of G is a generic group of the
form

T = (X ′, ∅, Y ′, ∅, (wφ)|Y ′),

where Y ′ is a wφ-stable summand of Y , and X ′ is the dual of Y ′. The centralizer
of the torus T in G is the Levi subgroup

CG(T) = (X,R′, Y,R′∨,W ′wφ),

where R′ consists of the α ∈ R orthogonal to Y ′ and W ′ is the Weyl group of the
root system R′

∨. There is a perfect dictionary between generic Levi subgroups and
tori of G on the one hand side, and F -stable Levi subgroups and tori of G on the
other, if (G,T, F ) corresponds to G, which respects centralizers, see [1, Thm. 2.1].
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Attached to a generic group G is its generic order |G| ∈ Z[X] (see for example
[3, 3.1]), which is a monic product of cyclotomic polynomials over Q, and satisfies
|GF | = |G|(q) for any group (G, F ) of type G.

Now let d ≥ 1 and Φd(X) ∈ Q[X] the dth cyclotomic polynomial over Q, that
is, the minimal polynomial over Q of a primitive dth root of unity. A torus T ≤ G
is called a Φd-torus, if its generic order is a power of Φd. A Φd-torus T ≤ G whose
generic order contains the full Φd-part of |G| is called a Sylow Φd-torus of G. If T is
a corresponding F -stable torus in a corresponding reductive group G, we will also
call it a Φd-torus of G. The following Sylow theorem from Broué–Malle [1] will be
used frequently:

Theorem 3.2. Let G be a reductive algebraic group, not necessarily connected,
defined over Fq with Frobenius endomorphism F : G→ G and d ≥ 1. Then:

(a) There exist Sylow Φd-tori in G.
(b) Any two Sylow Φd-tori of G are (G◦)F -conjugate.
(c) Any Φd-torus of G is contained in a Sylow Φd-torus.
(d) For any Sylow Φd-torus S of G we have

±|G|q′/|CG(S)|q′ ≡ |G|/|CG(S)| ≡ |WG(S)| (mod Φd(q)),

where G := GF and WG(S) := NG(S)/CG(S).

Proof. The first three parts are in [1, Thm. 3.4]. For part (d) note that G =
G◦ NG(S) by assertion (b), where G◦ := (G◦)F , so |G|/|NG(S)| = |G◦|/|NG◦(S)|.
The latter quotient is congruent to 1 modulo Φd(q) by [1, Thm. 3.4(4)], so we
obtain the second congruence in the statement. The first congruence follows by
Broué–Malle–Michel [5, Prop. 5.4]. �

The centralizers in G of Φd-tori of G are called d-split Levi subgroups; they
correspond to F -stable Levi subgroups of G which are not necessarily contained in
an F -stable parabolic subgroup. It follows from the Sylow theorems cited above
that any d-split Levi subgroup contains Sylow Φd-tori.

The dual of G = (X,R, Y,R∨,Wφ) is by definition the generic group G∗ :=
(Y,R∨, X,R,Wφ∨

−1), where φ∨ is the adjoint of φ. In general, the dual of a torus
of G cannot be considered as a torus of G∗ in a natural way. Nevertheless, for Sylow
tori this is possible, as follows. Let Sd = (X ′, ∅, Y ′, ∅, wφ) be a Sylow Φd-torus of
G. Let

X ′′ = X ∩ kerX⊗R Φd((wφ)−1),
that is, X ′′ is the maximal submodule of X on which all eigenvalues of (wφ)−1 are
primitive dth roots of unity, and let Y ′′ be its dual. Then

S∗d := (Y ′′, ∅, X ′′, ∅, (wφ∨)−1)

is a torus of G∗. With this notation we have:

Lemma 3.3. Let Sd be a Sylow Φd-torus of G. Then:
(a) S∗d is a Sylow Φd-torus of G∗.
(b) CG∗(S∗d) = CG(Sd)∗.
(c) WG∗(L∗) ∼= WG(L) (anti-isomorphic) for L = CG(Sd).

3.4. Generic unipotent characters. Recall that the unipotent characters of
GF are defined as the constituents of RG

T (1) where T runs over the F -stable max-
imal tori of G. The work of Lusztig shows that the unipotent characters may be
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parametrized depending only on the type G of (G, F ) and that their degrees are
given by polynomials in q. That is to say, for any generic reductive group G there
exists a set E(G) of generic unipotent characters and a map

Deg : E(G) −→ Q[X],

such that for any finite reductive group GF of type G, we have a bijection

(3.1) ψG
q : E(G) 1−1−→ E(GF , 1) with ψG

q (γ)(1) = Deg(γ)(q).

Then Deg(γ) is called the degree polynomial of the unipotent character γ. The
results of Lusztig imply that the degree polynomials are essentially products of
cyclotomic polynomials; more precisely, they have the form

(3.2) Deg(γ) =
1
nγ
Xaγ

∏
d

Φd(X)a(d,γ),

where the denominator nγ is an integer only divisible by bad primes for G (see [4,
Thm. 1.32]).

It follows from results of Shoji that Lusztig induction and restriction are generic
on unipotent characters, that is, for any generic Levi subgroup L of G there exist
linear maps

RG
L : ZIrr(L) −→ ZIrr(G), ∗RG

L : ZIrr(G) −→ ZIrr(L),

satisfying ψG
q ◦ RG

L = RG
L ◦ ψL

q for all q when extending ψG
q linearly to ZE(G) (see

[4, Thm. 1.33]).
We will also later on make use of Ennola-duality which induces bijections

(3.3) E(L)→ E(L−), γ 7→ γ−, such that Deg(γ−)(X) = ±Deg(γ)(−X),

commuting with Lusztig-induction from d-split Levi subgroups (see [4, Thm. 3.3]).

3.5. Extension to disconnected groups. Let G̃ be a reductive algebraic group
with connected component G := G̃◦ such that A := G̃/G is a finite cyclic group.
An element σ ∈ G̃ is called quasi-semisimple if it fixes a maximal torus of G
and a Borel subgroup containing it. Now assume that G̃ is defined over Fq with
corresponding Frobenius map F : G → G with trivial induced action on A. By
Digne–Michel [11, Prop. 1.34 and 1.36] the coset Gσ of a quasi-semisimple element
σ ∈ G contains a quasi-semisimple element commuting with F which fixes an
F -stable maximal torus T and an F -stable Borel subgroup B containing T. We
may and will hence assume from now on that G̃ = G〈σ〉 with a quasi-semisimple
automorphism σ as above.

Since σ stabilizes T ≤ B, it acts on the root system R relative to T and stabilizes
the set of simple roots in R. We thus have associated to G̃ the data G̃ = (G, A),
where

(i) G = (X,R, Y,R∨,Wφ) is the generic group corresponding to (G,T, F ),
(ii) A is a finite cyclic group with an action on Y which commutes with φ and

permutes the set of simple roots in R∨ (hence stabilizes R∨).

The data G̃ can be thought of as a generic disconnected group of type (G̃,T, F ). If
G is semisimple, i.e., if R∨ spans Y , the action of A on Y is completely determined
by its action on the set of simple roots in R∨, hence by the corresponding graph
automorphism of the Dynkin diagram.

Clearly A acts on the set of tori and Levi subgroups of G in a natural way.
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Remark 3.6. We restrict ourselves to the case where A is cyclic, since this is the only
one we need later on, but the case of an arbitrary finite group of automorphisms A
should fit in a similar framework.

Since σ commutes with F , we obtain a finite group G̃ := G̃F with G̃/G ∼= A
generated by the image of σ, where G = GF is a finite reductive group. This yields
an induced action of σ on the set Irr(G) of complex irreducible characters of G.
The results of Lusztig [17, p. 159] show that the action of graph automorphisms on
unipotent characters is again generic, so may be lifted to an action on E(G). We
then have (see also [19, §1]; the notation for unipotent characters is as in [8], for
example):

Proposition 3.7. If G is simple, any graph automorphism of G fixes every unipo-
tent character of G, except in the following two cases:

(a) G of type Dn, with n even and σ of order 2. Here, σ fixes all unipotent
characters labelled by non-degenerate symbols, but it interchanges the two
unipotent characters in all pairs labelled by the same degenerate symbol of
defect 0 and rank n.

(b) G of type D4, with σ of order 3. Here σ has two non-trivial orbits, both of
length 3, with characters labelled by the symbols:{(

2
2

)
,

(
2
2

)′
,

(
1 4
0 1

)}
,

{(
1 2
1 2

)
,

(
1 2
1 2

)′
,

(
1 2 4
0 1 4

)}
.

We now define the set of generic unipotent characters of G̃

E(G̃) = {([γ], i) | γ ∈ E(G)/〈σ〉, 0 ≤ i < eγ},

where [γ] runs over the 〈σ〉-orbits in E(G), and eγ is the order of the stabilizer of
γ in 〈σ〉. Then the preceding discussion shows that E(G̃) is in bijection with those
elements of Irr(G̃) whose restriction to G contains (only) unipotent constituents.

3.8. The Suzuki- and Ree-automorphisms. The finite groups of Lie type
Sp4(2a), G2(3a) and F4(2a) have exceptional automorphisms. These come from
a symmetry of the Coxeter diagram of the Weyl group, but cannot be lifted as
automorphisms of finite order to the corresponding algebraic group. If a = 2n+ 1
is odd, such an automorphism can be chosen of order 2 with group of fixed points
2B2(22n+1), 2G2(32n+1), 2F4(22n+1) respectively, while if a is even it squares to a
field automorphism. We call these the Suzuki- and Ree-automorphisms.

