
ON THE INDUCTIVE ALPERIN–MCKAY AND ALPERIN WEIGHT
CONJECTURE FOR GROUPS WITH ABELIAN SYLOW SUBGROUPS

GUNTER MALLE

Abstract. We study the inductive Alperin–McKay conjecture, the inductive Isaacs–
Navarro refinement and the inductive blockwise Alperin weight conjecture for groups
of Lie type in the generic case of abelian Sylow `-subgroups. We also show that the
alternating groups, the Suzuki groups and the Ree groups satisfy the inductive condition
necessary for Späth’s reduction of the blockwise Alperin weight conjecture to the case of
simple groups.

1. Introduction

This paper is a contribution towards a possible solution of two famous longstanding
conjectures in the representation theory of finite groups. The McKay-conjecture (McK)
postulates that for any finite group G and any prime p, the number of irreducible complex
characters of degree prime to p is the same for G as for the normalizer of a Sylow p-
subgroup. The Alperin weight conjecture (AWC) asserts that for any finite group G and
any prime p, the number of p-modular irreducible Brauer characters of G is equal to the
number of p-weights of G. Here, a p-weight is a p-subgroup Q ≤ G together with a
p-defect zero character of NG(Q)/Q, up to G-conjugation. Thus both conjectures relate
global representation theoretic invariants of the group to information encoded in p-local
subgroups.

In the recent past, both conjectures have been reduced to certain (stronger) statements
about finite simple groups [18, 25]. More precisely, it was shown that in order for (McK)
or (AWC) to hold for all groups and the prime p, it is sufficient that all finite simple groups
are (McK)-good, respectively (AWC)-good, for the prime p; see below for a definition of
this term. Moreover, several infinite series of finite simple groups were already shown to
be good for all or at least some primes.

Even more recently Späth [28, 29] succeeded in reducing the corresponding blockwise
refinements of these conjectures, the Alperin–McKay conjecture (AM) and the blockwise
Alperin weight conjecture (BAW), to inductive statements for the finite simple groups
(and their covering and automorphism groups).

Thus, to complete the proof of (AM) and (BAW), it suffices to investigate the finite
simple groups for these inductive properties. This paper contributes to this program in
two ways. On the one hand side, we complete the verification of the necessary inductive
conditions for four infinite series of finite simple groups:
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Theorem 1.1. The alternating groups An, n ≥ 5, are (BAW)-good for all primes p.
The Suzuki groups 2B2(2

2f+1), and the Ree groups 2G2(3
2f+1) and 2F4(2

2f+1)′, are (AM)-,
(IN)- and (BAW)-good for all primes p.

Here, (IN) is the inductive formulation for finite simple groups due to Späth [28] of
the refinement of (AM) proposed by Isaacs and Navarro which claims the existence of
bijections preserving certain congruences of character degrees. In view of previous results
(see [11] for the (AM)-condition for alternating groups), this essentially leaves the case of
finite groups of Lie type with p not the defining characteristic.

In [22] we had succeeded in reformulating the inductive McKay condition (McK) using
the machinery of d-Harish-Chandra theory into some local statement, which was subse-
quently shown to hold in many cases by Späth. The second purpose of this paper is to
extend this approach to cover the blockwise version (AM) as well, and also to apply it to
the blockwise inductive Alperin weight condition (BAW), at least in the (generic) case of
abelian Sylow subgroups.

The structure of the paper is as follows. In Sections 2 and 3 we investigate an approach
to the inductive conditions (AM) and (BAW) for finite groups of Lie type G in the case
that ` is a large prime, and in particular, the Sylow `-subgroups of G are abelian. We
first show in Theorem 2.9 that an (AM)-bijection exists if all characters of suitable local
subgroups extend, similar to the case considered in [22]. We then derive a similar condition
for the existence of a (BAW)-bijection (see Corollary 3.7). Finally, in Theorem 3.8 we
prove a very close relation between the two inductive conditions, at least when the `-blocks
of G have good basic sets and unitriangular decomposition matrices.

In Section 4 we present a result which guarantees equivariance of Jordan decomposi-
tion for Lusztig families parametrized by elements with connected centralizer, hence in
particular in the case of groups with connected centre.

In Section 5 we prove Theorem 1.1 in the case of Suzuki and Ree groups, see Theo-
rem 5.1. Section 6 contains some preparatory material on the Dade–Glauberman–Nagao
correspondence with the help of which in Section 7 we complete the proof of Theorem 1.1
by dealing with the case of alternating groups. Our proof relies on previous results of
Alperin and Fong [1] who determined the p-weights for symmetric groups and proved the
weight conjecture in that case, and on the paper of Michler and Olsson [24] who did the
same for the covering groups of symmetric and alternating groups for odd primes. The
case of the prime p = 2 for alternating groups does not seem to have been studied before
(see also the remark in Olsson [27, p. 82]).

Acknowledgement: I wish to thank Gabriel Navarro and Britta Späth for their help
with the Dade–Glauberman–Nagao correspondence and its blockwise version, and the
referee for several helpful comments.

2. Abelian Sylow subgroups and height zero characters

Let G be a connected reductive linear algebraic group over the algebraic closure of a
finite field and F : G→ G a Steinberg endomorphism with (finite) group of fixed points
G := GF . We let q denote the unique eigenvalues of F on the character group of an
F -stable maximal torus of G.
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We’ll also assume that no power of F induces a Suzuki- or Ree-type endomorphism on
any simple factor of G (for the letter case, the validity of all inductive conditions will be
shown in Section 5).

Furthermore, G∗ will denote a group in duality with G, with corresponding Steinberg
endomorphism also denoted F : G∗ → G∗.

2.1. Large primes. We will consider primes ` with the following property with respect
to (G, F ):

(∗) there is a unique e such that

{
`|Φe(q) and

Φe divides the order polynomial of (G, F )

If G is semisimple, for such primes ` we have e = e`(q) by [22, Cor. 5.4], where e`(q)
denotes the multiplicative order of q modulo ` (respectively modulo 4 when ` = 2, which
will never be the case here).

An easy inspection shows:

Lemma 2.1. Assume that ` satisfies (*). Then ` is odd, good for G, different from 3 if GF

involves a factor of type 3D4, and does not divide |Z(G)F/Z◦(G)F | or |Z(G∗)F/Z◦(G∗)F |.

For the last claim observe that ` satisfies (*) for G if and only if it does so for G∗. The
relevance of these primes is explained by the following:

Proposition 2.2. Let 6̀ |q. If ` satisfies (*) then the Sylow `-subgroups of GF are abelian.
Conversely, if G is simple and GF has abelian Sylow `-subgroups, then ` satisfies (*).

Proof. If ` satisfies (*), then a Sylow e-torus of G contains a Sylow `-subgroup of GF ,
which is hence abelian. For the converse, we may suppose that ` > 2, since the Sylow
2-subgroups of SL2(q) and PGL2(q), and hence of any semisimple group are non-abelian
(in characteristic different from 2). Then, if (*) fails, `|Φe(q) and Φe,Φe`i both divide the
order polynomial of (G, F ) for some i > 0. If G is of type An, then n ≥ e`i and so the
automizer of a Sylow e-torus S contains elements of order ` acting non-trivially on SF

` ,
whence GF has non-abelian Sylow `-subgroups. An easy inspection shows that the same
is in fact true for the other simple types as well (see also the discussion in [22, §5.10]). �

It’s easily seen that the converse in Proposition 2.2 fails if G is just assumed to be
semisimple. For example take G = SL3

2 with F cyclically permuting the factors. Then
GF = SL2(q

3), and for q ≡ 1 (mod 3), ` = 3 divides Φ1(q) and Φ3(q), but the Sylow
3-subgroups of GF are abelian.

Note that it may happen even for simple G that GF/Z(GF ) has abelian Sylow `-
subgroup even though GF doesn’t. Inspection of the arguments used to prove Proposi-
tion 2.2 and using the list of possible centers of simple groups G shows that in this case,
either G = SL2 and ` = 2, or G = SL3 and ` = 3.

2.2. `-subgroups. From now on we assume that ` satisfies (*), and we let e := e`(q).

Proposition 2.3. Assume that the derived subgroup of G is simply connected.

