FINITE GROUPS WITH MINIMAL 1-PIM
GUNTER MALLE AND THOMAS WEIGEL

ABSTRACT. Let I be a field of characteristic £ > 0 and let G be a finite group. It is
well-known that the dimension of the minimal projective cover ®¢ (the so-called 1-
PIM) of the trivial left F[G]-module is a multiple of the ¢-part |G|, of the order of G.
In this note we study finite groups G satisfying dimp(®$) = |G|,. In particular, we
classify the non-abelian finite simple groups GG and primes £ satisfying this identity
(Thm. A). As a consequence we show that finite soluble groups are precisely those
finite groups which satisfy this identity for all prime numbers ¢ (Cor.B). Another
consequence is the fact that the validity of this identity for a finite group G and
for a small prime number ¢ € {2,3,5} implies the existence of an ¢'-Hall subgroup
for G (Thm. C). An important tool in our proofs is the super-multiplicativity of
the dimension of the 1-PIM over short exact sequences (Prop. 2.2).

1. INTRODUCTION

Let G be a finite group, let ¢ be a prime number and let F be a field of charac-
teristic £. We denote by ®¢, respectively ®; if the ambient group is clear from the
context, the projective cover of the trivial (left) F[G]-module F, that is the unique
(up to isomorphism) projective indecomposable F|G]-module with socle (and head)
isomorphic to the trivial F[G]-module F. This module is also called the 1-PIM of
F[G]. Obviously, ®¢(F) = ®%(F,) ®p, F. It is well-known that the F-dimension of
®, is divisible by |G|, the f-part of |G|. Following [16] we define

The main purpose of this paper is to study pairs (G, ¢) for which ¢,(G) =1, i.e.,
finite groups G and prime numbers ¢ for which ®; has minimal F-dimension. Let
G be a finite group containing an ¢-Hall subgroup H. By Maschke’s theorem, the
trivial F[H]-module F is projective. As ind% is mapping projective F[H]-modules
to projective F[G]-modules, ®§ ~ ind%(F). In particular, ¢,(G) = 1. An f-soluble
group G has a unique G-conjugacy class of ¢-Hall subgroups, and thus ¢,(G) = 1.
For non-abelian finite simple groups we will show the following:

Theorem A. Let G be a finite non-abelian simple group with co(G) =1 for a prime
divisor £ of |G|. Then one of the following holds:

(a) GZQ[(, 525,

(b) G=1Ly(), £ > 5,

(c) G =Ln(q), (¢"—1)/(q—1) = ¢! is a prime power,

(d) G= My, £ =11, or

(e) G = Mgg, {=23.
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This is proved in Theorems 3.2, 4.1, 4.8, 5.8 and 6.1 using the classification of
finite simple groups. As an immediate consequence of our result one obtains the
following characterization of soluble groups:

Corollary B. Let G be a finite group. Then G is soluble if and only if co(G) = 1
for all prime numbers £.

This follows from the fact that for all the exceptions (G, ¢) in Theorem A there ex-
ists another prime divisor p # ¢ of |G| with ¢,(G) > 1, and the super-multiplicativity
of ¢, over short exact sequences proved in Proposition 2.2 below.

From Theorem A one concludes easily that for every prime number ¢ there exists
a finite group G satisfying ¢,(G) = 1 which is not ¢-soluble. Moreover, for small
primes ¢ — which are usually the “bad primes” — one has the following phenomenon

(cf. 87).
Theorem C. Let ¢ € {2,3,5} and let G be a finite group.
(a) G contains an {'-Hall subgroup if and only if c,(G) = 1.
(b) If G contains an ¢'-Hall subgroup, then it contains a unique G-conjugacy
class of '-Hall subgroups.

Note that part (a) of Theorem C does not hold for primes ¢ > 7 (cf. Remark 7.2).
However, it is less clear whether (b) fails for all primes ¢ > 7, although it certainly
fails for some primes ¢ > 7.

2. GENERAL STATEMENTS
In this section ¢ will denote a prime number, and GG will denote a finite group.

2.1. The lift of ®; to characteristic 0. It is well-known that ®; lifts to charac-
teristic 0, that is, there exist a Q[G]-module ®; whose (-modular reduction equals
®;. Let ch(®;) denote the complex character associated to ®;. In particular,

(2.1) dimg(®;) = ch(d;)(1).

It is possible to describe the irreducible constituents of ch(Ci)I) by Brauer reciprocity,
i.e., we have

(2.2) (ch(®1), x)e¢ = (lg,x)  for any x € Irr(G),

where y denotes the /-modular reduction of the complex character y, and the right
hand side is the number of trivial composition factors of y.