It turns out that they enjoy similar properties in their action on unipotent char-
acters as in the setting of disconnected groups considered previously. First, in a
suitable sense made precise in Broué–Malle [1, 1A], a Suzuki- or Ree-automorphism
σ can be interpreted as an automorphism of the corresponding generic group G over
a quadratic extension of Z. Moreover, it follows from the decomposition of Deligne-
Lusztig characters and considerations of principal series characters that the action
of σ on unipotent characters is generic, that is, we have an induced action on E(G).
More precisely, in analogy to Proposition 3.7 this action is given as follows (see [19,
§1]; the notation for unipotent characters is as in [8, p. 479]):



8 GUNTER MALLE

Proposition 3.9. In the situation described above, σ fixes every unipotent char-
acter of G, except for the following:

(a) In G of type B2, σ interchanges the two unipotent principal series characters
labelled by the symbols{(

1 2
0

)
,

(
0 1
2

)}
.

(b) In G of type G2, σ interchanges the two unipotent principal series characters
labelled by the characters {φ′1,3, φ′′1,3} of the Weyl group W (G2).

(c) In G of type F4, σ has eight orbits of length 2, with unipotent characters
labelled by

{φ′8,3, φ′′8,3}, {φ′8,9, φ′′8,9}, {φ′2,4, φ′′2,4}, {φ′2,16, φ′′2,16},

{φ′9,6, φ′′9,6}, {φ′1,12, φ′′1,12}, {φ′4,7, φ′′4,7}, {(B2, ε
′), (B2, ε

′′)}.

4. d-Harish-Chandra theory

We introduce d-Harish-Chandra series of generic unipotent characters, state some
results and generalize them to disconnected generic groups.

4.1. d-Harish-Chandra series. Let G be a generic connected reductive group.
A unipotent character γ ∈ E(G) is called d-cuspidal if its Lusztig restriction ∗RG

L (γ)
vanishes for every proper d-split Levi subgroup L < G. We will then also say that
the unipotent character ψG

q (γ) ∈ E(GF , 1) of a corresponding group of Lie-type GF

is d-cuspidal. A pair (L, λ) with L d-split and λ ∈ E(L) unipotent d-cuspidal is
called a d-cuspidal pair. Again, we also use this notion for the corresponding pair
(L, ψL

q (λ)), where L ≤ G is a d-split Levi subgroup of G and ψL
q (λ) ∈ E(LF , 1) is

d-cuspidal.
Note that WG(LF ) := NG(L)/LF acts on the unipotent characters of LF . Thus,

for (L, λ) a d-cuspidal pair of G we may define its relative Weyl group as

WG(LF , λ) := NG(L, λ)/LF .

The results of the previous two sections show that this is a generic object, depending
only on the types of G and L. That is, there exists an action of WG(L) on E(L),
with stabilizer WG(L, λ) of λ isomorphic to WG(LF , λ) for all choices of (G, F ).
It turns out that WG(L, λ) is a finite complex reflection group in all cases (see [3,
Prop. 9.3]).

For any d ≥ 1 and any d-cuspidal pair (L, λ) define the d-Harish-Chandra series
E(G, (L, λ)) in E(G) as the set of constituents of RG

L (λ). By Broué–Malle–Michel
[4, Thm. 3.2], the set of unipotent characters of G is then partitioned into its
d-Harish-Chandra series

E(G) =
∐

(L,λ)/∼

E(G, (L, λ)),

where (L, λ) runs over the d-cuspidal pairs in G modulo conjugation. Furthermore,
for each d-cuspidal pair (L, λ), there is a bijection

(4.1) ρ(L, λ) : E(G, (L, λ)) 1−1−→ Irr(WG(L, λ))

between its d-Harish-Chandra series and the irreducible characters of its relative
Weyl group WG(L, λ).
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In order to describe the behaviour of character degrees under the map ρ(L, λ),
we need to note the following d-analogue of Howlett-Lehrer-Lusztig theory:

Theorem 4.2. Let G be a generic group, (L, λ) a d-cuspidal pair in G. Then for
any φ ∈ Irr(WG(L, λ)) there exists a rational function Dφ(X) ∈ Q(X) with zeros
and poles only at roots of unity or zero, satisfying

(i) Dφ(ζd) = φ(1)/|WG(L)|, where ζd := exp(2πi/d), and
(ii) Deg(γ) = ±|G|X′/|L|X′Deg(λ)Dρ(L,λ)(γ) for all γ ∈ E(G, (L, λ)).

In the case d = 1 this is a consequence of the Howlett–Lehrer–Lusztig theory of
Hecke algebras of induced cuspidal representations. (The rational function Dφ is
then the inverse of the Schur element of φ.) In the general case, there also exists a
cyclotomic Hecke algebra attached to the complex reflection group WG(L, λ). The
rational functions Dφ(X) should now be suitable specializations of inverses of the
Schur elements of this cyclotomic Hecke algebra with respect to a certain canonical
trace form. The latter statement is conjectured to be true in general (see [2]). It
has been proved for all but finitely many types, but a general proof is not known at
present. Nevertheless, the existence of the rational functions Dφ(X) satisfying (i)
and (ii) above has been verified in [20, Folg. 3.16 and 6.11] for groups of classical
type, and in [21, Prop. 5.2], [22, Prop. 7.1] for those of exceptional type.

4.3. d-Harish-Chandra theory for disconnected groups. We need to gen-
eralize the previously mentioned results from [4, Th. 3.2] and Theorem 4.2 to the
case of disconnected groups and also to extensions with automorphisms of Suzuki
and Ree type. So let G̃ = (G, 〈σ〉) be a generic disconnected group as introduced
in 3.5. The following result is well-known in the case d = 1 of cuspidal unipotent
characters.

Proposition 4.4. Let G be simple and (L, λ) be a d-cuspidal pair for G.

(a) There exists w ∈WG such that L is wσ-stable.
(b) If L is a proper Levi subgroup, we can choose w such that (L, λ) is wσ-stable.

Proof. Clearly we may assume that σ acts non-trivially. It is sufficient to show that
σ fixes the WG-orbit of L, respectively of (L, λ). Since G is simple, it is of type
An−1, Dn or E6. For An−1, for Dn with n odd and for E6, σ acts like −w0 on the
root system R∨, where w0 is the longest element of the Weyl group WG. Thus, w0σ
acts like −1 on R∨, commuting with W , and the claim follows.

Now assume that G has type Dn with n even. There the explicit description of
d-split Levi subgroups having a d-cuspidal character in [4, 3.A] shows that these
are uniquely determined up to WG-conjugacy for example by their generic order. In
particular, their WG-orbits must be σ-fixed, showing (a). For (b), let’s first consider
the case where σ has order 3, so n = 4. Then for all d-cuspidal pairs with L < G, L is
a torus, so λ = 1, hence the assertion is obvious. For σ of order 2, by Proposition 3.7,
the only unipotent characters not invariant under graph automorphisms are those
labelled by degenerate symbols. The d-split Levi subgroups occurring in d-cuspidal
pairs are direct products of a torus with a simple group of the same type as G,
possibly twisted (see [4, 3.A]). But it is readily checked that if L is a proper Levi
subgroup of G of type Dn or 2Dn, then any pair of characters labelled by the
same degenerate symbol is fused under WG(L), so there is only one orbit under WG
already. �
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Example 4.5. Note that part (a) of the previous statement is not true for arbitrary
d-split Levi subgroups, i.e., those not necessarily containing d-cuspidal characters.
Indeed, let G be of type D4. Then G has three non-conjugate 1-split Levi sub-
groups of type GL3, obtained by removing the three different end nodes of the
Dynkin diagram. Two, respectively all three of them are fused under the graph
automorphism of order 2 respectively 3. Also, the assumption that G be simple is
clearly necessary.

In part (b), the assumption that L is proper is necessary by Proposition 3.7.

In the situation of Proposition 4.4, we have shown that there exists w1 ∈WL such
that (L, 〈w1wσ〉) is a disconnected group. By our previous remarks, this induces an
action of w1wσ on the set of generic unipotent characters E(L). Thus, we obtain an
action on the set of cuspidal pairs modulo conjugation, which we call the action of
G̃. We define WG̃(L, λ) as the extension of WG(L, λ) by the stabilizer of λ under this
action, so that WG̃(L, λ) ∼= NG̃(L, λ)/L. This also makes sense for not necessarily
simple generic groups G.

We can now show that d-Harish-Chandra theory extends to disconnected groups.

Theorem 4.6. Let G̃ be a generic disconnected group and d ≥ 1.

(a) There is a partition

E(G̃) =
∐

(L,λ)/∼

E(G̃, (L, λ))

into d-Harish-Chandra series, where (L, λ) runs over the d-cuspidal pairs
in G modulo conjugation by G̃.

(b) For each d-cuspidal pair (L, λ), there is a bijection

ρ(L, λ) : E(G̃, (L, λ)) 1−1−→ Irr(WG̃(L, λ)).

(c) For each φ ∈ Irr(WG̃(L, λ)) there exists a rational function Dφ(X) ∈ Q(X)
with zeros and poles only at roots of unity or zero, satisfying Dφ(ζd) =
±φ(1), where ζd := exp(2πi/d), and

Deg(γ) = Deg(λ)Dρ(L,λ)(γ)

for all γ ∈ E(G, (L, λ)).

Proof. Part (c) follows from Theorem 4.2 once the first two parts have been es-
tablished. Now first assume that G is simple. Then G̃ is an extension of G by a
graph automorphism σ of the Dynkin diagram of G. If σ acts trivially on G, the
statement follows from the corresponding one in the connected group [4, Thm. 3.2].
If σ acts by an inner automorphism on the Weyl group, then by Proposition 3.7 all
generic unipotent characters of G are σ-stable, all d-cuspidal pairs are σ-stable by
Proposition 4.4 and WG̃(L, λ) is isomorphic to the direct product of WG(L, λ) with
〈σ〉. Thus again the result follows from the corresponding result in the connected
case.

It remains to consider G of type Dn, n even. The desired statement follows from
the case of connected groups unless one of the following cases occurs:

(a) WG̃(L, λ) is not the direct product of WG(L, λ) by 〈σ〉, or
(b) E(G, (L, λ)) contains characters not invariant under σ.
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(Note that by Proposition 4.4 it cannot happen for L proper that two classes of
d-cuspidal pairs (L, λ) are fused.)