(a) Let Q ≤ GF be an `-subgroup. Then CG(Q) is an e-split Levi subgroup.
(b) Let L ≤ G be an F -stable Levi subgroup and Q := Z(L)F

` . Then L is e-split if and
only if L = CG(Q).
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Proof. For (a) let L := CG(Q) and Z := Z(L). Since ` is good for G and G has simply
connected derived subgroup, ` is not a torsion prime for G by [23, Prop. 14.15], so L is
connected by [23, Thm. 14.16]. Furthermore, since ` is good, L◦ = L is a Levi subgroup of
G by [15, Prop. 2.1], and thus by [15, Prop. 2.4], ZF/Z◦F is a subgroup of Z(G)F/Z◦(G)F ,
hence of order prime to ` by Lemma 2.1.

As Q is abelian by Proposition 2.2, we have Q ≤ ZF and hence Q ≤ Z◦F ≤ Z◦, an F -
stable torus of G. By our assumption on `, Q is contained in the Sylow e-torus S = (Z◦)Φe

of Z◦. Thus
CG(Q) = L = CG(Z◦) ≤ CG(S) ≤ CG(Q),

whence L = CG(S) is e-split by definition.
In (b), if L = CG(Q) then it is e-split by (a). Conversely, assume that L is e-split.

Clearly, L ≤ C := CG(Q), and Q ≤ Z◦(C)Φe ≤ Z◦(L)Φe . So by taking `-Sylows we find
Q ≤ Z◦(C)F

` ≤ Z◦(L)F
` = Q, whence Z◦(C)Φe = Z◦(L)Φe , and since both L and C are

e-split, we conclude that CG(Q) = C = L as claimed. �

Proposition 2.4. Assume that the derived subgroup of G is simply connected. Let L ≤ G
be an e-split Levi subgroup and set Q := Z(L)F

` . Then:

(a) NGF (Q) = NGF (L).
(b) WGF (L) := NGF (L)/LF has order prime to `.
(c) There is a direct decomposition LF = Q×O`(LF ).

Proof. In (a), Q = Z(L)F
` is characteristic in Z(L)F . Now any g ∈ NGF (L) normalizes

Z(L)`, and conjugates Q to an F -stable subgroup of Z(L)`, so it normalizes Q. The other
inclusion is obvious since NGF (Q) ≤ NGF (CG(Q)) = NGF (L) by Proposition 2.3(b).

The claim in (b) follows since an e-split Levi subgroup contains a Sylow e-torus, hence
a Sylow `-subgroup of GF by (*).

For (c), note that L = [L,L]Z(L) as L is reductive. Now [L,L] is connected, hence
LF/[L,L]F ∼= (L/[L,L])F ∼= (Z(L)/Z(L)∩ [L,L])F by [23, Prop. 23.2]. Let H denote the
full preimage of the `′-Hall subgroup of (Z(L)/Z(L)∩ [L,L])F in LF under the canonical
map above, then clearly LF/H ∼= (Z(L)/Z(L) ∩ [L,L])F

` = Z(L)F
` = Q. On the other

hand, [L,L]F ∩Q is trivial by Lemma 2.1 since [L,L] is semisimple, so L = H ×Q. It is
clear by construction that H ≥ O`(LF ). Since [L,L] is of simply connected type, [L,L]F

is perfect by [23, Thm. 24.17], unless one of its central factors is a solvable group. But
even in that case, the only abelian factor groups have order a power of the characteristic,
hence prime to `. Thus H = O`(LF ). �

Remark 2.5. In almost all cases we also have Q = O`(L
F ), the only exceptions occurring

when L has a simple factor with solvable group of fixed points. Under our restrictions,
this implies that ` = 3 and L has an F -stable central factor M with MF ∼= SL2(2) (note
that ` = 3 does not satisfy (*) for SU3(2)).

2.3. `-blocks. We now recall the parametrization of `-blocks of GF for primes satisfy-
ing (*). Here, for any finite group H and any χ ∈ Irr(H) we write bH(χ) for the `-block
of H containing χ. We freely use the notion of Lusztig series E(GF , s) and E`(G

F , s), see
e.g. [8].

Theorem 2.6 (Cabanes–Enguehard). Assume that G has simple derived subgroup of
simply connected type, and assume that ` ≥ 5 satisfies (*). Let B be an `-block of GF .
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Then there exists a semisimple `′-element s ∈ G∗F , unique up to G∗F -conjugation, and
an e-cuspidal pair (L, λ) of G, unique up to GF -conjugation, such that

(1) Irr(B) ⊆ E`(GF , s);
(2) s ∈ L∗F up to G∗F -conjugation;
(3) λ ∈ E(LF , s) is of central `-defect;
(4) Irr(B) ∩ E(GF , s) is the set of constituents of RG

L (λ);
(5) Z(L)F

` is a defect group of B; and
(6) there is an inclusion of subpairs (1, B) C (Z(L)F

` , bLF (λ)).

Proof. By the result of Broué–Michel [8, Thm. 9.12] there exists a semisimple `′-element
s ∈ G∗F , unique up to G∗F -conjugation, such that Irr(B) lies in the union E`(G

F , s) of
Lusztig series. Furthermore, by [7, Thm. 4.1] there exists an e-split Levi subgroup L of
G and an e-cuspidal character λ ∈ E(L, `′), unique up to GF -conjugation, such that (4)
holds. By transitivity of Lusztig induction this implies that λ ∈ E(LF , s), whence (2).

For the statement in (5), we claim that in the notation of [7, §4] we have M = L. For
this, note that since G has simple derived subgroup, either G = Ga or G = Gb. In the first
case M = C◦

G(TF
` ) for some F -stable maximal torus T of G, while L = CG(TΦe), whence

M = L is e-split by Proposition 2.3. Similarly, in the second case M∗ = C◦
G(Z(CL∗(s))F

` )
is again e-split, hence equal to L∗, which is the smallest e-split Levi subgroup of G∗

containing M∗, by [7, Lemma 4.4].
Now by [7, Lemma 4.16] Z(M)F

` = Z(L)F
` is the unique maximal abelian normal

subgroup of a defect group D of B. Since the Sylow `-subgroups of GF are abelian, this
forces D = Z(L)F

` . Also, λ is of central `-defect by [7, Lemma 4.11]. The last assertion is
in [7, Lemma 4.13]. �

In the situation of Theorem 2.6 we write B = bGF (L, λ). We also write b̃LF (λ) for the
union of blocks of NGF (L) lying above bLF (λ). We first parametrize the characters of
bLF (λ).

Proposition 2.7. Under the hypotheses of Theorem 2.6 let B be an `-block of GF

parametrized by the e-cuspidal pair (L, λ), with defect group D = Z(L)F
` . Then:

(a) Irr(bLF (λ)) = {λ⊗ θ | θ ∈ Irr(D)}.
(b) All characters of b̃LF (λ) are of height zero.
(c) Assume that all ψ ∈ Irr(bLF (λ)) extend to their inertia group in NGF (D) = NGF (L).

Then there is a 1-1 correspondence between the irreducible characters of b̃LF (λ) and
pairs (θ, φ) where θ ∈ Irr(D) and φ ∈ Irr(WGF (L, λ, θ)).

Proof. By Proposition 2.4(c) we have LF = O`(LF ) × Z(L)F
` = O`(LF ) ×D. As λ is of

central defect by Theorem 2.6, its restriction to O`(LF ) has defect zero, whence the claim
in (a). The assertion in (b) follows with Proposition 2.4(b) by Clifford theory.

For (c) note that both factors in the above direct decomposition of LF are characteristic,
so any element in NGF (L) fixing λ⊗ θ fixes both of them. The claim then follows again
from Clifford theory. �

2.4. Counting characters in bGF (L, λ). In order to parametrize the characters of the
block B = bGF (L, λ) we use Lusztig’s Jordan decomposition of characters. Assume that
s ∈ G∗F is such that Irr(B) ⊆ E`(G

F , s). By Enguehard [13, Thm. 1.6] there is a
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reductive group G(s) with a Steinberg endomorphism again denoted F , with G(s)◦ dual
to C◦

G∗(s) and G(s)/G(s)◦ isomorphic to CG∗(s)/C◦
G∗(s), a unipotent block B(s) of G(s)F

with defect groups isomorphic to those of B, and a height preserving bijection Irr(B)→
Irr(B(s)). If CG∗(s) is contained in a proper Levi subgroup and connected, this is given
by Lusztig’s Jordan decomposition of characters.