2.2. Properties of ¢;(G). We have the following weak relation between ¢,(G) and
co(H) for subgroups H < G:

Lemma 2.1. Let H < G. Then ¢,(G) > co(H)|H|i/|Gle-

Proof. Indeed, the restriction of ®§ from G to H is still projective, and has the
trivial module in the socle, so it contains ®. Thus

(2:3) ce(G) = ch(®F)(1)/|G]e = ch({)(1)/|Gle = eo(H)|H e/ |G]e

as claimed. O
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Much more can be said in the case of normal subgroups:

Proposition 2.2. Let N be normal in G. Then
(2.4) CZ(G) Z Cg(N) CK(G/N)
Furthermore, equality holds in the following cases:
(a) If N is (-soluble, then co(G) = ¢,(G/N).
(b) If G/N is soluble, then co(G) = co(N).
(¢) If G =N x H, then ¢;(G) = ¢(N)co(H).
Proof. Let L be a Sylow ¢-subgroup of G. Then Ly: = LN N is a Sylow ¢-subgroup
of N and LN/N is a Sylow ¢-subgroup of G/N.
For a left F|G]-module M the co-invariants with respect to N are given by
By construction, My is an F[G/N]-module. Since F|G|y = F|G/N], Ry is a pro-
jective left F[G]-module for any projective left F[G]-module R.
The head of (®§)y is a homomorphic image of ®¢. Thus (®¢)y = <I>1G/N, and

(2.6) dimg ((97)n) = co(G/N) - |L/Ln|.

Let _*: = Homg(_,F). Then (®¢)* — considered as left F[G]-module — is isomor-
phic to ®F. Moreover, as ((®§)*)y =~ ((F)V)*, where _V: = Homy/(F,res§(_))
denote the N-invariants, one has

(2.7) (@F)Y =T,

where r: = ¢,(G/N) - |L/Ly/|, and the isomorphism is an isomorphism of left F[N]-
modules. Restriction is mapping projectives to projectives. As

(2.8) (D)™ < soc(resF(®F)),

(2.7) implies that res$(®¢) contains an F[N]-submodule isomorphic to (®{)". Thus
(2.9) ¢(G)-|L| = dimp(DT) > ¢o(G/N)-|L/Ly|-dimp(®}) = c,(G/N)-co(N)-|L|
as claimed.

Part (a) is [16, Prop. 2.3(b)]. For part (b) we may assume by induction that G/N
is an abelian group of prime power order. If G/N is an elementary abelian ¢-group,
®% is an Fy-submodule of ind$(®Y). This implies ¢,(G) < ¢(N) and thus (2.4)
yields the claim.

Assume that G/N is abelian of order prime to ¢ and that F is algebraically closed.
Since F is a submodule of ®Y and as G/N is an ¢’-group, ind$(®Y) contains the
semi-simple left F[G]-module ind$(F). Thus ind$(®Y) contains also a projective

summand ®¢® S for every 1-dimensional F[G//N]-module S. Comparing dimensions
one obtains

(2.10) |G/N| - dimp(®Y) = dimg(ind§ (@) > |G/N| - dimg(DF).
Since clearly dimp(®$) > dimp(®Y), equality holds in (2.10) and this yields the
claim. The third part is [16, Prop. 2.1(b)]. O

We are not aware of any example where the inequality in Proposition 2.2 is strict.
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2.3. Groups with ¢,/(G) = 1. We now collect some properties of groups with
Cg(G) =1:

Lemma 2.3. Assume that c,(G) = 1 for some finite group G and some prime ¢
dividing |G|. Then there exists 1 # x € Irr(G) in the principal £-block of G with
x(1) < [Gle.

Proof. Since ¢ divides |G|, the principal block contains more than one character,

hence ch(®;) contains some non-trivial irreducible constituent. Since ¢,(G) = 1 if
and only if ch(®,)(1) = |G|, the claim follows. O

Lemma 2.4. Let G be a finite group satisfying c,(G) = 1.
(a) If H < G is of V'-index, then c,(H) = 1.
(b) If N <G is normal, then c;,(G/N) = ¢o(N) = 1.

Proof. Part (a) is a special case of Lemma 2.1, (b) follows immediately from Propo-
sition 2.2. ]

Example 2.5. Note that the assumption that H has /-index in G is necessary in
part (a) above: s is a subgroup of Ly(31) of index 23.31, but

C2(915) =3> CQ(L2(31)) =1

by Theorem 5.2 and Proposition 4.3. By Proposition 2.2, there are no such examples
if H is normal.

Finite groups for which the 1-PIM has the smallest possible dimension have the
following elementary property:

Lemma 2.6. Let G be a finite group, ¢ a prime with c,(G) = 1 and L € Syl,(G).
Then any '-subgroup of G which is normalized by L is contained in Op(G).

Proof. Let S < G be of ¢'-order such that L < Ng(S). Let H: = S.L. Since H is of
V-index in G, O = res (®¢). However, since S is normal in H and L ~ H/S, one
has an isomorphism ® ~ ind¥ (F;). Hence S lies in the kernel of the representation
afforded by ®#. So S lies in the kernel of the representation afforded by ®¢, and
thus in OZI(G) O

Proposition 2.2 and Lemma 2.6 show the following:

Corollary 2.7. Let G be a finite group satisfying c,(G) = 1, and let o € Aut(G) be
of V' order. Then o does not centralize any Sylow £-subgroup of G.