Let first G be untwisted, that is, φ be trivial. We recall from [4, 3.A] the
description of d-cuspidal pairs (L, λ) in groups of type Dn. Let e := d/ gcd(d, 2). If
d is odd, L is the direct product of a torus with generic order (xe − 1)a by a group
of type Dr, with n = ea + r, and λ is labelled by a symbol Λ which is an e-core.
If d is even, L is the direct product of a torus with generic order (xe + 1)a with a
group of type Dr or 2Dr, with n = ea+ r, and λ is labelled by an e-cocore Λ. The
relative Weyl group of (L, λ) is then the imprimitive complex reflection group

WG(L, λ) = G(2e, s, a), where s =

{
2 if Λ is degenerate,
1 otherwise.

We can now rephrase our condition (b): by Proposition 3.7 it occurs if and only
if E(G, (L, λ)) contains unipotent characters labelled by degenerate symbols. But
note that the e-core (respectively the e-cocore) of a degenerate symbol is again
degenerate. So case (b) happens precisely if Λ is degenerate, that is, if the relative
Weyl group is of type G(2e, 2, a). But then WG̃(L, λ) = G(2e, 1, a), hence case (b)
occurs only if (a) is true.

Thus let us assume that (L, λ) is d-cuspidal, λ is labelled by a degenerate sym-
bol and WG̃(L, λ) = G(2e, 1, a). But then the pairs of characters in E(G, (L, λ))
corresponding to a degenerate symbol are labelled in the bijection ρ(L, λ) precisely
by those pairs of characters of G(2e, 2, a) which fuse in G(2e, 1, a). Thus the result
follows in this case.

In the case where φ is non-trivial of order 2 neither the case (a) above occurs by
[4, 3.1], nor does case (b) by Proposition 3.7.

For G of type D4 and σ of order 3, in any d-cuspidal pair (L, λ) either L is a
torus, or L = G (see [4, Table 3]). In the latter case, λ is a d-cuspidal character
of G and the theorem holds trivially. For the other relevant cases we have listed
the Levi subgroups and their relative Weyl groups in Table 1, up to Ennola-duality
to reduce the number of entries (see also Remark 4.7(b)). Here, G(4, 2, 2) and Gi
are Shephard and Todd’s notation for certain imprimitive respectively primitive
complex reflection groups. The split extension W (D4) : 3 is a normal subgroup of
the reflection group W (F4) of index 2. (This can be seen from the fact that the
normalizer of the subgroup of type D4 in F4 contains the graph automorphism of
order 3.) The assertion can now be checked from this table in conjunction with
Proposition 3.7 by direct verification.

Table 1. d-cuspidal pairs for D4

d L WG(L, λ) WG:2(L, λ) WG:3(L, λ) WG:S3(L, λ)
1 Φ4

1 W (D4) W (B4) W (D4) : 3 W (F4)
3 Φ2

1Φ3 Z6 Z6 × Z2 Z6 × Z3 Z6 ×S3

4 Φ2
4 G(4, 2, 2) G(4, 1, 2) G6 G8

The general case may easily be reduced to the case of simple generic groups. �

Remark 4.7. (a) We expect that the previous theorem is the consequence of a
statement on Lusztig-induction of unipotent characters, as in the case of connected
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groups, see [4, Thm. 3.2]. But it seems that at present not enough is known on the
decomposition of Lusztig-induction in the disconnected case in order to verify this.

(b) The action of σ on R∨ determines σ ∈ GL(Y ⊗R) only up to scalars. Different
choices lead to isoclinic groups WG〈σ〉. For the entries in Table 1 we have chosen σ
such that WG̃(L, λ) becomes a reflection group whenever possible; this choice may
differ for the various cosets.

(c) The complex reflection group G6 showing up as relative Weyl group in Table 1
for the principal 4-series does not occur as relative Weyl group in any connected
group (see [2, Tabelle 3.6]).

For G with an automorphism of Suzuki- or Ree-type as in Section 3.8, the list
of d-cuspidal pairs (L, λ) up to Ennola-duality, with L < G, is given in Table 2
(with the same understanding as in Remark 4.7(b)). From this it is easily verified
that the analogue of Proposition 4.4(a) holds in the present situation. On the other
hand, in G of type F4 there exist two WG-orbits of 4-cuspidal pairs (L, λi), i = 1, 2,
with L of type B2, where σ interchanges λ1 with λ2; thus Proposition 4.4(b) is no
longer true in this case.

Table 2. d-cuspidal pairs for Suzuki- and Ree-automorphisms

G d L WG(L, λ) WG̃(L, λ) remark
B2 1 Φ2

1 W (B2) G(8, 8, 2)
4 Φ4 Z4 Z8

G2 1 Φ2
1 W (G2) G(12, 12, 2)

3 Φ3 Z6 Z12

F4 1 Φ4
1 W (F4) W (F4) : 2

1 Φ2
1.B2 W (B2) G(8, 8, 2)

3 Φ2
3 G5 G14

4 Φ2
4 G8 G9

4 Φ4.B2 Z4 Z4 2 WG-orbits
8 Φ8 Z8 Z8 × Z2

12 Φ12 Z12 Z24

Nevertheless, from Table 2 it is easy to check that d-Harish-Chandra theory also
extends to this situation:

Theorem 4.8. The analogue of Theorem 4.6 continues to hold for automorphisms
of Suzuki- and Ree-type.

Remark 4.9. (Cf. Remark 4.7(c)) The complex reflection group G14 showing up
as relative Weyl group in Table 2 does not occur as relative Weyl group in any
connected group (see [2, Tabelle 3.6]).

5. Centralizers and normalizers of Sylow subgroups

In this section we collect several structural results about centralizers and nor-
malizers of Sylow p-subgroups.
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5.1. Properties of Φd-tori. Let p be a prime, q an integer prime to p. We define
ep(q) to be the multiplicative order of q modulo p if p 6= 2, respectively

e2(q) =

{
1 if q ≡ 1 (mod 4),
2 if q ≡ −1 (mod 4).

The following elementary number theoretic fact is well-known:

Lemma 5.2. Let q ≥ 1, p a prime not dividing q, and e the multiplicative order of
q mod p.

(a) We have p|Φf (q) if and only if f = epi for some i ≥ 0.
(b) If p2|Φf (q) then f = ep(q).

Proof. By assumption we have qe ≡ 1 (mod p). If p|Φf (q) then qf ≡ 1 (mod p),
hence e|f by the definition of e. Now note that Φet(X) divides Φt(Xe). Hence
p|Φet(q) implies p|Φt(1), so p divides the norm of 1− ζ for some primitive tth root
of unity ζ. This forces t to be a power of p (see [30, p.12]), proving one direction
in (a).

Now first assume that p > 2, hence e = ep(q). By the first part we know that, if
p2|Φf (q) then f = epi for some i ≥ 0. Write qe = 1 + cpa with p 6 |c, a ≥ 1, then

qep
j

= (1 + cpa)p
j

≡ 1 + cpa+j (mod pa+j+1)

for all j ≥ 1. Thus, if pa is the precise power dividing qe−1, then pa+j is the precise
power dividing qep

j − 1. In particular, (qep
j − 1)/(qep

j−1 − 1) is divisible by p, but
not by p2. By the first part the only cyclotomic factor of (qep

j − 1)/(qep
j−1 − 1)

which can account for this divisibility is Φepj (q). Thus Φf (q) is divisible by p, but
not by p2 if i > 0. This completes the proof of (a) and (b) for odd p.

If p = 2 then Φ2i(q) = q2
i−1

+ 1 for i ≥ 1. Clearly, this is even, and it is only
divisible by 4 if i = 1 and e2(q) = 2. �

We prove two results showing that certain abelian p-subgroups lie in Φd-tori:
one for abelian subgroups of maximal order, the other for those of maximal rank.

Recall that a generic group H = (X,R, Y,R∨,Wφ) is called semisimple if the
orthogonal complement of R in Y is zero.

Proposition 5.3. Let H = (X,R, Y,R∨,Wφ) be semisimple, p 6= 2 a prime divid-
ing |H|(q), and S a torus of H such that |S|(q)p is maximal possible in H. Then:

(a) S contains a Sylow Φe-torus of H, where e = ep(q).
(b) If moreover p 6 |o(φ), then the Sylow p-subgroup of S(q) is contained in the

Fq-points of the Sylow Φe-torus of S.

Proof. This is immediate if p does not divide the order of W 〈φ〉, since then Φe(X)
is the only cyclotomic polynomial dividing |H| whose value at q is divisible by p,
see [1, Cor. 3.13].

We next consider the case that p does not divide the order of φ. Assume, if
possible, that S does not contain a Sylow Φe-torus. Embed S into a maximal torus
T of H. Since p|Φe(q), T does not contain a Sylow Φe-torus either. Let wφ ∈ Wφ
such that T is obtained from the maximally split torus T0 = (X, ∅, Y, ∅, φ) of H by
twisting with wφ. Then the generic order of T is given by |T| = fwφ(X), where
fwφ is the characteristic polynomial of wφ in the natural reflection representation
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on Y . Write the generic order of |T| as a product of cyclotomic polynomials |T| =∏
d Φd(X)a(d). Let k ≥ 0 be minimal subject to

a(d) = 0 if pk+1|d and pk ≡ 1 (mod o(φ))

and consider the maximal torus T′ of H obtained from T0 by twisting with w′φ :=
(wφ)p

k ∈Wφ. By looking at the characteristic polynomial of w′φ we see that

|T′| =
∏
d

Φd(X)a(d)
′

where a(d)′ =

{
0 if p|d,∑
i≥0 ϕ(pi)a(dpi) if p 6 |d,

with the Euler ϕ-function. By Lemma 5.2(a) the only cyclotomic factor of |T′|(q)
divisible by p is Φe(q), and hence |T′|(q)p = Φe(q)

a(e)′

p . Clearly this is maximal if
T′ contains a Sylow Φe-torus. Since T does not contain a Sylow Φe-torus, there
exists some i > 0 with a(epi) > 0. But then by Lemma 5.2(b) the p-part of |T′|(q)
is larger than |T|(q)p, a contradiction. This argument also shows that in this case
the Sylow Φe-torus of S contains the full p-part of |S|(q), proving (b).