Thus, a parametrization of Irr(B) can be obtained from one for the unipotent block
Irr(B(s)). If G(s) is connected, again by Theorem 2.6 the unipotent `-block B(s) of G(s)F

is indexed by a unique G(s)F -class of e-cuspidal pairs (L(s), λs), where λs ∈ E(L(s)F , `′),
so that B(s) = bG(s)F (L(s), λs). Now, the characters of B(s) are described by the following
crucial result:

Theorem 2.8 (Broué–Michel). Assume that G(s) is connected. Then there is an isotypie
between the unipotent block B(s) of G(s)F and the principal `-block of the semidirect
product NG(s)F (L(s), λs)/O

`(L(s)F ) ∼= Z◦(L(s))F
` oWG(s)F (L(s), λs). In particular, there

exists a height preserving bijection

Irr
(
Z◦(L(s))F

` oWG(s)F (L(s), λs)
)
−→ Irr(B(s)),

and thus all characters of B(s) are of height zero.

Proof. Note that a prime ` satisfying (*) is (G, F )-excellent, and then also (G(s), F )-
excellent, in the sense of [5, Def. 1.11]. Thus, all assertions are proved in [5, Thm. 3.1]
except for the structure of the local subgroup NG(s)F (L(s), λs)/O

`(L(s)F ). The claimed

isomorphism follows from Proposition 2.4(c), and the extension of Z◦(L(s))F
` by the rela-

tive Weyl group WG(s)F (L(s), λs) is split since |WG(s)F (L(s), λs)| is prime to ` by Propo-
sition 2.4(b) applied to the e-split Levi subgroup L(s) of G(s). The last claim follows
from Clifford theory by Proposition 2.4. �

Thus we obtain the following criterion for the existence of a bijection suitable for the
(AM) condition:

Theorem 2.9. Assume that G has simple derived subgroup of simply connected type, and
that ` ≥ 5 satisfies (*). Let s ∈ G∗F be such that CG∗(s) is connected. Let B = bGF (L, λ)
be an `-block of GF , where λ ∈ E(LF , s) is e-cuspidal. Assume that

(**) all ψ ∈ Irr(bLF (λ)) extend to their inertia group in NGF (L, λ).

Then there exists a height preserving bijection between the irreducible characters of B and
the characters Irr(b̃LF (λ)) of the `-block of NGF (L) above bLF (λ).

Proof. By the result of Enguehard cited above ([13, Thm. 1.6]) there is a height preserving
bijection Irr(B)→ Irr(B(s)) to a unipotent block B(s) of G(s)F , where G(s) = G(s)◦ is
dual to C◦

G∗(s). By Theorem 2.8, there is a height preserving bijection

Irr(B(s))
1−1−→ Irr

(
Z◦(L(s))F

` oWG(s)F (L(s), λs)
)

(and thus all characters in Irr(B) are of height zero), where (L(s), λs) is an e-cuspidal pair
of G(s). Let L(s)∗ ≤ C◦

G∗(s) be in duality with L(s), an e-split Levi subgroup, and M ≤ G
the e-split Levi subgroup in duality with M∗ := CG∗ (Z(L(s)∗)Φe). Let µ ∈ E(LF , s) be
a character constructed from λs as in [13, Prop. 1.4.2]. Then by [13, Thm. 1.6] we
have (M, µ) = (L, λ) up to GF -conjugation. Moreover, by the properties of Lusztig’s
Jordan decomposition WG(s)F (L(s), λs) ∼= WGF (L, λ). As L(s)F = D × O`(L(s)F ) and
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LF = D×O`(LF ) by Proposition 2.4, where D = Z◦(L(s))F
` = Z◦(L))F

` is a defect group
of B, this shows that the natural injective map NG(s)(L(s), λs) → NG(L, λ) induces an
isomorphism D o WG(s)F (L(s), λs) ∼= D o WGF (L, λ). This gives a height preserving
bijection

Irr
(
Z◦(L(s))F

` oWG(s)F (L(s), λs)
) 1−1−→ Irr

(
Z◦(L)F

` oWGF (L, λ)
)
.

Then Proposition 2.7(c) allows to conclude. �

3. Radical subgroups and defect zero characters

We keep the assumptions of the previous section: let G be connected reductive with
Steinberg endomorphism F : G → G, ` a prime satisfying (*) with respect to (G, F ),
and e = e`(q). Now let’s consider radical subgroups.

Proposition 3.1. Assume that ` satisfies (*). Let Q ≤ GF be a radical `-subgroup and
L := CG(Q), S := Z◦(L)Φe. Then Q = SF

` .

Proof. By Proposition 2.3, L is an e-split Levi subgroup of G, so CG(Q) = L = CG(S).
Since Q is radical and abelian by Proposition 2.2, we may conclude that

Q = Z(CGF (Q))` = Z(LF )` = Z(L)F
` = Z◦(L)F

` = SF
` .

�

By Proposition 2.4 we have L = Q×O`(LF ), and O`(LF ) is an extension of [L,L]F by
an `′-group.

Corollary 3.2. Assume that ` satisfies (*). The maps

Ψ : Q 7→ CG(Q), Ξ : L 7→ Z◦(L)F
` ,

are mutually inverse GF -equivariant bijections between the set Q of radical `-subgroups
of GF and the set of e-split Levi subgroups L of G for which Z(L)F

` = O`(L
F ).

In particular, they induce natural bijections between the set Q of radical `-subgroups of
GF modulo GF -conjugation and a certain subset of the set Le of e-split Levi subgroups of
G modulo GF -conjugation.

Proof. By Proposition 2.3 any (radical) `-subgroup Q determines an e-split Levi sub-
group CG(Q). Conversely, if L ∈ Le, then Q := Z(L)F

` is a radical `-subgroup by
Propositions 2.4 and 3.1. Clearly, the two maps are inverse to one another and GF -
equivariant. �

By Remark 2.5 the map Ψ : Q → Le is also surjective except possibly in certain cases
when ` = 3 and G is defined over F2. In these exceptions, Z(L)F

` is not a radical `-
subgroup, so LF won’t have defect zero characters. It is therefore no problem for our
purpose to work with all e-split Levi subgroups of GF in place of Le.

We’ll also need to understand characters of defect zero. For H a group let

dz(H) := {χ ∈ Irr(H) | |H|/χ(1) 6≡ 0 (mod `)}
denote the set of its characters of `-defect zero. For N E H a normal subgroup and
µ ∈ Irr(N), we let dz(H|µ) be the set of χ ∈ dz(H) lying above µ.
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Proposition 3.3. Let Q ≤ GF be a radical `-subgroup, L := CG(Q) and λ ∈ dz(LF/Q)
a character of `-defect zero. Assume that λ extends to its inertia group NGF (L, λ). Then
dz(NGF (Q)/Q|λ) is in 1-1 correspondence with Irr(WGF (L, λ)).

Proof. Note that L is an e-split Levi subgroup of G by Proposition 2.3. Using the fact
that NGF (L)/LF has order prime to ` and that NGF (Q) = NGF (L) by Proposition 2.4,
the claim follows by an application of Clifford theory. �

Proposition 3.4. Let L ≤ G be an e-split Levi subgroup and λ ∈ dz(LF/O`(L
F )) of

`-defect zero. Then there exists a semisimple `′-element s ∈ L∗F with λ ∈ E(L, s). If
moreover ` ≥ 5 then λ is e-cuspidal.