2.4. Divisors of cyclotomic polynomials. We need the following well-known
statement, where ®, denotes the dth cyclotomic polynomial (see [11, Lemma 5.2],
for example).

Lemma 2.8. Let ¢ > 1, ¢ a prime not dividing q, and d the multiplicative order of
q mod £.

(a) We have €|®;(q) if and only if f = dl* for some i > 0.

(b) If ?|®(q) then f=d, or { = f =2.
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Let q and d be positive integers, ¢,d > 2. A prime number r is called a primitive
prime divisor of ¢* — 1, if r divides ¢ — 1 but does not divide ¢* — 1 for k < d.
Clearly, a primitive prime divisor of ¢¢ — 1 is also a divisor of ®4(q). Moreover, for
such a divisor ¢ has multiplicative d modulo r. The following statement is known
as Zsigmondy’s theorem.

Lemma 2.9. Let q and d be positive integers ¢ > 2, d > 3.
(a) If (q,d) # (2,6), then q° — 1 has a primitive prime divisor r.
(b) For such a divisor one has r =1 mod d.

Proof. For (a) see [17]. Part (b) is a direct consequence of Fermat’s theorem. [

3. ALTERNATING GROUPS

In this section we determine the alternating and symmetric groups with ¢,(G) = 1.
The following is well-known, but we have not been able to find a suitable reference:

Lemma 3.1. Let £ > 5. Then c/(a0-1) = ((37)) +1)/¢.

Proof. We first investigate the 1-PIM of G&5,_5. Since this group has cyclic Sylow
(-subgroup, it suffices to see which ordinary irreducible character is connected to
the trivial character on the Brauer tree. For this, we describe the decomposition
of the permutation character of the Young subgroup H := &, 1 x &,_1 of Ggy_o.
It decomposes as 11 := X2/—2 + X(¢—1)2 plus irreducibles not lying in the principal
block, by the Murnaghan-Nakayama rule. Since the order of H is prime to ¢, i
is the character of a projective module. Again by the Murnaghan-Nakayama rule,
the induction of ¥ to Gy decomposes as ¥, := X2/—1 + X(¢—1)21 plus irreducibles
not lying in the principal block. So 15 is projective, and hence the character of the
1-PIM. The hook formula then gives the claim, using that both constituents restrict
irreducibly to 2As,_1. ]

Theorem 3.2. Let G =2, n > 5, be a simple alternating group and ¢ < n. Then
co(G) > 1 unless n = £.

Proof. First assume that ¢ > 5. Since 2, has the ¢-Hall subgroup 2, 1, this is
an example for /. On the other hand, the smallest non-trivial character degree of
Ay is £, so we don’t get an example there by Lemma 2.3. The group 2, with
(41 <n <2¢—1 contains the ¢-index subgroup 2,1, so does not give an example
by Lemma 2.4(a).

Next, ¢;(Ao0—1) = ((246:21) +1)/¢ > 3¢ by Lemma 3.1. By Lemma 2.1 this shows
that c,(gr) > 3, so Ay is not an example.

For 20 < n < (2, 2, contains the £-index subgroup 2y x C¥, where k := |n/l] -2,
so this isn’t an example either.

For n = ng + % 0 < ng < ¢, G := A, contains the subgroup H = Ay, X

- x gy (m = [£/2] factors). Since (™) > 2 we conclude that c,(H) > 2™
by Proposition 2.2(c). But |G|,/|H|, = ¢ < c¢o(H), which implies that 2, is not an
example, by Lemma 2.1. Finally, for n > ¢? + ¢, 2,, contains the £'-index subgroup
Cp&,, with m := |n/f| > {41, hence is not an example by our preceding discussion.
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Now let ¢ = 3. Since 23 and 24 are soluble, we may take n > 5. s and g are
no examples by [16, §3]. From the explicit knowledge of decomposition matrices [9]
it follows that 2, is not an example for 7 <n < 9. We may now argue as before to
exclude n > 10.

Finally, let ¢ = 2. Again by [16, §3], 25 and g are no examples. In fact, the
tables in [9] show that co(2,) > 3 for 5 < n < 9, so these are no examples. For
n > 10, 2, contains the subgroup Cy ! ,,, m = [n/2] > 5, of 2’-index, hence again

With Proposition 2.2 we conclude:
Corollary 3.3. Let G =&, n > 5, and { < n. Then c,(G) > 1 unless n = {.

4. GROUPS OF LIE TYPE IN NON-DEFINING CHARACTERISTIC

We now consider groups of Lie type for primes ¢ different from their defining
characteristic. The case of defining characteristic will be considered in the next
section. We start with exceptional groups of Lie type. Using Lusztig’s classification
of complex irreducible characters, Liibeck [10] has determined the smallest non-
trivial character degrees of the simple exceptional groups of Lie type. With this
result we obtain:

Theorem 4.1. Let G be a simple exceptional group of Lie type, and ¢ a prime
divisor of |G| different from the defining characteristic of G. Then c,(G) > 1.