We now consider the general case of (a). If H is simple and p|o(φ), then neces-
sarily H is of type 3D4 with φ of order p = 3, since p 6= 2. In this case the assertion
is easily checked from the known order formulae. This completes the proof for H
simple.

Next assume that

Y = Y1 ⊕ . . .⊕ Ya and W = W1 × . . .×Wa

are φ-invariant decompositions of Y , W respectively, into a ≥ 2 isomorphic direct
summands, respectively factors permuted transitively by φ, and where Wi acts
trivially on Yj for i 6= j. Thus H is the lifting of scalars H(a)

1 of a simple generic
group

H1 = (X1, R1, Y1, R
∨
1 ,W1φ

a)
with |H(x)| = |H1(xa)| (see [4, (1.3)]). Since e is minimal with p|Φe(q), e1 :=
e/ gcd(e, a) is minimal with p|Φe1(qa). If S is a torus as in the statement, then
there exists a torus S1 of H1 such that S is contained in S(a)

1 . By the first part of
the proof, S1 contains a Sylow Φe1-torus of H1. But then S(a)

1 in turn contains a
Sylow Φe-torus of H. By the maximality assumption on S, this must be contained
in S, as claimed.

If H is a direct product of simple factors, then the result follows from the corre-
sponding one for the individual factors. Finally note that the generic orders of tori
are insensitive to the isogeny type, so we may assume that the derived group of H
is of simply connected type. Then H is a direct product as before. This completes
the proof. �

Let’s note the following consequence:

Corollary 5.4. If H is semisimple and p > 2 divides |H|(q) then Φe divides |H|,
where e = ep(q).

Remark 5.5. By Lemma 5.2 it is clear that in the situation of Corollary 5.4, |H| is
divisible by Φd for some d = epi, i ≥ 0. But note that even for semisimple groups
it is not true in general that if Φd divides |H| then Φe divides |H| for all divisors
e|d. An example is H of type 3D4 whose generic order is divisible by Φ12 but not
by Φ4.
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The same group also gives a example that Proposition 5.3 (b) may fail when
p|o(φ): for q ≡ 1 (mod 3) the maximal torus S of order Φ2

1Φ3 has maximal possible
3-part, but the order of 3D4 is divisible by Φ2

1Φ
2
3, so S(q) does not contain a Sylow

3-subgroup of 3D4(q).
Both Proposition 5.3 and Corollary 5.4 fail for arbitrary generic groups; as an

example take the torus of generic order Φ3 for H, p = 3 and q such that e3(q) = 1.

We need the following observation from [1, Cor. 3.13]:

Proposition 5.6. Let T be a Φd-torus of order Φad, q a prime power and p a prime
dividing |T|(q). Then the Sylow p-subgroup of T(q) is homocyclic of type Zak , where
k = pb is the precise power of p dividing Φd(q).

Proposition 5.7. Let H = (X,R, Y,R∨,Wφ) be semisimple, p 6 |2o(φ) a prime
dividing |H|(q), and S a torus of H such that S(q) has maximal possible p-rank.
Then S contains a Sylow Φe-torus Se of H, where e = ep(q), and the Sylow p-
subgroup of S(q) is contained in Se(q).

Proof. This is immediate if p does not divide the order of W 〈φ〉, since then Φe(X)
is the only cyclotomic polynomial dividing |H| whose value at q is divisible by p,
see [1, Cor. 3.13].

The general case follows easily with a variation of the first part of the proof of
Proposition 5.3 using the structure result of Proposition 5.6. �

Note that, in contrast to Proposition 5.3, the previous statement does not hold
without the restriction that p 6 |o(φ): in H of type 3D4, with q ≡ 1 (mod 3), both
a Sylow Φ1- and a Sylow Φ3-torus contain an elementary abelian 3-subgroup of
maximal rank.

5.8. Centralizers of Sylow subgroups. We now show that centralizers of Sylow
subgroups are strongly related to centralizers of Sylow tori. The proof of this result
would be much simpler if we would assume that the underlying group is of simply-
connected type, but unfortunately we will need the result just in the opposite case,
the adjoint one.

Theorem 5.9. Let H be simple, defined over Fq with corresponding Frobenius map
F : H→ H, let H := HF and p a prime divisor of |H|, not dividing q. Then every
semisimple element g ∈ H which centralizes a Sylow p-subgroup of H lies in a torus
containing a Sylow Φe-torus of H, where e = ep(q). In particular, g centralizes a
Sylow Φe-torus.

Proof. Let g ∈ H be semisimple, centralizing a Sylow p-subgroup of H, and set
C := CH(g). We proceed in several steps.

(1) Assume for a moment that the index (C : C◦) is prime to p. Then C := (C◦)F

contains a Sylow p-subgroup of H. The generic orders of H and C◦ are both monic
polynomials, with the second dividing the first. Hence, all cyclotomic polynomials
Φi with p|Φi(q) dividing the generic order of H also divide the generic order of C◦,
to the same power. In particular, a Sylow Φe-torus of C◦ is a Sylow Φe-torus of
H. Thus, g centralizes a Sylow Φe-torus of H. By [8, Prop. 3.5.1] we even have
g ∈ C◦, so g is contained in a maximal torus containing a Sylow Φe-torus.

(2) Now first assume that H is an arbitrary connected reductive group and the
order of g is prime to p. By [29, Cor. 2.16] the exponent of C/C◦ divides the order
of g, so is prime to p. Hence the claim follows from the previous consideration.
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(3) Next assume that g has p-power order. Let π : H̃→ H denote the universal
covering of H. Again by [29, Cor. 2.16] the factor group C/C◦ is isomorphic to a
subgroup of the fundamental group ker(π), hence we are done by step (1) if | ker(π)|
is prime to p. This argument works for arbitrary semisimple groups.

Consulting the list of possible orders of | ker(π)| for simple groups we see that the
only cases not covered by the above argument are H of type An−1 with p dividing
n, H of type Bn, Cn, Dn or E7 with p = 2, and H of type E6 with p = 3.

If p = 2 and H is of type Bn, Cn, or E7, then |C/C◦| ≤ | ker(π)| ≤ 2. By the
definition of e = e2(q), Φe(q) is divisible by 4. Hence, if C◦ does not contain a
Sylow Φe-torus, then C/C◦ is also divisible at least by 4, a contradiction.

Now let H be of type Dn and p = 2. By [26, Cor. II.5.19] a Sylow 2-subgroup S
of H is contained in the normalizer of some maximal torus of H. If H is untwisted
and q ≡ 1 (mod 4) (so e = 1), then S ≤ T.W (Dn), where T is the Sylow Φ1-torus.
Since W (Dn) acts faithfully on the homocyclic subgroup Cn4 of T , every 2-central
element of S is already contained in the maximal torus T . Similarly, for q ≡ 3
(mod 4) (so e = 2) and n even, we have S ≤ T.W (Dn) where T is a Sylow Φ2-torus
of H. If q ≡ 3 (mod 4) and n is odd, we have S ≤ T.W (Bn−1) where now T
contains a Sylow Φ2-torus of H. We may now argue as before. The same reasoning
applies if H is of twisted type.

For H of type An−1 we may again use the explicit knowledge of the Sylow
structure of H. First assume that H is untwisted. Then, a Sylow p-subgroup of
H is contained in the normalizer of a Sylow Φe-torus T of order Φae of H, where
0 ≤ n − ea < e, with centralizer quotient a wreath product Ce o Sa. Here, the
Ce-factors act as field automorphisms of Fqe/Fq on cyclic subgroups of T of order
Φe(q), while Sa permutes the coordinates. In particular the centralizer quotient
acts faithfully on the Sylow p-subgroup of T , and we may conclude as before.

For H of type E6 with p = 3, with H untwisted, the only class of 3-central
3-elements has centralizer of type A2(q)3.3 if q ≡ 1 (mod 3) (so e = 1), respec-
tively 2A2(q)A2(q2) if q ≡ −1 (mod 3) (so e = 2), by [14, Tab. 4.7.3A]. Both
contain a Sylow Φe-torus. The center of a Sylow 3-subgroup of A2(q)3.3 respec-
tively 2A2(q)A2(q2) does not contain elements of order 9. The case for twisted H
is analogous.

(4) Finally, in the general case, let g = g1g2 be the decomposition of g into
its p- and p′-parts. By step (3) the connected component C◦

1 of the centralizer
C1 = CH(g1) of g1 contains a Sylow Φe-torus of H. Since CH(g) ≥ CC◦

1
(g2), the

result now follows from (2) applied to the element g2 of the reductive group C◦
1. �

5.10. Normalizers of Sylow subgroups. We now turn to an important property
of Sylow normalizers. Let H be connected reductive, defined over Fq. See [1,
Prop. 3.12] for a version of the following result:

Proposition 5.11. Let S be a Sylow Φe-torus of H. Then NH(S) controls H-fusion
in CH(S).