Proof. We may view λ as a character of LF . Then by Lusztig’s Jordan decomposition of
characters there exists a semisimple element s ∈ L∗F with λ ∈ E(LF , s), and a unipotent
character ψ of C := CL∗F (s) with λ(1) = |L∗F : C|p′ ψ(1). By an elementary property of
characters we have that ψ(1) divides |C : Z(C)|, so λ(1)` ≤ |L∗F : Z(C)|`. In particular,
if λ is of central defect, then |Z(C) : Z(L∗F )| has to be prime to `. Thus, the `-part of
s lies in Z(L∗F ). On the other hand, as a character of LF/O`(L

F ), λ must be trivial on
Z(L)F

` , whence the `-part of s in Z(L∗F ) must be trivial, so s is an `′-element.
Since ` divides Φe(q), for e = e`(q), λ(1) must be divisible by the full Φe(q)-part of
|LF/Z(L)F |. Thus the same is true for the unipotent character ψ of C, which is then
e-cuspidal by [4, Prop. 2.9]. So λ satisfies condition (U) in [7, §1.3], so condition (J) by
[7, Prop. 1.10], whence it is e-cuspidal by [7, Thm. 4.2]. (This latter reference requires
that ` ≥ 5.) �

Proposition 3.5. Assume that ` ≥ 5 satisfies (*). Let Q ≤ GF be a radical `-subgroup,
L := CG(Q) and N := NGF (Q). Assume that all λ ∈ dz(LF/O`(L

F )) extend to their
inertia groups in N . Then there is a bijection between dz(N/Q|λ) and the set of pairs

{(λ, φ) | λ ∈ Irr(LF/O`(L
F )) e-cuspidal, φ ∈ dz(WGF (L, λ))}

modulo N-conjugation.

Proof. First note that under our assumptions, L = CG(Q) is an e-split Levi subgroup
of G, by Proposition 3.1. Now note that λ ∈ dz(LF/O`(L

F )) is e-cuspidal by Proposi-
tion 3.4, and conversely any e-cuspidal λ ∈ Irr(LF/O`(L

F )) is of `-defect zero again by (*).
Furthermore, N = NGF (Q) = NGF (L) by Proposition 3.1(c), so N/Q = NGF (L)/O`(L

F ).
The claim is now an immediate consequence of Clifford theory. �

We now discuss the `-modular Brauer characters of GF .

Proposition 3.6. Assume that ` ≥ 5 satisfies (*). Let B = bGF (L, λ) be an `-block of
GF . Then there is a bijection

IBr(B)
1−1−→ Irr(WGF (L, λ)),

where WGF (L, λ) := NGF (L, λ)/L is the relative Weyl group of the e-cuspidal pair (L, λ).

Proof. By [7, Thm. 4.1(b)], E(GF , s) ∩ B is in 1-1 correspondence with Irr(WGF (L, λ)).
By Lemma 2.1 a result of Geck–Hiss [15, Cor. 4.3] applies to show that E(GF , s) ∩ B is
a basic set for the block B, so in particular |IBr(B)| = |E(GF , s) ∩B|. �
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Corollary 3.7. Let Q be a radical `-subgroup of GF . Under the assumptions of Propo-
sition 3.5 there exists a (BAW)-bijection for GF above Q (see the beginning of §6 for a
description of this term).

Proof. By Proposition 3.1, L := CGF (Q) is an e-split Levi subgroup of G, and for any
λ ∈ dz(LF/Q) we have bijections

dz(NGF (Q)|λ)
1−1←→ dz(NGF (L, λ)|λ) by Corollary 3.2

1−1←→ Irr(WGF (L, λ)) by Proposition 3.5

1−1←→ IBr(bGF (L, λ)) by Proposition 3.6

since for λ ∈ dz(LF/Q), Q is a defect group for the block bGF (L, λ). On the other hand,
all `-blocks of GF arise in this way by Theorem 2.6. The claim follows. �

Thus we arrive at the following connection between the inductive (AM) and inductive
(BAW) conditions in the case of large primes:

Theorem 3.8. Assume that G has simple derived subgroup of simply connected type, and
that ` ≥ 5 satisfies (*). Let Q ≤ GF be a radical `-subgroup, L := CG(Q), B = bGF (L, λ)
an `-block of GF where λ ∈ E(LF , s) is e-cuspidal and satisfies condition (**), and s ∈
G∗F is an `′-element. Assume that the decomposition matrix of B is unitriangular with
respect to Irr(B)∩E(GF , s) and that the (AM)-bijection from Theorem 2.9 can be chosen
to be Aut(G)-equivariant. Then the (BAW)-bijection in Corollary 3.7 can also be chosen
to be Aut(G)-equivariant.

Proof. As Irr(B) ∩ E(GF , s) is a basic set for the block B, the unitriangularity of the

decomposition matrix of B yields a natural Aut(G)-equivariant bijection IBr(B)
1−1↔

Irr(B) ∩ E(GF , s). Restricting the Aut(G)-equivariant bijection Irr(B) → Irr(b̃LF (λ))
from Theorem 2.9 to the subset Irr(B) ∩ E(GF , s) gives an equivariant bijection between
Aut(G)-stable subsets

Irr(B) ∩ E(GF , s)
1−1←→ Irr(B(s)) ∩ E(L(s)F , 1)

1−1←→ Irr(WG(s)F (L(s), λs))

1−1←→ Irr(WGF (L, λ))

1−1←→ Irr(b̃LF (λ)|λ).

Since ` satisfies (*), all characters of WGF (L, λ) are of defect zero, so by Proposition 3.5

all characters of b̃LF (λ) above λ are of defect zero. Thus the last set in the displayed
bijections is just dz(NGF (Q)|λ). �

Remark 3.9. Unitriangularity of the decomposition matrices of finite groups of Lie type
has been proved in a variety of cases; for example for GLn(q) and GUn(q) (see [14]), for
the other classical groups at linear primes ` (see [16]), and for various cases in exceptional
type groups of small rank. It is conjectured to hold in general.
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4. Equivariance for groups with connected center

In this section we study the action of automorphisms on characters of finite reductive
groups with connected center (see also [9, Thm. 2.1] for a version of Theorem 4.1). For
this, let G be connected reductive with connected center, with a Steinberg endomorphism
F : G→ G. Assume given a collection F1, . . . , Fr : G→ G of isogenies commuting with
F . Thus, the Fi could also be Steinberg endomorphisms, or graph automorphisms of G.

Then each Fi induces an automorphism of GF , again denoted Fi, and hence also nat-
urally acts on characters of GF via Fi(χ)(g) = χ(Fi

−1(g)) for χ ∈ Irr(GF ), g ∈ GF . We
also denote by Fi : G∗ → G∗ corresponding isogenies on the dual group G∗, commuting
with F : G∗ → G∗. (Note that even if F is given as part of the duality, these Fi on G∗

are only unique up to inner automorphisms induced by elements of T∗F ). Since G has
connected center, all centralizers of semisimple elements in G∗ are connected.

In this situation we have the following result, essentially due to Digne–Michel [12]:

Theorem 4.1. Assume that G has connected center, and let F : G → G be a Steinberg
endomorphism, Fi : G → G (1 ≤ i ≤ r) isogenies commuting with F , and set Γ :=
〈F1, . . . , Fr〉. Then for s ∈ G∗F we have:

(a) Fi(E(GF , s)) = E(GF , Fi
−1(s)) for all i.

(b) If s ∈ G∗Γ then there exists a Γ-equivariant Jordan–Lusztig bijection

Ψs : E(GF , s) −→ E(CG∗F (s), 1).

(c) If s is Fi-invariant, Fi is a split Frobenius endomorphism of G and there exists a
common positive power of F and Fi, then Fi acts trivially on E(GF , s).

Proof. The first assertion is in [6, Prop. 1] (observe that the proof given there also applies
when Fi is just an isogeny). For (b), first note that when s ∈ G∗Γ, then E(GF , s) is
Γ-stable by (a). We now consider the Jordan decomposition as given in [12, Thm. 7.1].
Let χ ∈ E(GF , s). If χ is not one of the exceptions in [12, Prop. 6.3], then it is uniquely
determined by its multiplicities in the various Deligne–Lusztig characters, and these are
respected by the action of the isogenies Fi. This already covers the case of classical
groups. In the remaining cases, χ lies in a family corresponding to the group S3, and
there are exactly two elements in that family with that property. In that situation [12,
Thm. 7.1(v)] specifies a bijection, which again is Γ-equivariant since all Fi preserve the
subspace spanned by cuspidal representations (since they preserve the set of split Levi
subgroups) which occurs in the defining property of that bijection.