Proof. Let G denote a simple simply-connected algebraic group of exceptional type,
and F' : G — G a Frobenius endomorphism with group of fixed points G" such that
G =GY/Z(GF). (Such G exists unless G = 2F,(2)’, the Tits group. For the latter,
the assertion can be checked directly from the known decomposition numbers [9].)
Let L denote a Sylow ¢-subgroup of GG. Since L is nilpotent, and ¢ is not the defining
characteristic of GG, L is contained in the normalizer of some maximal torus T of G,
by [13, Cor. I11.5.19(a)]. Thus, |L| < |T|,|W e, where W denotes the Weyl group of
G. Now |T'| is a product of cyclotomic polynomials in ¢, the order of the underlying
finite field. Thus, if r denotes the rank of G, we clearly have |T'| < (¢ + 1)" and
hence |L| < (g + 1)"|W|,.

Comparing this bound with the lower bound for minimal non-trivial character
degrees in [10] and using Lemma 2.3, we immediately find that the assertion holds if
q > 4. Thus, there remain only finitely many cases to check. For those, we compute
the precise value of |G|, and check that |G|, —1 is not a non-negative integral linear
combination of the non-trivial character degrees x(1) < |G|,.

We demonstrate the argument on the case of G = Fy(q). The order of a Sylow
(-subgroup is bounded above by (q + 1)*.|W|,, where |[W| = 27.3% The smallest
degree of a non-trivial complex character equals $¢(¢* — 1)*(¢* + 1) if ¢ is even,
respectively ¢® + ¢* + 1 if ¢ is odd. It follows that ¢ < 3 if ¢,(G) = 1. For ¢ = 3, if
¢ > 5 then |G|, < (¢+ 1)* = 256, which is too small. For £ =2, |G|, = (¢+1)*.2" =
4*.27 = 32768. The only non-trivial degree below this bound is 6643, which does
not divide 32768-1. For ¢ = 2 we have ¢ # 2, so |G|, < (¢ + 1)%.3% = 35 = 729,
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smaller than 833, the smallest non-trivial character degree. The other families of
groups can be dealt with similarly. 0

Let’s turn to the classical groups of Lie type.
Also, we make use of the following consequence of Lemma 2.6:

Lemma 4.2. Let G be a simple algebraic group of adjoint type defined over a
field of characteristic p, F' : G — G the corresponding Frobenius morphism and
G := GF. Let £ # p be a prime number and L € Syl,(G). Assume that c,(G) = 1
and that |G, G] is non-abelian simple. Then there exists an F-stable mazimal torus
T of G such that T is an (-group and L < Ng(TF).

Proof. As we assumed that [G, G| is non-abelian simple, we have Oy (G) = 1. By [13,
Cor. 11.5.19(a)], there exists an F-stable maximal torus T such that L < Ng(TF).
Then L < Ng(Op(TF)), and thus by Lemma 2.6, Oy (T*) = 1. Hence T is an
(-group. 0

Note further that by Proposition 2.2, if G is a finite group with a unique non-
abelian simple composition factor S, then ¢,(G) = ¢4(S).

The groups Ls(g) were handled in [16, §3]. Since this result is important as an
induction base, we repeat it here:

Proposition 4.3. Let G = Ls(q), ¢ > 4. Then ¢,(G) =1 for a prime divisor ¢ of
|G|, £ fq, if and only if ¢ + 1 = £ is a power of L.

This happens if £ = 22 41> 5 is a Fermat prime, or if { =2 and ¢ =2% —1 1is
a Mersenne prime, or if (q,¢*) = (8,9).

The further examples occurring in projective special linear groups are generaliza-
tions of this case:

Proposition 4.4. Let G = L,(q) with n > 3. Then c,(G) = 1 for some prime
divisor € of |G|, € fq, if and only if (¢" —1)/(q — 1) = £* is a power of the prime (.
In the latter case, n is necessarily a prime.

Proof. First note that ¢ = 2 does not give an example. Indeed, for ¢ = 2 by Hiss |5,
Thm. BJ, ch(®§) contains the Steinberg character of degree ¢™"~1/2, while the Sylow
2-subgroup has order bounded above by (¢+1)""!(n!), too small for (n,q) # (3, 3).
The latter case can be discarded by using the precise order of the Sylow 2-subgroup.

Hence from now on we may assume that ¢ # 2. We work with the group G :=
PGL,(q) instead of G, as we may by a prior observation. By Lemma 4.2 there exists
a maximal torus T of G' whose order is a power of £. Now |T|(¢—1) = []/_,(¢™ —1)
for some partition (mq,...,m,) of n. If this is a power of ¢, then either r = 1 or
l|(g — 1). In the former case |T| = (¢" — 1)/(¢ — 1) is a power of ¢, and /¢ is a
Zsigmondy prime for ¢" — 1. Thus the end node parabolic subgroups are ¢-Hall
subgroups and so ¢,(G) = 1 in this case.