Proof. Let g1, g2 ∈ CH(S) be conjugate in H, so g2 = gg1 for some g ∈ H. Let
C := CH(g2)◦ and write¯ : C → C/Ru(C) for the natural epimorphism onto the
connected reductive group C̄ = C/Ru(C). Then S̄ and S̄g are Sylow Φe-tori of
C̄, hence conjugate by some c ∈ C̄F by the Sylow Theorem 3.2 for Φe-tori. Thus
ScRu(C) = SgRu(C), so that Sc,Sg are F -stable maximal tori of the solvable
connected group ScRu(C). Hence they are conjugate by some v ∈ Ru(C)F . In
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conclusion, g(cv)−1 ∈ H normalizes S, so g = ncv for some n ∈ NH(S), and
g2 = gg1 = gn1 as claimed. �

Let σ : H → H be an onto endomorphism of H commuting with F . Then σ
stabilizes H = HF , and its restriction to H is an element of Aut(H). If H is simple,
then by Steinberg’s classification of automorphisms of finite groups of Lie type [27,
Th. 30 and 36] every element of Aut(H) arises in this way. We can therefore
consider any automorphism of H as an automorphism (of abstract groups) of H
commuting with F . This gives sense to the following statement:

Proposition 5.12. Let H be simple, Se a Sylow Φe-torus of H. Then Aut(H) =
NAut(H)(Se).H.

Proof. Let σ ∈ Aut(H) commuting with F . By [28, 7.1] σ permutes the F -stable
tori of H, and it preserves the generic orders. Thus, σ permutes the Φe-tori of H.
The claim now follows from the Sylow theorem for Φe-tori by a Frattini-argument.

�

We now show that normalizers of Sylow subgroups are strongly related to nor-
malizers of Sylow tori. Here, in contrast to the situation for Theorem 5.9, the proof
would be much simpler if we would assume that the underlying group has con-
nected center, but unfortunately we will need the result just in the opposite case,
the simply-connected one. Recall that a subgroup is called toral if it is contained
in some torus.

Proposition 5.13. Assume that H is simple. Let p 6 |2o(φ), P ≤ HF a toral el-
ementary abelian p-subgroup of maximal possible rank. Then P is contained in a
unique Sylow Φe-torus of H.

Proof. By assumption there exists an F -stable torus T of H such that P ≤ TF .
Clearly all Sylow Φe-tori containing P lie in L := CH(P )◦. Clearly, T ≤ L, so
P ≤ L and hence P ≤ Z(L).

First assume that p is good for H. Then by repeated application of [12, Prop. 2.1]
we see that L is a proper Levi subgroup of H. We claim that |Z(L)/Z(L)◦| is prime
to p. If |Z(H)/Z(H)◦| is prime to p this follows as in [10, Lemma 13.14]. In the
general case observe that if |Z(L)/Z(L)◦| is divisible by p, then L, being connected,
has at least one simple factor L1 with the same property. Going through the list of
simple groups L1 one sees that the p-rank of |Z(L1)/Z(L1)◦| is at most one, but Φe
divides the generic order of L1 at least twice. Since the rank of P is at least equal
to the precise power of Φe dividing the generic order of H, no such factor can arise,
and the claim is proved. Hence P is an elementary abelian p-subgroup of the torus
Z(L)◦ of H. By Proposition 5.7 this implies that Z(L)◦ contains a Sylow Φe-torus
of H, the only Sylow Φe-torus of L. The claim follows in this case.

If p is bad for H, that is, if p = 3 for the exceptional types, or p = 5 for E8,
one sees by inspection (using for example [14, Tab. 4.7.1]) that L is a proper Levi
subgroup of H. Then the previous argument applies. �

The example of 3D4(q) with p = 3, q ≡ 1 (mod 3), given after Proposition 5.7
shows that the assumption p 6 |o(φ) in Proposition 5.13 is again necessary.

Theorem 5.14. Let H be simple, defined over Fq with corresponding Frobenius
map F : H→ H and H := HF . Let p 6= 2 be a prime divisor of |H|, not dividing q
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and Sp a Sylow p-subgroup of H. Then there exists a Sylow Φe-torus Se of H with
NH(Sp) ≤ NH(Se), where e = ep(q), unless p = 3 and one of

(a) H = SL3(q) with q ≡ 4, 7 (mod 9), or
(b) H = SU3(q) with q ≡ 2, 5 (mod 9), or
(c) H = G2(q) with q ≡ 2, 4, 5, 7 (mod 9).

Proof. If p is large enough, that is, if p does not divide |W 〈φ〉|, then this is implicit
in [4, Thm. 5.24]. In the more general case that the Sylow p-subgroup of H is
abelian, this is shown in [6, Thm. 2.1(3)].

If p ≥ 5, then by the conceptual argument in Cabanes [7, Thm. 4.4] any Sylow
p-subgroup Sp of H contains a unique maximal elementary abelian toral p-subgroup
P . By Proposition 5.13 this is contained in a unique Sylow Φe-torus Se of H. Thus
any g ∈ NH(Sp) stabilizes P , hence stabilizes Se, so lies inside NH(Se).

For p = 3 a case-by-case analysis from Gorenstein–Lyons [13, (10-2)] shows that
when H is not of type A2, G2, or D4 with o(φ) = 3, then again Sp contains a unique
maximal elementary abelian toral p-subgroup, and we may conclude as before.

Explicit computation shows that the conclusion continues to hold if H = PGL3,
if H = SL3(q) with q 6≡ 4, 7 (mod 9), and if H = SU3(q) with q 6≡ 2, 5 (mod 9).
Also, if G2(q) contains elements of order 9, the normalizer of a Sylow 3-subgroup
is contained in the normalizer of a Φe-torus. For H = 3D4(q), 3 6 |q, the description
of local subgroups in [16] shows that the normalizer in H of a Sylow 3-subgroup
is contained in a subgroup U = (Cq2+q+1 ◦ SL3(q)).3 respectively U = (Cq2−q+1 ◦
SU3(q)).3. If q ≡ ±1 (mod 9) then by the case of SL3(q) respectively SU3(q) above,
the normalizer of a Sylow 3-subgroup is contained in the normalizer of a Φe-torus of
U . If q ≡ 2, 4, 5, 7 (mod 9), the Sylow 3-subgroup of U is contained in a subgroup
of GL3(q) respectively GU3(q) of 3′-index. In particular the Sylow 3-normalizer is
contained in the Sylow 3-normalizer of GL3(q) respectively GU3(q), which in turn
is contained in the normalizer of a Φe-torus. This leaves the stated exceptions. �

Remark 5.15. Note that the assumption in Theorem 5.14 is necessary: the nor-
malizer of a Sylow 2-subgroup of SL2(q), q ≡ 3, 5 (mod 8), is SL2(3) which is not
contained in the normalizer of a Sylow Φ1- or Φ2-torus. Also, in SL3(q), q ≡ 4, 7
(mod 9), as well as in SU3(q), q ≡ 2, 5 mod 9, the normalizer of a Sylow 3-subgroup
is an extraspecial group 31+2 extended by the quaternion group of order 8, which
again does not lie in the normalizer of any maximal torus.

5.16. Normalizers of Sylow 2-subgroups. The statement of the previous The-
orem remains true for the prime p = 2, with a single family of exceptions. This
can be proved using so-called fundamental A1-subgroups. For this, let H be a sim-
ple algebraic group defined over a finite field Fq of odd order, with corresponding
Frobenius endomorphism F : H → H, and H := HF . Let B be an F -stable Borel
subgroup and T ⊂ B an F -stable maximal torus. Denote by Σ the set of roots of
T with respect to B. For a long root α ∈ Σ the subgroup 〈XF

α ,X
F
−α〉 generated by

the F -fixed points of the long root subgroup Xα and its opposite is called a fun-
damental A1-subgroup of H. Let A be a maximal set of commuting A1-subgroups
of H, and M := 〈A ∈ A〉. Let R := NH(M). Then we have the following crucial
result of Aschbacher (see [14, Thm. 4.10.6]):

Theorem 5.17. In the above notation, R contains the normalizer of a Sylow 2-
subgroup of H. Furthermore, R permutes the A ∈ A transitively. The kernel R0 of
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this action is a product R0 = MTL, where T = TF is a maximally split torus and
L is either trivial or a short root A1-subgroup (possibly defined over an extension
field).

As we will see, it follows from this description that in most cases Sylow 2-
normalizers are contained in normalizers of maximal tori. Set e := e2(q). We first
consider the case where H is of type A1. The subgroup structure of PGL2(q) and
of PSL2(q) is well-known. It follows from this that Sylow 2-subgroups of H are
self-normalizing and hence normalize a maximal torus of H with maximal 2-part,
that is, a Sylow Φe-torus, except when H = SL2(q) and q ≡ 3, 5 (mod 8). (In the
latter case the Sylow 2-normalizer are isomorphic to SL2(3) and are not contained
in the normalizer of any maximal torus of H):

Lemma 5.18. Let H be of type A1. Then the Sylow 2-subgroups of H are self-
normalizing and hence contained in the normalizer of a Sylow Φe-torus of H, unless
H = SL2(q) with q ≡ 3, 5 (mod 8).

We now obtain the analogue of Theorem 5.14 for p = 2:

Theorem 5.19. Let H be a simple algebraic group defined over a field of odd order
q, with corresponding Frobenius endomorphism F : H → H, and H := HF . Let
e := e2(q). Then the normalizer of a Sylow 2-subgroup of H is contained in the
normalizer of a Sylow Φe-torus of H, unless H = Sp2n(q) with n ≥ 1 and q ≡ 3, 5
(mod 8).

Proof. In the notation introduced above, let S be a Sylow 2-subgroup of R. By
Theorem 5.17 we have NH(S) = NR(S). Let R̄ := R/R0. Then NR(S)R0/R0 ⊆
NR̄(S̄) where S̄ := SR0/R0. By inspection of the cases in [14, Table 4.10.6], R̄ has
self-normalizing Sylow 2-subgroups, so that NR̄(S̄) = S̄. Hence NR(S) ⊆ SR0, and
then in fact NR(S) ⊆ SNR0(S ∩R0).

We next claim that Ñ := NR0(S ∩R0)/Z(R0) is a 2-group. Then

NR0(S ∩R0) = (S ∩R0)Z(R0) = (S ∩R0)× Z(R0)2′ ,

so NR(S) ⊆ S × CZ(R0)(S)2′ . Since the latter is a supersolvable group, it is con-
tained in the normalizer of a maximal torus of H by [26, Th. II.5.16(b)]. By
Proposition 5.20 below, it normalizes a Sylow Φe-torus.