The last assertion is due to Lusztig [19, Prop. 2.20]. �

5. Suzuki and Ree groups

We verify the inductive Alperin-McKay condition (AM) (as introduced by Späth [28,
Def. 7.2]), the inductive Isaacs–Navarro refinement (IN) on congruences for character
degrees (see [28, Def. 3.1]), and the inductive blockwise Alperin weight condition (BAW)
(see [29]) for the very twisted simple groups of Lie type, that is, for the Suzuki groups
2B2(q

2) and the Ree groups 2G2(q
2) and 2F4(q

2) and thus prove one part of Theorem 1.1
from the introduction. Several partial results had already been obtained by B. Späth and
others (see the references in the subsequent proof).



ALPERIN–MCKAY AND ALPERIN WEIGHT CONJECTURE 11

Theorem 5.1. Let S be any of the simple groups 2B2(2
2f+1), 2G2(3

2f+1)′ or 2F4(2
2f+1)′.

Then S satisfies the inductive Alperin-McKay condition (AM), the inductive Isaacs–
Navarro refinement (IN) and the inductive blockwise Alperin weight condition (BAW)
for all primes.

Proof. Note that for all three families of groups, except for 2F4(2)′, the case of defining
characteristic was dealt with by Späth in [28, Cor. B, Thm. 4.4] and [29, Thm. B, Cor. 6.3],
so for these we only need to worry about non-defining primes `. Furthermore, note that
all groups considered here have cyclic outer automorphism group, so the verification of
the three inductive conjectures essentially reduces to finding (McK) and (AWC)-bijections
that are compatible with block induction, by [28, Lemma 8.1] and [29, Prop. 6.2].

First assume that S = 2B2(2
2f+1) with f ≥ 1. The inductive McKay-condition was

shown to hold in [18, Thm. 16.1], in particular also for the exceptional covering groups of
2B2(8). It is immediate to check that the bijections given there respect `-blocks and also
satisfy the (IN)-congruences (see the remark after the proof of Thm. 17.1 in loc. cit.), so
that both (AM) and (IN) follow. Also, (BAW) was shown to hold by Späth [29, Cor. 6.3].

Now let S = 2G2(3
2f+1)′ with f ≥ 0. Again, the inductive McKay-condition was

checked to hold in [18, Thm. 17.1], respectively in [18, Thm. 15.3] when f = 0, and
the given bijections do respect blocks and the (IN)-congruences. Now note that for all
primes ` 6= 3, any `-blocks of S is either of full defect or of defect zero. In all these cases,
the (McK)-bijections are compatible with blocks by [9, Thm. 6.3], so the (AM)-condition
follows. The inductive Alperin weight condition (BAW) was verified in [29, Prop. 6.4].

Next, let S = 2F4(2)′, with Aut(S) = 2F4(2). Here, (BAW) has been verified in [3] (see
also [25, Prop. 6.1] for (AWC) at p = 2). For all prime divisors ` of |S|, all non-principal
`-blocks of S are of defect zero. The relevant data for the principal blocks B0 of S and
B′

0 of Aut(S) = S.2 and the normalizers of Sylow `-subgroups S` are collected in Table 1.

Table 1. Principal `-blocks in 2F4(2)′

` |Irr0(B0)| Irr0(NS(S`)) |Irr0(B
′
0)| Irr0(NAut(S)(S`))

2 8 18 16 116

3 9 14, 2, 44 9 14, 23, 82

5 16 16, 26, 32, 242 20 14, 26, 34, 42, 244

13 8 16, 62 13 112, 12

In the table, na indicates that there are a characters of degree n.

The validity of (AM) follows from the data in this table, and the statement of (IN) can
also be checked easily from the known character table of S.

Finally, we consider S = 2F4(q
2), where q2 = 22f+1 with f ≥ 1, so S = GF for an

algebraic group G of type F4 with a very twisted Steinberg endomorphism F : G →
G. Here, there are two essentially distinct cases: for ` = 3, the Sylow subgroups are
non-abelian, while for ` > 3, they are abelian. In the latter case, replacing cyclotomic
polynomials over Q by cyclotomic polynomials Φ over Q(

√
2), respectively by X2 − 1,

the prime ` satisfies condition (*) from Section 2. The same arguments as there then
show that the analogues of Propositions 2.3 and 2.4 (for Φ-split Levi subgroups instead
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of e-split ones) continue to hold. The `-blocks of S have been determined in Malle [20]
and from this the assertions from Theorem 2.6 can be seen to hold in this case as well,
and thus the analogue of Proposition 2.7 is true.

Table 2. Φ-split Levi subgroups in 2F4(q
2)

Φ LF NGF (L) Irr(WGF (L))

Φ̃1 Φ̃2
1 LF : D8 14, 23

Φ̃1 × 2B2(q
2) Φ̃1 : 2× 2B2(q

2) 12

Φ4 Φ2
4 LF : GL2(3) 12, 23, 32, 4

Φ4 × L2(q
2) Φ4 : 2× L2(q

2) 12

Φ′
8 Φ′

8
2 LF : 4S4 14, 26, 34, 42

Φ′
8 × 2B2(q

2) Φ′
8 : 4× 2B2(q

2) 14

Φ12 Φ12 LF : 6 16

Φ′
24 Φ′

24 LF : 12 112

In the table, Φi denotes the ith cyclotomic polynomial evaluated at q,
Φ̃1 = q2 − 1, Φ′

8 = q2 ±
√

2q ± 1, Φ′
24 = q4 ±

√
2q3 + q2 ±

√
2q + 1,

D8 is the dihedral group of order 8, and 4S4 denotes a central extension of 4 by S4.

We have listed the Φ-split Levi subgroups L of (G, F ) for all cyclotomic polynomi-
als Φ dividing |2F4(q

2)| (at least) twice in Table 2. Here, the last column contains the
character degrees of WGF (L) with multiplicities. By the information given in Malle [21,
Prop. 1.2,1.3] one sees that all these Levi subgroups L have the property that NGF (L)
is a split extension of LF by WGF (L), and WGF (L) acts trivially except on some central
direct factor. Thus all characters of LF extend to their inertia groups in NGF (L). On
the other hand, it is shown by Himstedt [17] that E(S, s) forms a basic set for E`(S, s) for
all semisimple `′-elements s ∈ G∗F ∼= S and that the decomposition matrix is unitrian-
gular on that basic set. The blockwise Alperin weight conjecture for S now follows as in
Corollary 3.7.

The outer automorphism group of S is cyclic, generated by the split Frobenius en-
domorphism of G with respect to F2 restricted to S. Now note that G has connected
center. Thus, by Theorem 4.1 an irreducible character χ ∈ E(S, s) is fixed by a field
automorphism γ if and only if γ fixes the S-class of the semisimple element s. Similarly,
locally, if γ stabilizes the e-cuspidal character λ ∈ E(LF , s), then it fixes all characters
of NGF (L, λ) lying above it, since the field automorphisms commute with the action of
the Weyl group of GF , and NGF (L, λ) is generated over LF by elements from the Weyl
group. Since Out(S) is cyclic, all invariant characters extend. The inductive blockwise
Alperin weight condition (BAW) follows for ` > 3.

In Table 3 we describe the non-trivial 3-blocks of 2F4(q
2) and their defect groups ac-

cording to [20] in terms of semisimple 3′-elements s ∈ S, and give their numbers of
3-modular irreducibles according to [17, §4]. Here S3(G

F ) denotes a Sylow 3-subgroup
of GF . The fifth column lists the number of conjugacy classes of 3′-element with that
particular centralizer, hence the number of 3-blocks of that type.
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Table 3. 3-blocks of positive defect in 2F4(q
2)

CGF (s) D(B) |IBr(B)| No. of such blocks
1 GF S3(G

F ) 9 1
2 Φ4 × L2(q

2) 3a × 3a 2 (b− 1)/2
3 Φ2

4 3a × 3a 1 (b− 1)(b− 11)/48

4 Φ̃1 × L2(q
2) 3a 2 (q2 − 2)/2

5 Φ̃1Φ4 3a 1 (b− 1)(q2 − 2)/4
6 Φ12 3 1 (q4 − q2 − 2)/18

Here, 3a is the precise power of 3 dividing Φ4, b := (Φ4)3′ = Φ4/3a.

The radical 3-subgroups and their normalizers were determined by An [2, §2–3]. We
have reproduced the results in Table 4, where the fourth column contains the charac-
ter degrees of 3-defect zero with their multiplicities and the first column indicates the
corresponding 3-block in GF .