Hence we may assume that £|(¢g—1), and then |T'| = (¢—1)""! is a power of £. The
normalizer Nx(T') is an extension of T by the symmetric group &,. Corollary 3.3
together with Lemma 2.4(a) force that ¢ > n if ¢,(G) =1, or (¢,n) = (3,4) (since

¢ # 2 by our first reduction). If £ > n then the order formula for G shows that T'
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contains a Sylow -subgroup of G, and T is contained in the subgroup GL,_1(¢). By
Lemma 2.4(a) and induction, with induction base the case n = 2 in Proposition 4.3,
this forces (¢" ' —1)/(qg — 1) = £* (note that this is also true for the solvable cases
n =3, q € {2,3}). So both ¢ —1 and (¢"~' — 1) are powers of ¢, which is only
possible if n = 2 or £ = 2, both of which are excluded.

So we are left with £ =n, or (¢,n) = (3,4). In the first case, { = n divides ¢ — 1,
and /¢ divides |&,,| exactly once, so a Sylow /-subgroup of G has order (¢—1)""!. But
by [14, Thm. 1.1] the smallest non-trivial character degree of G is (¢" — q)/(¢ — 1),
which is bigger.

If (¢,n) =(3,4) and g — 1 is a power of 3, then necessarily ¢ = 4, so G = L4(4),
which is not an example. O

The case of unitary groups is rather similar, except that we find no examples since
there are no end node parabolics:

Proposition 4.5. Let G = U,(q) with n > 3, (n,q) # (3,2). Then ¢,(G) > 1 for
all prime divisor £ of |G|, € fq.

Proof. In the cases ¢ = 2, or n = 3 and £|(¢* + 1), % contains the Steinberg module
of dimension ¢"("~1/2 (see [5, Thm. B]), which is larger than the order of the Sylow
¢-subgroup of G, except when (n,q) = (3,3). The latter case can be ruled out by
[9]. Thus we may assume ¢ > 2, and n > 3 when £|(¢> + 1).

Let T be a maximal torus of G := PGU,(q) whose normalizer contains a Sylow
(-subgroup of G. Since

TI(g+1) = J(g™ = (=1)™)
i=1

for some partition (my, ..., m,) of n, we conclude by Lemma 4.2 that either ¢|(g+1),
or else ¢ is a Zsigmondy prime for ¢" — (—1)". In any case, when n = 3 we find
that ¢|(¢> + 1), which was excluded above, so we have n > 4. In the case that ¢ is
a Zsigmondy prime for ¢" — (—1)", the Brauer trees have been determined by Fong
and Srinivasan [4]. The trivial character is connected to a character of degree

e (" "= (=)D"= (=1)"?)
(¢> = 1)(g+1)

which is larger than the order of a Sylow ¢-subgroup.

Hence we have ¢|(¢ + 1), and |T| = (¢ + 1)"' is a power of £. The normalizer
of T'is an extension by the symmetric group &,,, whence ¢ > n or (¢,n) = (3,4)
if ¢o(G) = 1 by Corollary 3.3. If £ > n then T itself contains a Sylow (-subgroup,
as does the subgroup GU,,_1(¢q). Since n > 4, the latter is not an example, except
for ¢ = 2 when GUj(2) is solvable. But Uy(2) is in [9] and gives no example. If
¢ = n, a Sylow (-subgroup of G has order |L| = (¢ + 1)""'. On the other hand,
for (n,q) # (4,2), (4,3), the only non-trivial character degrees x(1) of G below this

bound are
¢" —(=)" "+ (=1"q
g+1 qg+1
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(see [14, Table V]), which both satisfy |L|/2 < x(1) < |L| — 1. Thus, |L] — 1 is
not a nonnegative integral linear combination of the two degrees and consequently
co(G) > 1. The cases (n,q) € {(4,2),(4,3)} can be excluded using [9].

Finally, if (¢,n) = (3,4), note that ¢ and ¢ + 1 both being prime powers forces
q € {2,8} and ¢ = 3. The first case has already been considered. For ¢ = 8, so
G = Uy(8), the Sylow 3-subgroup has order 37 = 2187, and the smallest character
degrees are 455, 456, 3705. It is easily seen that 2187 — 1 is not a nonnegative
integral linear combination of 455 and 456, which completes the proof. OJ

Proposition 4.6. Let G = So,(q) with n > 2, (n,q) # (2,2). Then c¢,(G) > 1 for
all prime diwvisor £ of |G|, € fq.

Proof. First assume that ¢|(¢+1) (this covers in particular the case ¢ = 2). Then by

[5, Thm. B] ch(®%) contains the Steinberg character of G, so ch(®F)(1) > ¢" + 1.

On the other hand, the order of a Sylow ¢-subgroup of GG is bounded above by
(q+1)")2".6,]e < (g + 1) 27"

This is too small unless (n,q) € {(2,2),(2,3),(2,4),(3,2)}. In the last two cases,

the actual order of a Sylow f-subgroup is still smaller than ¢" + 1, while the first

two groups are contained in [9)].