In order to prove the claim, let

R̃0 := R0/Z(R0), Ã∗ := A∗T/Z(R0) for A∗ ∈ A, L̃ := LT/Z(R0),

so that R̃0 is the subdirect product of L̃ with the Ã∗ for A∗ ∈ A. Also, denote
S̃ := (S ∩R0)/Z(R0). Now assume that g ∈ Ñ has odd order. Since R0 normalizes
all A∗ ∈ A, g normalizes the Sylow 2-subgroup S∗ := S̃∩Ã∗ of Ã∗, and it normalizes
a Sylow 2-subgroup S0 of L̃. We will show that, except when H = Sp2n(q) with
q ≡ 3, 5 (mod 8), Ã∗ and L̃ both have self-normalizing Sylow 2-subgroups. Then
necessarily g ∈ Z(R̃0) = 1 and our claim is proved.

First assume that H contains an F -stable subgroup H1 of type A2 generated by
long root subgroups. Since all long root subgroups are conjugate, we may assume
that A∗ ≤ H1. Then A∗(H1 ∩ T ) is the Levi complement of a maximal parabolic
subgroup of H1, hence isomorphic to GL2(q) or GU2(q). Thus, Ã∗ ∼= PGL2(q). It
follows from Lemma 5.18 that its Sylow 2-subgroup is self-normalizing, as claimed.

The only cases without an F -stable subgroup of type A2 generated by long root
subgroups are for H of type Cn with n ≥ 1. Here, the fundamental subgroups
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are isomorphic to SL2(q), hence have self-normalizing Sylow 2-subgroups except
when q ≡ 3, 5 (mod 8) by Lemma 5.18. In the case of adjoint type, it follows
from the Steinberg relations that Ã∗ ∼= PGL2(q), so the Sylow 2-subgroups are
self-normalizing.

The cases with L 6= 1 are listed in [14, Table 4.10.6]: then H is of type Bn with
n odd, of type 2Dn with n even, of type G2, or of type 3D4. Here, it can be seen
by direct calculations inside R with the Steinberg relations that T acts by outer
diagonal automorphisms on L and thus, as above, the Sylow 2-subgroups of L̃ are
self-normalizing. �

We also record the following assertion in the case p = 2, where now H is an
arbitrary connected reductive group:

Proposition 5.20. Let H be a connected reductive group defined over Fq, q odd,
with corresponding Frobenius map F : H → H and H := HF . Let e = e2(q) and
Se a Sylow Φe-torus of H. Then NH(Se) contains a Sylow 2-subgroup of H.

Proof. Let T be some F -stable maximal torus in the centralizer of Se. Since Se is
the unique Sylow e-torus of T, clearly NH(T) ≤ NH(Se). So it suffices to see that
NH(T) contains a Sylow 2-subgroup.

The group H has an F -stable decomposition H = H1 · · ·HnZ with Hi simple
and Z a central torus. First assume that Z = 1 and F permutes the Hi transitively.
Thus H ∼= HFn

1 is the group of fixed points of a simple algebraic group, and the
assertion can be checked from the order formulae and the fact that |NH(T)| =
|TF ||W (T)|, where W (T) is the centralizer in Wφ of φ or w0φ, with the longest
element w0 of W .

In general, change notation so that now the Hi are minimal F -stable products
of simple factors of H. Then clearly

NH(T) = NH1(T ∩H1) · · ·NHn(T ∩Hn)ZF ,

with Hi := HF
i , so the claim follows from the previous case. �

This allows to state the following general property:

Proposition 5.21. Let H be simple, defined over Fq with corresponding Frobenius
map F : H → H and H := HF . Let p be a prime divisor of |H|, not dividing q,
and e = ep(q). Then the normalizer NH(Se) of a Sylow Φe-torus Se of H contains
a Sylow p-subgroup of H.

Proof. For p ≥ 3 this is in [14, Th. 4.10.2], for p = 2 it was shown in Proposi-
tion 5.20. �

6. Unipotent height 0 characters

In this section we start our investigation of characters of p-height 0 by considering
unipotent characters.

6.1. Specializations of cyclotomic polynomials. We need to study specializa-
tions of cyclotomic polynomials at integers and roots of unity. Let q be a prime
power, p a prime not dividing q. Let ζe denote a primitive e := ep(q)th root of
unity over Q, and Ne : Q[ζe]→ Q the norm of Q[ζe]/Q.

Lemma 6.2. Let p, q, e be as above. Let f(X) ∈ Q[X] be a product of cyclotomic
polynomials not divisible by Φe(X). Then Ne(f(q)/f(ζe)) ≡ 1 (mod p).



HEIGHT 0 CHARACTERS 21

Proof. Our assumption on p, q, e implies that q ≡ ζe (mod p) in Q[ζe] for some
prime ideal p of the ring of integers of Q[ζe] containing p.

Clearly it is sufficient to verify the assertion for linear polynomials f(X) = X−ζ,
where ζ is a root of unity. Let P be a prime divisor of q− ζe in K := Q[ζ, ζe] lying
above p. Let νP denote the extension of the p-valuation from Qp to the p-adic field
KP. If ζζ−1

e does not have p-power order, then ζ − ζe is a unit in KP, see for
example Washington [30, p.12], hence prime to p, and q − ζ ≡ ζe − ζ (mod P) are
both prime to p. Our claim follows.

If ζζ−1
e has order pa, a ≥ 1, then

νP(ζ − ζe) = 1/φ(pa)

with the Euler φ-function (see [30, p.9]). On the other hand, Φe(q) is divisible by
p, respectively by 4 if p = 2, so

νP(q − ζe) ≥

{
1/φ(e) for p > 2,
2/φ(e) for p = 2.

But if p > 2 then e|(p− 1) implies φ(e) < φ(pa), while for p = 2 we have φ(e)/2 <
φ(pa). Thus the first term on the right hand side of

q − ζ
ζe − ζ

=
q − ζe
ζe − ζ

+ 1

has positive P-valuation, and the result follows. �

As an immediate consequence we obtain:

Corollary 6.3. Let f(X) = rf1(X)/f2(X) with r ∈ Q×, f1(X), f2(X) ∈ Q[X]
products of cyclotomic polynomials not divisible by Φe(X). Then Ne(f(q)/f(ζe)) ≡
1 (mod p). In particular, Ne(f(q)/f(ζe)) is a rational number with numerator and
denominator prime to p.

6.4. p-heights of unipotent characters in non-defining characteristic. We
need to study p-heights of unipotent characters of a not necessarily connected re-
ductive group H defined over Fq with Frobenius endomorphism F : H → H and
group of fixed points H := HF . This is most conveniently done in the setting of
disconnected generic groups as recalled in Section 3. We start with a property of
cuspidal pairs of connected groups:

Proposition 6.5. Assume that H is connected. Let p be a prime, p 6 |q, and e =
ep(q). Let χ ∈ E(H, 1) be e-cuspidal. If the Sylow Φe-tori of H are not central,
then χ(1) is divisible by p.

Proof. By [4, Prop. 2.4] the assumptions that χ is e-cuspidal and that the Sylow Φe-
tori of H are not central imply that Φe also divides the degree polynomial Deg(χ) of
χ. Since the degree polynomial of a unipotent character is a product of cyclotomic
polynomials times a rational integer whose denominator only involves bad primes
for H (see 3.4(3.2)) and, by assumption, p divides Φe(q), we are done whenever p
is good for H.

By the properties of Lusztig induction RH
L the e-cuspidal characters of a product

of groups are the exterior tensor products of the e-cuspidal characters of the fac-
tors, thus it suffices to prove the result for simple groups H, and, by our previous
argument, for bad primes p.
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First assume that e = 1. The 1-cuspidal characters are the cuspidal characters
in the usual sense; their degree polynomial is divisible by the full Φ1-part of the
generic order of H (see [4, Prop. 2.4]). On the other hand, Lusztig has shown that
the denominators occurring in degree polynomials of unipotent characters all divide
the order of a certain finite group attached to H. In the following table we list the
relevant data. The first row lists those simple types H for which cuspidal unipotent
characters exist, where s ≥ 1 is an integer. The second gives the precise power of
Φ1 dividing the generic order of H, hence a lower bound on the exponent of p in
the cyclotomic part of the degree of cuspidal unipotent characters. The third row
gives the order of the finite group controlling the denominators.

H Bs2+s Cs2+s D4s2
2D(2s+1)2 G2

3D4 F4 E6
2E6 E7 E8

rk(H) s2 + s s2 + s (2s)2 (2s+ 1)2 2 2 4 6 4 7 8
denom 2s 2s 22s−1 22s 6 2 24 6 6 2 120

(This table can be extracted from [8, 13.7], for example.) A quick look shows that
in any case, the entry in the second row is superior to the exponent of any (bad)
prime occurring in the factorization of the number in the third row. Thus the
statement follows in this case.

If e = 2, then we may use Ennola duality (see (3.3)) to pass from 2-cuspidal
characters of H to 1-cuspidal characters of H−. Thus we may conclude by the case
e = 1.

Now bad primes satisfy p ≤ 5. For p ∈ {2, 3} we always have e = ep(q) ≤ 2 by
definition, so only p = 5 with e = 4 remains. The prime 5 is only bad for simple
groups of type E8. Again by [4, Prop. 2.4], the degree polynomial of any 4-cuspidal
unipotent character of E8 is divisible by Φ4

4. Since all denominators are divisors of
120, which contains 5 only to the first power, we again obtain divisibility by 5. �

We now return to the case of a general, not necessarily connected group H.