Table 4. Non-trivial radical 3-subgroups in 2F4(q
2)

block R NGF (R)/R dz(NGF (R)/R) condition
1 S3(G

F ) 2× 2 1, 1, 1, 1 a ≥ 2
1 31+2

+ SL2(3) 3 a ≥ 2
1 31+2

+ SL2(3).2 3, 3 a ≥ 2
1 31+2

+ 8.2 1, 1, 1, 1, 2, 2, 2 a = 1
1 3a × 3a ((q2 + 1)3′)

2.GL2(3) 3, 3
2 24, 24 (×(b− 1)/2)
3 48 (×(b− 1)(b− 11)/48)
4 3a L2(q

2)× ((q2 + 1)3′).2 Φ4,Φ4 (×(q2 − 2)/2) a ≥ 2
5 2Φ4 (×(b− 1)(q2 − 2)/4) a ≥ 2

4 3 U3(q
2).2 Φ̃1Φ4Φ12, Φ̃1Φ4Φ12 (×(q2 − 2)/2) a = 1

5 2Φ̃1Φ4Φ12 (×(b− 1)(q2 − 2)/4) a = 1

6 2Φ̃1Φ
2
4 (×(q4 − q2 − 2)/18)

It follows from this already that the ordinary Alperin weight conjecture holds for S at
for ` = 3. We now consider the action of Out(S), which in this case is cyclic and consists
only of field automorphisms. For the principal block B0 of S, the decomposition matrix
between the nine 3-modular irreducible characters and a suitable basic set of ordinary
characters is unitriangular by [17, Cor. 4.3]. Now the ordinary characters in this basic
set are either unipotent or lie in the Lusztig series of the 3-central 3-element of S. In
particular, all characters in this basic set are invariant under all field automorphisms
of S. Thus, the nine modular irreducibles in IBr(B0) are invariant, and hence extend.
On the other hand, the radical 3-subgroups listed in Table 4 are normalized by field
automorphisms, and these stabilize the irreducible characters in the first five lines of
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Table 4. Since Out(S) is cyclic, this already gives the required equivariance properties for
B0.

Each non-principal 3-block B of S lies in the union of Lusztig series E3(S, s) of a certain
semisimple 3′-element 1 6= s ∈ S. On the other hand, it is easily seen that the characters of
3-defect zero of the corresponding normalizers of radical subgroups are naturally indexed
by the same class of semisimple elements. Since in all cases the elements of E(S, s) form a
basic set for B by [17, §4] and are invariant under field automorphisms, the action of field
automorphisms is completely determined by their action on the label s of B. This gives
the required equivariance in all cases. (In fact, for the blocks of types 2 and 3, as well as
those of types 4 and 5 when a ≥ 2, the situation is the same as for primes 3 6= `|Φ4.)

The inductive (McK)-condition for 2F4(2
2f+1), f ≥ 1, ` 6= 2, was verified in [9]. For the

blocks of maximal defect, this implies the (AM)-condition by [9, Thm. 6.3]. This leaves
the `-blocks for primes `|(q4−1). The 3-blocks of positive defect of G are listed in Table 3.
For all of these, the ordinary Alperin-McKay conjecture was already verified in [20]. It is
immediate from this to check that there exist bijections which are moreover equivariant
with respect to field automorphisms. The same applies for the `-blocks with non-maximal
and non-trivial defect for the other primes ` dividing (q4 − 1). As S has trivial Schur
multiplier and its outer automorphism group is generated by field automorphisms, this
completes the verification of (AM) for S. Then (IN) follows from this by the remarks
after [22, Thm. 8.5]. �

6. Dade–Glauberman–Nagao correspondence

In this section we collect some preparatory material for the proof that alternating groups
satisfy the inductive blockwise Alperin weight condition (BAW). For G a finite group and
p a fixed prime, we write IBr(G) for the set of p-modular irreducible Brauer characters of
G, and

dz(G) := {χ ∈ Irr(G) | gcd(|G|/χ(1), p) = 1}
for the set of irreducible p-defect zero characters. For χ ∈ dz(G) we let χ0 denote its
restriction to p′-classes. Recall that a p-subgroup Q ≤ G is called p-radical if NG(Q)/Q
has no non-trivial normal p-subgroup.

We now explain the condition needed for a finite simple group S to be (AWC)-good
(see [25, §3]). Fix a covering group G of S, with cyclic center Z = Z(G) of order prime
to p (so G is quasi-simple and S ∼= G/Z), and a faithful character λ ∈ Irr(Z). Then for
every p-radical subgroup Q of G there should exist subsets IBr(G|Q, λ) ⊆ IBr(G|λ) with
the following properties:

(1) IBr(G|Q1, λ) = IBr(G|Q2, λ) if and only if Q1, Q2 are G-conjugate,
(2) IBr(G|λ) is the disjoint union of the IBr(G|Q, λ), where Q runs over a set of

representatives for the G-classes of p-radical subgroups of G, and
(3) for all a ∈ A := CAut(G)(Z) we have IBr(G|Q, λ)a = IBr(G|Qa, λ).

Moreover, for all Q there should exist bijections
∗ : IBr(G|Q, λ) −→ dz(NG(Q)/Q, λ),

such that

(4) (ϕa)∗ = (ϕ∗)a for all ϕ ∈ IBr(G|Q, λ), a ∈ A.
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Furthermore, for any p-radical subgroup Q of G and any ϕ ∈ IBr(G|Q, λ), let A0 be
the subgroup of A stabilizing Q and ϕ, and let G̃ be a group containing G as a normal
subgroup such that Z ≤ Z(G̃) and the group of automorphisms of G induced by NG̃(Q)
is exactly A0. We then require that:

(5) C := CG̃(G) is abelian,

(6) IBr(C|λ) contains a G̃-invariant character γ,
(7) we have equality of 2-cocycles [ϕγ]G̃/CG = [(ϕ∗)0γ]NG̃(Q)/CNG(Q).

We then say that (G, λ) is (AWC)-good for p. If this holds for all covering groups G of S,
then we say that S is (AWC)-good for p. If Out(G) is cyclic and moreover the bijection
∗ satisfies that

(8) ϕ lies in the induced to G of the block of ϕ∗

for all ϕ ∈ IBr(G), then we have that S is (BAW)-good for p (see [29, Lemma 6.1]).

Remark 6.1. Let’s note the following special cases: if G̃ is the semidirect product of
G with A0/N̄G(Q) (where N̄G(Q) denotes the image of NG(Q) in G/Z(G)), then C =
CG̃(G) = Z(G̃) = Z(G) = Z in (5) is abelian, and (6) is satisfied with γ = λ. If moreover

A0/NG(Q) ∼= G̃/G is cyclic, then both characters in (7) extend to their inertia groups, so
the associated cocycles are trivial and hence equal. So (5)–(7) are automatically satisfied
under these conditions.

For B a block of G we write l(B) = |IBr(B)| for the number of irreducible Brauer
characters in B.

An important ingredient in the Navarro–Tiep reduction is the Dade–Glauberman–
Nagao correspondence. We’ll make use of the following consequence of it whose proof is
implicit in [25, Thm. 5.1] and which was kindly communicated to us by Gabriel Navarro:

Proposition 6.2. Let G be a finite group with a normal subgroup N of index p. There
is a bijection between the set of G-invariant N-classes of p-weights of N and the set of
G-classes of p-weights (Q, γ) of G with Q 6≤ N , which sends p-weights of N in a given
block b of N to p-weights of G in blocks covering b.

Proof. Define a map Ξ from the set of G-invariant N -classes of p-weights of N to the set
of G-classes of p-weights (Q, µ) of G with Q 6≤ N as follows: Suppose that (P, γ) is an
N -weight whose N -class is G-invariant. Thus, G = N NG(P ) and γ is an NG(P )-invariant
defect zero character of NN(P )/P . By the Dade–Glauberman–Nagao correspondence (see
for example [25, §4]) there exists a complement Q/P of NN(P )/P in NG(P )/P . Since
Q ∩ NN(P ) = P = Q ∩ N we have NG(Q) ≤ NG(P ), and the Dade–Glauberman–Nagao
correspondence gives a unique irreducible character of CNN (P )/P (Q). Since the latter group
is isomorphic to NG(Q)/Q, this naturally gives a defect zero character γ∗ of NG(Q)/Q
and hence a G-weight (Q, γ∗) whose class is denoted Ξ(P, γ).