So from now on ¢ f(¢+1). The image H in G of the standard subgroup Sp,,,_(q) x
Spy(q) of Spy, () has index (¢*"—1)/(¢?—1) times a power of q. Hence, by Lemma 2.4
we have ¢,(G) > 1 unless ¢o(H) = 1 or ¢|(¢** — 1)/(¢* — 1). Now by induction, with
induction base the case n = 1 in Proposition 4.3, ¢,(H) = 1 only if n = 2 and either
¢|(q + 1), which is excluded here, or ¢ < 3, which is in [9].

So we may assume that £|(¢** —1)/(¢*—1). Let d := min{m | £|(¢*" —1)}, and H
the image in G of the field extension subgroup Spy,,(¢?) of Sp,,,(q), m = |n/d]. Its
index is prime to ¢, and it is a proper subgroup for d # 1. In that case by induction
we have ¢,(H) > 1 unless d = n.

If d =1 then ¢ ged(¢®> — 1, (¢** — 1)/(¢* — 1)), so £|n. Moreover, by the first part
of the proof, we may assume that in fact ¢|(¢ —1). The Sylow ¢-subgroups are then
contained in the normalizers of tori of order (¢ — 1)". The normalizer quotient is the
Weyl group of type B,,, which itself is a wreath product 2! S,,. If £ < n, this is not
an example by Corollary 3.3. If ¢ = n, the Sylow f-subgroup has order n(q — 1)7.
By [14, Th. 5.2 the smallest degrees of non-trivial irreducible characters of G are
(¢"£1)/2, and all other degrees are at least $(¢*" —1)/(¢+1). (Note that n =€ >3
by assumption.) But by loc. cit. the characters of degree (¢" £ 1)/2 lie in Lusztig
series indexed by elements of order 2 in the dual group, hence not in the principal
¢-block when ¢ # 2 by [1]. Lemma 2.3 now shows that ¢,(G) > 1.

If d = n then ¢|(¢*" —1), but £ does not divide ¢*™ —1 for m < n. Hence £|(¢"+1),
or £|(¢" — 1) and n is odd. In both cases, ¢ is a Zsigmondy prime for ¢" + 1, and
the Sylow ¢-subgroups of G are cyclic. By [4], the trivial character is connected to
a character of degree

n_1 n—1 1
q(¢" 1" +1) Or%

2 q—1

(" + (" - 1)
q—1
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on the ¢-Brauer tree. Both are bigger than the maximal order n(¢™ + 1) of a Sylow
(-subgroup. O

Proposition 4.7. Let G = Off)(q) with n > 7. Then ¢,(G) > 1 for all prime
divisor £ of |G|, ¢ fq.

Proof. We argue by induction on n, the induction base being given by the cases of
Of (¢) = La(q) and Og (q) = Uy(g) which were treated in Propositions 4.4 and 4.5.

By [5], the prime ¢ = 2 can be discarded, and also the prime divisors of ¢+ 1 when
G # O, (¢). Now first assume that n = 2m + 1 is odd. Then SOs,,11(¢) contains
SO;Em(q), with index ¢" £ 1 times a power of ¢. Thus, by induction and Lemma 2.4
examples can only occur for ¢| ged(¢" — 1,¢" + 1) = 2, which was already excluded.

So we may assume that n = 2m is even. The group G = SOJ, (¢q) contains
SOg,—1(gq) with index ¢"™ — 1, so by induction ¢|(¢"™ —1). By Lemma 2.8 this implies
that m = d¢* where d is the order of ¢ modulo ¢. In particular, a Sylow /-subgroup
of G is contained in the normalizer N of a maximal torus T of order (g% — 1)™/4,
where N/T has a quotient &y, k = ¢*. If 7 > 1, this is no example by Corollary 3.3.
If i = 1, a Sylow f-subgroup of G' has order at most (¢* — 1)™/4(¢% — 1), while the
smallest non-trivial character degree of G is at least (¢™ — 1)(¢™ ' —1)/(¢* — 1)
[14, Table II], which is too big. If i = 0, so d = m, the Sylow ¢-subgroup has order
(¢™ — 1), which is again too small.

Finally, in the case G = SO,,,(q), the subgroup SOs,,—1(q) of index ¢ + 1 shows
that £|(¢™ 4+ 1). As above this forces m = d¢’, and a Sylow f(-subgroup of G is
contained in the normalizer N of a maximal torus 7' of order (¢¢ + 1)™/¢, where
N/T has a quotient Sy, k = . We may now argue as in the previous case, using
that the smallest non-trivial character degree of G equals (¢™+1)(¢™ ' —q)/(¢*—1)
by [14, Table II], to show that no example can arise. O

The previous propositions constitute the proof of the following:

Theorem 4.8. Let G be a finite simple classical group of Lie type and ¢ a prime
different from the defining characteristic of G. Then c,(G) = 1 if and only if G =
L,(q) and (¢ —1)/(q — 1) is a power of {.