Corollary 6.6. A unipotent character χ ∈ E(H, 1) has p-height 0 if and only if χ
lies in the e-Harish-Chandra series of (L, λ), where L := CH(Se) is the centralizer
of a Sylow Φe-torus and λ ∈ E(L, 1), and both λ and ρ(L, λ)(χ) ∈WH(L, λ) are of
p-height 0.

Proof. By Theorem 4.6 χ lies in the e-Harish-Chandra series of some e-cuspidal
pair (L, λ) of (H◦)F . By Proposition 6.5 the Sylow Φe-tori of L are central if
χ has height 0, thus L = CH(Se). But then all unipotent characters of L are
e-cuspidal. According to Theorem 4.6(c) we have the degree formula Deg(γ) =
Deg(λ)Dφ with φ = ρ(L, λ)(χ). Here the polynomials Deg(γ) and Deg(λ) are
products of cyclotomic polynomials not divisible by Φe. Hence Dφ is a rational
function satisfying the assumptions of Corollary 6.3. Then

χ(1) = Deg(γ)(q) = Deg(λ)(q)Dφ(q) = λ(1)Dφ(q).

Again by Theorem 4.2(c) and Corollary 6.3 we have

Dφ(q) ≡ Dφ(ζe) = ±φ(1) (mod p).

Thus, χ is of p-height 0 if and only if both λ and φ = ρ(L, λ)(χ) ∈WH(L, λ) are of
p-height 0. �

6.7. p-heights of unipotent characters in defining characteristic. Let now
H be a connected reductive group defined over Fq with Frobenius endomorphism
F : H→ H and group of fixed points H := HF , and p the prime dividing q.
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Theorem 6.8. Assume that H is simple. Let E(H, 1)p′ denote the set of unipotent
characters of H of degree prime to p. Then one of the following holds:

(1) |E(H, 1)p′ | = 1, or
(2) H is of type Bn (n ≥ 2), Cn (n ≥ 3), G2 or F4, q = 2, and |E(H, 1)p′ | = 5,

or
(3) H is of type G2, q = 3, and |E(H, 1)p′ | = 7.

Proof. By formula 3.4(3.2), the degree γ(1) of a unipotent character γ ∈ E(H, 1)
is divisible by p unless 1

nγ
qaγ is prime to p. Lusztig’s results show that aγ > 0 if

γ 6= 1H . Thus if γ is of p′-degree, we must necessarily have q = p, since character
degrees are integers. Moreover p is a bad prime for H. The maximal possible
denominators nγ have been described in the proof of Proposition 6.5. It ensues
that either aγ = 1 or p = 2. For H of type An or 2An there are no bad primes. For
H of exceptional type the explicit formulae for the degrees of unipotent characters
[8, 13.8] show that only cases (2) and (3) arise.

For the other (classical) groups p = 2 is the only bad prime. The unipotent
characters in type Bn are parametrized by symbols of rank n and odd defect (see
for example [8, 13.8]). We may assume that not both rows in the symbol contain 0.
Then the formulae show that 2aγ/nγ is even unless the symbol has at most three
entries, and the second smallest entry is equal to 1. The case of one entry leads
to the trivial character, and there are four symbols of rank n with three entries
such that the two smallest entries are 0, 1. The parametrization and the degrees of
unipotent characters in type Cn are the same as for Bn.

The unipotent characters in types Dn and 2Dn are parametrized by symbols
of rank n and even defect. Again the explicit formulae show that the degrees are
even unless the symbol has at most two entries. But then the denominator actually
turns out to be 1, and we only get the trivial character. �

Another way to formulate the previous result is the following. A finite reductive
group H over Fq, q a power of p, has unipotent characters of p-height 0 other than
the trivial character if and only if the Dynkin diagram of H has at least a p-fold
bond, and q = p.

7. Height 0 characters of groups of Lie type

In this section we use Lusztig’s classification of the irreducible complex charac-
ters of groups of Lie type, together with the theory of generic groups and generic
unipotent characters in order to classify the height 0 characters for primes p differ-
ent from the defining characteristic.

7.1. Characters of p-height 0. Let G be a connected reductive algebraic group
defined over Fq with respect to the Frobenius endomorphism F : G → G, G∗ a
group in duality with G with corresponding Frobenius endomorphism F ∗ : G →
G∗, and G := GF , G∗ := G∗F∗

their groups of fixed points. Let p be a prime
dividing |G| but not dividing q and let e = ep(q). By the discussion in Section 2.1
any χ ∈ Irr(G) lies in a unique Lusztig series E(G, s) such that χ(1) = (G :
CG∗(s))q′ψs(χ)(1). Now χ(1) is prime to p if and only if both (G : CG∗(s))q′
and ψs(χ)(1) are. Thus, height 0 characters of G may be parametrized as follows:

Proposition 7.2. Let p be a prime, p 6 |q, and Sp a Sylow p-subgroup of G∗. Then
χ ∈ Irr(G) has p-height 0 if and only if
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(i) χ ∈ E(G, s) with s ∈ CG∗(Sp), and
(ii) ψs(χ) ∈ E(CG∗(s), 1) has p-height 0.

We thus obtain the following natural parametrization of characters of height 0:

Proposition 7.3. The irreducible complex characters of G of p-height 0 are in
bijection with triples (s, λ, φ), where

(i) s ∈ G∗ is semisimple centralizing a Sylow p-subgroup of G∗, modulo conju-
gation,

(ii) λ is a unipotent height 0 character of L := CM (S∗e) up to WM (L)-conjuga-
tion, where M = CG∗(s) and S∗e is a Sylow Φe-torus of M , and

(iii) φ ∈ Irr(WM (L, λ)) is of p-height 0.

Proof. By Proposition 7.2, to χ ∈ Irr(G) of height 0 there is attached a semisimple
element s ∈ G∗ centralizing a Sylow p-subgroup, modulo conjugation. Furthermore,
the unipotent character χ′ := ψs(χ) ∈ E(CG∗(s), 1) of CG∗(s) has height 0. The
assertion now follows from Corollary 6.6 applied to CG∗(s). �

Additionally, we have the following congruence of character degrees:

Proposition 7.4. In the notation of Proposition 7.3 above, assume that χ ∈
Irrp′(G) corresponds to the triple (s, λ, φ). Then

χ(1) ≡ ± |G|q′
|L|q′ |WM (L, λ)|

λ(1)φ(1) (mod Φe(q)).

In particular, this congruence holds modulo p.

Proof. By Lusztig’s Jordan decomposition of characters (2.1) we have

χ(1) =
|G|q′
|M |q′

ψs(χ)(1).

since by definition M = CG∗(s). By Theorem 4.2(ii) the degree of ψs(χ) satisfies

ψs(χ) = ±|M |q
′

|L|q′
λ(1)Dρ(L,λ)(ψs(χ))

and by Theorem 4.2(i) we have

Dρ(L,λ)(ψs(χ)) ≡ φ(1)/|WM (L, λ)| (mod Φe(q)).

This yields the desired conclusion. Note that by definition p|Φe(q). �

This congruence can also be seen as being a consequence of the main result of [4]
which states that for large prime divisors of Φe(q) there exists a perfect isometry
between the unipotent characters of G and characters of the normalizer of a Sylow
Φe-torus.

Let us now fix a Sylow Φe-torus Se of G, and let C := CG(Se). Then by
Lemma 3.3 we may identify the dual group C∗ with the centralizer CG∗(S∗e). We
also set N := NG(Se) and N∗ := NG∗(S∗e). Clearly, C, N and C∗ and N∗ are F -
respectively F ∗-stable. Let C := CF , C∗ := C∗F , N := NF and N∗ := N∗F .

Theorem 7.5. Assume that G (and hence G∗) is simple. Then the irreducible
complex characters of G of p-height 0 are in bijection with triples (s, λ, φ), where

(i) s ∈ C∗ is semisimple centralizing a Sylow p-subgroup of N∗, modulo N∗-
conjugation,
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(ii) λ ∈ E(CC∗(s), 1) is unipotent of p-height 0, up to CN∗(s)-conjugation, and
(iii) φ ∈ Irr(WN∗(s, λ)) is of p-height 0.

Proof. This is a rephrasement of Proposition 7.3. Indeed, by Theorem 5.9 applied
to H = G∗ every semisimple element of G∗ which centralizes a Sylow p-subgroup
of G∗ also centralizes a Sylow Φe-torus S∗e of G∗. Moreover, by Proposition 5.11
the normalizer N∗ = NG∗(S∗e) controls fusion of semisimple elements in C∗ =
CG∗(S∗e), and it contains a Sylow p-subgroup of G∗ by Proposition 5.21. Thus,
Proposition 7.3(i) is equivalent to (i) above.

Secondly, in (ii) we have

L = CM (S∗e) = CG∗(S∗e) ∩M = C∗ ∩ CG∗(s) = CC∗(s).

Also, S∗e is the unique Sylow Φe-torus in its centralizer CM (S∗e), so by the Sylow
theorem for Φe-tori, NM (L) = NM (CM (S∗e)) = NM (S∗e). But

NM (S∗e) = NG∗(S∗e) ∩M = N∗ ∩ CG∗(s) = CN∗(s),

so
WM (L) = NM (L)/L = CN∗(s)/CC∗(s).

Thus, Proposition 7.3(ii) gives (ii).
Finally, NM (L, λ) is the stabilizer of the pair (s, λ) in N∗. Hence, condition (iii)

is just Proposition 7.3(iii). �

Remark 7.6. It follows from the above that the blocks of full p-defect of G are just
the union ⋃

s∈CG∗ (Se)

⋃
t∈CG∗ (s)p

E(G, st).

Now consider the height 0 characters of the Sylow centralizer C.

Proposition 7.7. The irreducible characters of C of p′-degree are in bijection with
pairs (s, λ) where

(i) s ∈ C∗ is semisimple centralizing a Sylow p-subgroup of C∗, modulo C∗-
conjugation,

(ii) λ is a unipotent p′-character of M = CC∗(s) up to M -conjugation.
The inertia factor group in N of χ ∈ Irrp′(C) parametrized by (s, λ) is isomorphic
to WN∗(s, λ).