It remains to show that this construction yields a complete set of representatives for
the G-classes of weights (Q, µ) with Q 6≤ N . First suppose that two G-weights (Qi, γ

∗
i ),

i = 1, 2, obtained from N -weights (Pi, γi) as above are conjugate by g ∈ G. As Qi∩N = Pi

by construction, we have P g
1 = P2. By the construction of γ∗i it follows that γ∗2 = (γ∗1)

g =
(γg

1)
∗, and then uniqueness gives that γ2 = γg

1 .
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Now let (Q, µ) be a G-weight with Q 6≤ N , and set P = N ∩ Q. Then NG(Q)/Q
is naturally isomorphic to NN(Q)/P , so µ|NN (Q) is a Q-invariant defect zero charac-
ter of NN(Q)/P . As NG(Q) ≤ NG(P ) and NN(Q)/P = CNN (P )/P (Q), by the Dade–
Glauberman–Nagao correspondence µ|NN (Q) equals γ∗ for some Q-invariant defect zero
character γ of NN(P )/P . So Ξ is also surjective.

For a p-weight (P, γ) of N , let b denote its block in N . By the definition of the Dade–
Glauberman–Nagao correspondence the image (Q, γ∗) of (P, γ) lies in the unique block B
of NG(P ) that covers b (B is the Brauer correspondent of b). �

This will be used as follows:

Corollary 6.3. Let G be a quasi-simple group with σ ∈ Aut(G) of prime order p gener-
ating A := COut(G)(Z(G)). Assume the following:

(1) The ordinary blockwise Alperin weight conjecture holds for the semidirect product
G̃ = G.A and the prime p.

(2) The number of A-invariant characters in IBr(G) and of A-invariant G-classes of
p-weights of G agree.

Then (G, λ) is (BAW)-good for p for all faithful λ ∈ Irr(Z(G)).

Proof. Let w be the number of G-orbits of p-weights of G, w1 the number of A-invariant
G-orbits of p-weights, and w2 = w − w1. Similarly, let b1 be the number of A-invariant
irreducible Brauer characters of G and b2 = |IBr(G)| − b1. Let w̃ be the number of
classes of p-weights of G̃, w̃1 the number of such for which the radical p-subgroups are
not contained in G and w̃2 = w̃ − w̃1. Finally, let b̃1 be the number of irreducible Brauer
characters of G̃ which remain irreducible upon restriction to G and b̃2 = |IBr(G̃)| − b̃1.

Clearly we have b1 = b̃1 and b2 = 2b̃2. Assumption (1) gives b̃1 + b̃2 = w̃1 + w̃2, while (2)
says that b1 = w1. By Proposition 6.2 we also have b1 = w̃1. Finally, it is obvious that
w2 = 2w̃2. In conclusion we get w1 = b1, w2 = b2, and then clearly an A-equivariant
bijection exists. Conditions (5)–(7) for (AWC)-goodness are satisfied by our Remark 6.1
above.

According to Proposition 6.2 these bijections satisfy the block compatibility condition
for (BAW). �

7. Blocks of alternating groups

The blockwise version of Alperin’s weight conjecture for symmetric groups and odd
primes p has been proved by Alperin and Fong [1]. We show how to derive from this
the fact that the p-blocks of the alternating groups are (BAW)-good, thus completing the
proof of Theorem 1.1.

For this we need to recall some results from [1] and from a paper of Olsson [26]. The
ordinary irreducible characters of Sn are naturally labelled by partitions of n, and two
characters lie in the same p-block if and only if their labels have the same p-core. Thus
the p-blocks of Sn are naturally labelled by p-cores κ of partitions κ ` m with m ≤ n
such that n −m ≡ 0 (mod p); we write B(κ) for the corresponding block. The integer
w := (n−|κ|)/p is called the weight of B(κ). The number of complex irreducible characters
in B(κ) is then given by

|Irr(B(κ))| = k(p− 1, w)
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where k(e, w) is the number of multipartitions (µ1, . . . , µe) ` w of w of length e (see [27,
Prop. 11.4]). In particular, a character of Sn is of p-defect zero if and only if it is labelled
by a p-core.

We fix a prime p. For c ≥ 1 let Ac denote the elementary abelian p-group of order pc

in its regular permutation representation. For a sequence c = (c1, . . . , ct) of integers, let
Ac := Ac1 oAc2 o · · · oAct the iterated wreath product, naturally embedded as a transitive
subgroup of Spd , where d = c1 + . . .+ ct. These groups are called p-basic subgroups. Note
that

NS
pd

(Ac)/Ac
∼= GLc1(p)× · · · ×GLct(p).

Then the radical p-subgroups of G = Sn are direct products

R = R1 × · · · ×Rs

with each Ri a direct product of mi isomorphic p-basic subgroups Aci
≤ Sri

(see [1, 2A,
2B]). Furthermore,

NG(R)/R = Sr0 ×
s∏

i=1

(N(Aci
)/Aci

) oSmi

where r0 = n −
∑

imiri. (Note that for p = 2, 3 not all such subgroups are radical, but
this will not matter.)

Note that by Clifford theory the p-defect zero characters of a wreath product T oSm are
naturally parametrized by e-tuples of partitions (µ1, . . . , µe) ` m consisting of p-cores µi,
where e = |dz(T )| is the number of defect zero characters of T . In the situation considered
above, the defect zero characters of GLci

(p) are the p − 1 extensions of the Steinberg
character of SLci

(p) to GLci
(p). So the weights of G belonging to the radical subgroup

R above are naturally indexed by pairs (κ, λ), where κ ` r0 is a p-core indexing a defect
zero character of the first factor Sr0 of NG(R)/R, and λ is an s-tuple of multipartitions
µi = (µi1, . . . , µi,p−1) ` mi, 1 ≤ i ≤ s, consisting of p-cores.

For κ a p-core, let W (κ) denote the set of weights of Sn of the form (R,ϕ) where
r0 = |κ| and ϕ = (κ, λ) for some λ as above. It is shown in [1, (2C)] that for any block
B(κ) of Sn, the corresponding weights are precisely those in W (κ) (up to conjugation),
and that l(B(κ)) = |W (κ)|, so the blockwise version of Alperin’s weight conjecture holds
for Sn.

We claim that this descends to the p-blocks of the alternating group An. Let B = B(κ)
be a p-block of Sn of weight w. It is known that B covers a unique block B̃ of An (see
[27, Prop. 12.2]). The block B is called self-dual if the p-core κ is symmetric, that is,
it agrees with its conjugate partition κ′. Let σ denote the sign character of Sn. Then
σB = B if and only if B is self-dual.

7.1. Blocks of An for odd primes. First we deal with the case that p is odd. Assume
that B = B(κ) is not self-dual, so κ 6= κ′. Then B and σB are disjoint, they both cover
B̃, and by [26, Prop. 2.8] we have

l(B̃) = l(B) = k(p− 1, w).

On the other hand, none of the weights (R,ϕ) associated to B is stable under tensoring
with the sign character, since σϕ = (κ′, λ′) for a suitable λ′, so the number of weights of
An lying below W (κ), so corresponding to B̃, is also k(p− 1, w) in this case.
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On the other hand, if B is symmetric, then by [26, Prop. 2.13] we have

l(B̃) =

{
1
2
k(p− 1, w) w odd,

1
2
(k(p− 1, w) + 3k((p− 1)/2, w/2)) w even.

We claim that this is also the number of weights of An lying below W (κ). For this note
that a weight (κ, λ) is fixed by σ if and only if λ = (µ1, . . . , µs) is such that for each
µi = (µi1, . . . , µi,p−1) we have that µij = µ′i,p−j. Clearly this is only possible if each mi

and hence also w =
∑

imiri is even. Thus any such weight is already uniquely specified
by the first halfs (µi1, . . . , µi,e) ` mi/2 of the µi, where e = (p − 1)/2. But the number
of such tuples of p-cores equals the number of multipartitions (λ1, . . . , λe) ` w/2, hence
is given by k(e, w/2) = k((p − 1)/2, w/2), by the following combinatorial result from [1,
(1A)]:

Lemma 7.1. For d ≥ 0, e ≥ 1, p ≥ 1, let I = {(d, i) | d ≥ 0, 1 ≤ i ≤ epd}. Then for
any w ≥ 0 the number of maps

I → {λ | λ p-core}, (d, i) 7→ κd
i ,

with
∑

d,i p
d|κd

i | = w equals k(e, w), the number of multipartitions (λ1, . . . , λe) ` w.