5. GROUPS OF LIE TYPE IN DEFINING CHARACTERISTIC

Let F: =, denote the algebraic closure of the finite field F,. Let G be a simple
simply-connected affine algebraic group defined over F, and let F': G — G be a
Frobenius map with finite group of fixed points G := GF', a finite group of Lie type.

Let B be an F-stable Borel subgroup of G and T < B an F-stable maximal torus
contained in B. Let U, < B be the root group corresponding to the highest long
root with respect to (B, T). Then Uy, is also F-stable provided G is not of type ?Bs,
2Gy or ?Fy, and we let q: = |(U,)"]. Note that in this case ¢ is always an integral
power of p. In the previously mentioned exceptional cases the subgroup U, x Ug is
F-stable, where 3 denotes the highest short root. Here we put ¢*: = |(U, x Ug)¥|.

The Lie rank of G is defined to be the dimension of the maximal torus T.
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5.1. Parabolic descent. Let P < G be an F-stable parabolic subgroup of G and
L < P an F-stable Levi subgroup of P. Then H: = [L, L] is an F-stable semisimple
subgroup of G. For short we call P of type X, if (H, F') has Lie type X.

Let 7: H — H denote the simply-connected cover of H. Then there exists a
Frobenius map F: H — H such that 7 commutes with the action of F. One has
the following “parabolic descent lemma”.

Lemma 5.1. Let G = G be a finite group of Lie type defined in characteristic p
satisfymg &(G) =1, and let P < G be an F-stable parabolic subgroup of type X.
Let H be the simply-connected cover of H: = [L,L] and F: H — H the Frobenius
map of H as constructed above such that (H, F) is of type X. Then cp(HF) =1.

Proof. Since P¥ has p’-index in G, the hypothesis implies that c,(P¥) = 1 (cf.
Lemma 2.4(a)). Furthermore, as P* = L¥.R,(P)", Lemma 2.4(b) shows that
cp(L¥) = 1. Since H" has p-index in L*, the previously mentioned argument
shows that c,(H') = 1. The surjective map 7 induces a homomorphism of finite
groups 77 : HY — HF whose kernel is a p/-group and whose image has p’ index in
H?. Thus Lemma 2.4 yields the claim. 0

We first consider some small rank cases.

5.2. G of type A;. The following result was proved by J.E. Humphreys in [6].

Theorem 5.2. Let G: = SLy(q), ¢ = p/. Then c,(G) = 2/ — 1. In particular,
cp(G) =1, if and only if f = 1.

5.3. G of type A, or ?A,. The following theorem is a combination of results of L.
Chastkofsky [2, Thm.3, Cor.] and L. Chastkofsky and W. Feit [3].

Theorem 5.3.
(a) Let G: = SL3(2)) or G: = SU3(2/). Then co(G) = 6/ — 5. In particular,
c2(G) =1, if and only if f = 1.
(b) Let G: = SL3(q), ¢ = p’, p#2. Then c,(G) =127 — 6/ + 1. In particular,
o(G) # 1.
(c) Let G: =SUs(q), ¢ =p’, p#2. Then c,(G) =12/ — 6/ — 1. In particular,
o(G) # 1.
5.4. G of type By or ?B,. In [7], J.E. Humphreys has described the lift of the
character of ®; for the groups G: = Sp,(p), p > 7, in terms of irreducible characters,
and given the dimension of ®; for p > 5. The groups Sp,(2) and Sp,(3) can be
analyzed with [9]. All the necessary information is collected in the following theorem.

Theorem 5.4. We have c2(Spy(2)) = 5, ¢3(Spa(3)) = 2 and c,(Sps(p)) = 9 for
p=>5.

The dimension of ®; for the Suzuki groups has also been analyzed by L. Chastkof-
sky and W. Feit in [3]. They showed the following:

Theorem 5.5. Let G: = Suz(2/), f =2m +1 > 1. Then co(G) = 2%/ — T2/ — 1,
where

(5.1) T = (355)"+ (58)"
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is the n'"-Lucas number. In particular, co(G) = 1 if and only if f = 1.

5.5. G of type G (or 2Gs). The dimension of ®; for G = G5(p) was analyzed by
D. Mertens in [12]. He computed ¢,(G2(p)) for p < 7 explicitly, and showed that for
p > 7 the decomposition of the projective F[G2(p)]-modules Q(u) is generic (see [8,
18.6, Table 11}).

Theorem 5.6. We have c3(G2(2)) = 7, ¢3(G2(3)) = 21, ¢5(Ga(5)) = 13 and
cp(Ga(p)) =91 forp >17.

For the groups of type %Gy, note that 2G5 (3) = Aut(Ly(8)), so c3(2G2(3)) = 1 by
Proposition 2.2.

Proposition 5.7. Let G = 2Gy(¢?), ¢* = 32/*1 > 3. Then c3(G) > 1.