Proof. Being the centralizer of a torus in G, C is connected reductive, so our
previous results apply to C. According to Proposition 7.3 a character χ ∈ Irr(C)
is of p′-degree if it lies in the Lusztig series of some s ∈ C∗ centralizing a Sylow
p-subgroup of C∗ and ψs(χ) ∈ E(M, 1) has p′-degree, where M = CC∗(s). By
Corollary 6.6 such characters are in one-to-one correspondence with pairs (λ, φ),
where λ is a unipotent p′-character of L := CM (S∗e) up to WM (L)-conjugation and
φ ∈ Irr(WM (L, λ)) is of p′-degree. But M ≤ C∗ = CG∗(S∗e), so L = CM (S∗e) = M .
We conclude that NM (L) = NM (M) = M , WM (L, λ) = 1, and hence φ = 1. This
proves the first assertion.

The inertia factor group in N of χ ∈ Irr(C) is isomorphic to the inertia factor
group in N∗ of the label (s, λ) by Lemma 3.3. Now let g ∈ N∗ stabilize the label
(s, λ). Then firstly s and sg must parametrize the same Lusztig series, so sg is
conjugate to s in C∗. That is, there exists c ∈ C∗ such that g′ := gc ∈ CN∗(s)
normalizes M = CC∗(s) = L. Secondly, λ ∈ E(L, 1) must be fixed by g′, so g′ lies
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in the inertia group of λ in CN∗(s). Hence the inertia factor group of (s, λ) in N∗

equals
C∗ICN∗ (s)(λ)/C∗ = WN∗(s, λ).

�

This result already shows a remarkable resemblance between the parametrization
of p′-degree characters of G and that of p′-degree characters of C. Using a recent
extensibility result of Späth [24], this gives a natural correspondence when replacing
the centralizer C∗ by the normalizer N∗ of a Sylow Φe-torus of G:

Theorem 7.8. Assume that G is simple and let G := GF . Assume that p ≥ 5,
or p = 3 and G is not as in Theorem 5.14(a)–(c), or p = 2 and G 6= Sp2n(q) with
q ≡ 3, 5 (mod 8). Let N = NG(Se). Then:

(a) N contains the normalizer of a Sylow p-subgroup of G, and
(b) there is a natural bijection

′ : Irrp′(G) −→ Irrp′(N), χ 7→ χ′,

which moreover satisfies:
(c) χ and χ′ lie above the same character of Z(G),
(d) χ(1) ≡ ±χ′(1) (mod p).

Proof. Part (a) is Theorem 5.14. We show that Irrp′(G) and Irrp′(N) are naturally
parametrized by the same set such that (a) and (b) are satisfied. Let θ ∈ Irrp′(C)
and denote by I(θ) its inertia group in N . By Proposition 7.7 the inertia factor
group I(θ)/C is isomorphic to WN∗(s, λ). By the main result of [24] θ extends to
its inertia group I(θ) in N . The characters of I(θ) above θ are then in bijection
with Irr(WN∗(s, λ)). Induction from I(θ) to N now gives a bijection between N -
orbits in Irrp′(I(θ)|θ) and Irrp′(N |θ), hence the characters of N above θ are in
bijection with Irr(WN∗(s, λ)). If χ ∈ Irr(N) lies above θ and is parametrized by
φ ∈ Irr(WN∗(s, λ)), then its degree is given by

χ(1) = θ(1)φ(1)(N∗ : I(θ)).

Thus, χ has p′-degree if and only if φ has p′-degree and moreover (N : I(θ)) is prime
to p, so s centralizes a Sylow p-subgroup of N∗. Comparing with Theorem 7.5 and
Proposition 7.7 we see that indeed both Irrp′(G) and Irrp′(N) are parametrized by
the same set.

Assertion (c) now follows immediately from Lemma 2.2. For (d) assume that χ ∈
Irrp′(G) is parametrized by (s, λ, φ), and denote by θ a character of C parametrized
by (s, λ). Then

χ(1) ≡ ± |G|q′
|CC∗(s)|q′ |WM (L, λ)|

λ(1)φ(1) (mod Φe(q)),

and

θ(1) ≡ ± |C|q′
|CC∗(s)|q′

λ(1) (mod Φe(q))

by Proposition 7.4. Furthermore, by the first part of the proof

χ′(1) = θ(1)φ(1)(N : I(θ))

= θ(1)φ(1)(NG∗(Se) : CG∗(Se))/|WN∗(s, λ)|
= θ(1)φ(1)(WG(Se) : WM (L, λ)|,
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so
χ(1)
χ′(1)

≡ ±|G|q
′

|C|q′
1

|WG(Se)|
≡ ±1 (mod Φe(q))

as claimed, since

|G : C|q′ = |G : CG(Se)|q′ ≡ ±|WG(Se)| (mod Φe(q)),

by Theorem 3.2(d). �

8. Suzuki- and Ree-groups

The arguments used in the previous section to relate height 0 characters of G to
height 0 characters of the normalizer of a Sylow torus do not carry over immediately
to Suzuki- and Ree-groups. In this section we show that the main result remains
true in these cases.

8.1. Sylow centralizers in Suzuki- and Ree-groups. Let G be one of the
groups 2B2(q2), 2F4(q2) with q2 = 22f+1, or 2G2(q2) with q2 = 32f+1, that is,
a Suzuki- or Ree-group. With a suitable adaptation of the definition of Φe, the
description of Sylow centralizers in Theorem 5.9 continues to hold for these groups.
Here, the generic order is a product of cyclotomic polynomials over Q(

√
2), Q(

√
3)

respectively, see [1, 3F], where the polynomial X2−1 is considered as an irreducible
cyclotomic polynomial. For a prime divisor p of the group order, different from the
defining characteristic, we let Φ(p) be a cyclotomic polynomial over Q(

√
2), Q(

√
3)

respectively, dividing the generic order and such that p divides Φ(p)(q). From
the order formulas for the Suzuki and Ree groups it follows that Φ(p) is uniquely
determined by this condition, except when p = 2 for 2G2(q2) or p = 3 for 2F4(q2).
In the first case, both q2− 1 and q2 +1 are even, and we let Φ(2) := q2 +1, while in
the second case both q2+1 and q4−q2+1 are divisible by 3 and we let Φ(3) := q2+1.

Theorem 8.2. Let H be simple of type B2 or F4 in characteristic 2, or of type G2

in characteristic 3. Let F : H → H be a Frobenius map such that H := HF is a
Suzuki- or Ree-group. Let p be a prime divisor of |H| different from the defining
characteristic. Then every semisimple element g ∈ H which centralizes a Sylow
p-subgroup of H lies in a torus containing a Sylow Φ(p)-torus of H, where Φ(p)

is the cyclotomic polynomial defined above. In particular, g centralizes a Sylow
Φ(p)-torus.

Proof. Let g ∈ H be semisimple, centralizing a Sylow p-subgroup of H, and C :=
CH(g). Then the index (C : C◦) is prime to p, since simple groups of type G2

and F4 are of simply connected type, so all centralizers of semisimple elements
are connected by [8, Thm. 3.5.6], and for type B2 the index (C : C◦) is a power
of 2, hence again prime to p. So we may argue as in step (1) of the proof of
Theorem 5.9. �

8.3. Sylow normalizers in Suzuki- and Ree-groups. Again, with suitable
adaptations the description of Sylow normalizers in Theorem 5.14 also holds for
Suzuki- and Ree-groups. For a prime divisor p of the group order, different from
the defining characteristic, we let Φ(p) be the cyclotomic polynomial as defined
above.

Theorem 8.4. Let H be simple of type B2 or F4 in characteristic 2, or of type G2

in characteristic 3. Let F : H → H be a Frobenius map such that H := HF is a
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Suzuki- or Ree-group. Let p be a prime divisor of |H| different from the defining
characteristic and Sp a Sylow p-subgroup of H. Then there exists a Sylow Φ(p)-torus
S of H with NH(Sp) ≤ NH(S), unless one of

(a) H = 2G2(32f+1) and p = 2, or
(b) H = 2F4(22f+1), p = 3 and 22f+1 ≡ 2, 5 (mod 9).

Proof. Again, if p does not divide |W 〈φ〉|, then this is implicit in [4, Thm. 5.24].
It only remains to consider p = 2 for type G2 and p = 3 for type F4. In the first
case, the Sylow 2-normalizer is a split extension of an elementary abelian group of
order 8 with a Frobenius group of order 21, not contained in the normalizer of any
torus. In the second case, the structure of the Sylow normalizer was worked out in
[18, Bem. 5], for example. It is isomorphic to SU3(2).2 for the congruences listed
in case (b), and contained in a torus normalizer otherwise. �

Using the two results above, we obtain the following extension of Theorem 7.5:

Theorem 8.5. Assume that G is a Suzuki- or Ree-group and that p ≥ 5, or p = 3
and G is not as in Theorem 8.4(b). Then the irreducible complex characters of G
of p-height 0 are in bijection with triples (s, λ, φ), where

(i) s ∈ C∗ is semisimple centralizing a Sylow p-subgroup of N∗, modulo N∗-
conjugation,

(ii) λ ∈ E(CC∗(s), 1) is unipotent of p-height 0, up to CN∗(s)-conjugation, and
(iii) φ ∈ Irr(WN∗(s, λ)) is of p-height 0.

Similarly the assertion of Theorem 7.8 continues to hold in this situation. We
note that the McKay conjecture has already been proved in [15] for all groups whose
non-abelian composition factors are Suzuki groups or Ree groups in characteristic 3.
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de Sylow. C. R. Acad. Sci. 318 (1994), 889–894.
[8] R.W. Carter, Finite groups of Lie type. Wiley-Interscience, New York, 1985.
[9] F. Digne and J. Michel, On Lusztig’s parametrization of characters of finite groups of Lie
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