All other |W (κ)| − k(e, w/2) weights in W (κ) come in pairs interchanged by σ. The
claim then follows as

1

2
(|W (κ)| − k(e, w/2)) + 2k(e, w/2) =

1

2
(|W (κ)|+ 3k(e, w/2))

=
1

2
(k(p− 1, w) + 3k(e, w/2)).

7.2. Blocks of An for p = 2. Now let p = 2. Note that the 2-weights for An have
not been determined in [24]. In order to apply the criterion in Corollary 6.3 we need to
determine the radical 2-subgroups of Sn contained inside An.

Lemma 7.2. Let R = R1 × · · · × Rs be a radical 2-subgroup of Sn, with Ri a direct
product of mi isomorphic 2-basic subgroups Aci

≤ Sri
. Then R ≤ An if and only if each

Ac is of the form Ac = Ac1 o · · · o Act with c1 ≥ 2.

Proof. By construction, R ≤ An if and only if each Aci
≤ Ari

. Now Ac ≤ A2c if and only
if c ≥ 2, and furthermore A ≤ Am with m even implies A o B ≤ Akm for all B ≤ Sk, so
the claim follows. �

For a positive integer m, let π(m) = k(1,m) denote the number of partitions of m.

Proposition 7.3. Let κ ` n− 2w be a 2-core. The number of 2-weights (R,ϕ) of Sn in
W (κ) with R ≤ An equals π(w/2) if w is even, 0 else.

Proof. For d ≥ 1 let nd denote the number of basic subgroups of degree 2d, that is, the
number of tuples c = (c1, . . . , ct) of positive integers with t ≥ 1, c1 + . . .+ ct = d. Clearly,
the set of such tuples for a fixed t is in bijection with the set of subsets of {1, . . . , d− 1}
of size t− 1, so

nd =
d∑

t=1

(
d− 1

t− 1

)
= 2d−1.
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Let md be the number of such tuples c for which Ac ≤ A2d . By Lemma 7.2 this is the
case if and only if c1 ≥ 2. Again, for fixed t the set of tuples

{c = (c1, . . . , ct) | c1 ≥ 2, c1 + . . .+ ct = d}
is in bijection with the set of subsets of {1, . . . , d− 2} of size t− 1, so

md =
d−1∑
t=1

(
d− 2

t− 1

)
= 2d−2 for d ≥ 2,

and m1 = 0.
Thus, by [1, (2C)], the 2-weights (R,ϕ) of Sn of weight w with R ≤ An (up to con-

jugation) are parametrized by the set of tuples (K1, . . . , Kn) where each Kd is a tuple
(κd

1, . . . , κ
d
md

) of 2-cores with ∑
d≥0

md∑
i=1

2d−1|κd
i | = w.

As we have m1 = 0, such a tuple can only exist if w is even. In that case, according to
Lemma 7.1, the number of such tuples equals the number of partitions of w/2. �

Corollary 7.4. (An, 1) is (BAW)-good for p = 2.

Proof. Every 2-core is symmetric, so by [27, Prop. 12.2 and subsequent remarks] any 2-
block B of Sn covers a unique block B̃ of An, and it is the only block with this property.
Now first assume that B has odd weight w. Then by [26, Prop. 2.17] we have

l(B̃) = l(B) = k(1, w) = π(w),

the number of partitions of w. In particular, any irreducible Brauer character of B̃ extends
to Sn, so is Sn-invariant. On the other hand, we just showed that all 2-weights of An

correspond to a unique 2-weight of Sn, so any bijection is Sn-equivariant.
Secondly, if w is even then by [26, Prop. 2.17] we have

l(B̃) = l(B) + k(1, w/2) = π(w) + π(w/2).

In particular, π(w) − π(w/2) irreducible Brauer characters of B̃ extend to Sn, while
2π(w/2) are not invariant. By Proposition 7.3 the same holds for the 2-weights of An.
Then (BAW)-goodness for the prime 2 follows from Corollary 6.3. �

7.3. Faithful blocks of Ân for odd primes. The p-weights for faithful blocks of 2.An

and 2.Sn were determined in [24, §5] for all odd primes p, and the results show that the
number of 2.Sn-invariant Brauer characters and p-weights is the same for any faithful p-
block of 2.An, so [29, Lemma 6.1] is applicable. This completes the proof of Theorem 1.1
for n 6= 6, 7.

7.4. The groups A6 and A7. In this section we handle the exceptional automorphism
group of A6 and the exceptional covering groups of A6 and A7 :

Proposition 7.5. The alternating groups A6 and A7 are (BAW)-good for all primes p.
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Proof. Let first S = A6. Here Out(S) = C2 × C2 and M(S) = C6. Since A6
∼= L2(9) is a

group of Lie type in characteristic 3, (BAW) for p = 3 was proved in [29, Thm. B]. Next,
S is (AWC)-good for p = 2 by [25, Prop. 6.1]. Moreover, it is easily seen that the bijection
constructed in loc. cit. satisfies condition 4.1(ii)(3) in [29]. For the trivial character the
necessary additional conditions for (BAW) are trivially satisfied. In all other cases, the
inertia group in the group of outer automorphisms is cyclic, whence (BAW)-goodness
follows by [29, Lemma 6.1].

Now let p = 5. The only non-trivial radical 5-subgroup (up to conjugation) is the Sylow
5-subgroup P , with N2.A6(P )/P ∼= C12. Note that by [25, Cor. 7.2] and [29, Prop. 6.2]
we need not consider the 3- or 6-fold coverings of S since these are only centralized by a
cyclic subgroup of Out(S), and the Sylow 5-subgroup of S is cyclic. The relevant data for
2.A6 are collected in Table 5; here the first two lines correspond to characters of S, the
last one to faithful characters of 2.S. The notation for the outer automorphisms 21, 22, 23

is taken from [10]. All characters extend to their inertia groups in Out(G). All characters
of S of positive defect lie in the principal 5-block, and similarly all faithful characters
of 2.S of positive defect lie in a unique 5-block. The same holds for the corresponding
characters of NS(P ), respectively N2.S(P ).

Table 5. (BAW)-bijection in G = 2.A6 for p = 5

P NG(P )/P ϕ(1) IBr(G) 21 22 23 22

C5 C2 1 1 2 2 2 4
1 8 2 2 2 4

C4 1, 1 4, 4 4 1 1 2

Next let S = A7, with Out(S) = C2 and M(S) = C6. Then S is (BAW)-good for
p = 5, 7 by [25, Cor. 7.2] and [29, Prop. 6.2]. Also, all p-blocks of 2.A7 satisfy the necessary
conditions by our general results on alternating groups and their twofold covering above.
Thus we only need to consider the faithful blocks of G = 3.A7 for p = 2. The outer
automorphism acts non-trivially on Z(G), so we need not worry about equivariance here.
The radical 2-subgroups P in G are (isomorphic) preimages of those in A7 described
above, with normalizer quotients NG(P )/P and faithful defect zero characters as given in
Table 6. (We have again omitted the trivial group P = 1 and the corresponding defect
zero characters of G.) On the other hand, the faithful 2-Brauer characters of G have
degrees {6, 6, 15, 15, 24, 24, 24, 24}, see [10], where the last four are of 2-defect 0. The
claim follows. �

Table 6. (BAW)-bijection in G = 3.A7 for p = 2

P NG(P )/P ϕ(1) IBr(G)
C2 × C2 C3 ×S3 2, 2 6, 6
D8 C3 1, 1 15, 15
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[9] M. Cabanes, B. Späth, Equivariance and extendibility in finite reductive groups with connected
center. Math. Z., to appear.

[10] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite
Groups. Clarendon Press, Oxford, 1985.

[11] D. Denoncin, Inductive AM condition for alternating groups in characteristic 2. Preprint
[12] F. Digne, J. Michel, On Lusztig’s parametrization of characters of finite groups of Lie type.
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