Proof. For ¢* = 27, the claim follows with [9], so now assume that ¢* > 27. We
show that c3(G) > 1 by studying the decomposition

ch(®,) = Z Ny X

x€lrr(GQ)

of the 1-PIM &, of G, with non-negative integers n,. Let’s assume that ¢3(G) = 1.
Then we have

(a) Ny, = 1,

(b) ny = 01 x(1) > |Gy — 1,

(c) ny = ny if x,9 are algebraically conjugate over Qs, since the 1-PIM is

rational over Qs,

(d) ny, =01if 1 # x is not cuspidal.
In order to see (d) assume that n, > 0 for some non-cuspidal character . Then
the Harish-Chandra restriction of y is contained in the restriction of ch(®;), which
is just ch(®7T). But this is just the trivial character.

The degrees and most values of the ordinary irreducible characters of G' = 2G5(¢?),

q* = 3%/*1 were determined by Ward [15]. Here, |G|3 = ¢5. The tables in loc. cit.
show that the character degrees of cuspidal characters of G smaller than ¢°® are

T T
(@ = 1(¢* =3r+1), 5(¢* = D)(¢* +3r + 1),

rig* = 1), (¢* = 1)(¢ =3r+1), (= 1)(¢" — ¢ +1),

with r := ¢/v/3. We proceed to show that n, = 0 for the characters x of the last
degree: The only non-trivial degree smaller than ¢® — 1 — (¢ — 1)(¢* —¢* + 1) =
2(¢" — ¢?) is ¢* — ¢* + 1 (if ¢*> > 27), but this is not a divisor of 2(¢* — ¢?).

Now the two characters of degree r(¢* — 1)(¢*> — 3r + 1) /2 have are irrational over
Qs, with values in Q3(+/—3), so either both or none occur in ch(®;), and the same
applies to the characters of degrees 7(¢*> —1)(¢*> +3r +1)/2 and r(¢* — 1). Thus we
are left with degrees

r(q® = 1)(¢* = 3r+1), r(¢° = 1)(¢° +3r + 1),
2r(q* = 1), (¢* = 1)(¢" = 3r +1).
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From [15] we deduce the following values on 3-singular elements:

X x(1) 3A 3BC 9A
xet+xs |r(@ -1 —-3r+1) ¢ —r —r 2r
Xat+xs | r(@—1)(F+3r+1) —¢?—r —r 2r
X6 + X7 27”(q4 - 1) —2r =2r —2r

XT (¢*—1)(?=3r+1) —¢>+3r—-1 -1 -1

h(®,) — 1o -1 1T 1 -1

Thus, the values of these characters on an element of order 9 are divisible by 3, except
for the last ones. Since projective characters vanish on all p-singular elements, it
follows that exactly one character of degree (¢* — 1)(¢®> — 3r + 1) appears in &,
with multiplicity 1. The only way the remainder 3r(¢*> — 1)(¢> — r + 1) may be
written as a non-negative integral linear combination of the first three degrees is
2(x2 + x3)(1) + (x6 + x7)(1). But the linear combination

lg + x7 +2(X2 + X3) + X6 + X7
does not vanish on elements of order 9. This contradiction shows that c3(G) > 1. O

5.6. Finite groups of Lie type satisfying c¢,(G) = 1 in natural characteristic.
Collecting the information from the previous subsections we deduce the following
theorem.

Theorem 5.8. Let G = G¥ be a simply-connected finite group of Lie type defined
in characteristic p satisfying c,(G) = 1. Then one of the following holds:

If G satisfies one of (i)-(v), then c,(G) = 1.

Proof. From Theorems 5.2, 5.3 and 5.5 one concludes that the groups G in (i), (ii),
(iii) or (iv) of the theorem satisfy ¢,(G) = 1. Also, ¢3(*G2(3)) = 1 by [9]. Hence it
suffices to show that a group of Lie type GG defined in characteristic p and satisfying
¢,(G) = 1 must be one of the examples (i), (ii), (iii), (iv) or (v).

Suppose first that G = G'' is an untwisted group of Lie type satisfying c,(G) =
1. If G is of type Ay, Humphreys’ theorem (cf. Thm. 5.2) implies the claim.
Furthermore, if G is of Lie rank greater than 1, the parabolic descent lemma (cf.
Lemma 5.1) implies that ¢ must be equal to p. Thus, if the Lie rank of G equals 2,
one concludes from Theorem 5.3(a) and (b), Theorem 5.4 and 5.6 that G has to be
of type As and ¢ = 2. If the Lie rank of G equals 3, the parabolic descent lemma
implies that G must be of Lie type Az and ¢ = 2. In particular, G ~ ST;(2) ~ 2s.
But ¢2(2(s) = 7 (see Theorem 3.2), a contradiction. Hence, by the parabolic descent
lemma, there are no examples of untwisted groups of Lie type of Lie rank greater
than 2.

Suppose that G = GF is of type 24,,. If n > 3, then G has an F-stable parabolic
subgroup of type (A;, F?) and the parabolic descent lemma and Humphreys’ theorem
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(cf. Thm. 5.2) shows that there are no examples in this case. If n = 2, Theorem
5.3(a) and (c) apply showing that the only possible example is (iii).

If G is of type 2D,, n > 4, G has an F-stable parabolic subgroup of type 4.
Hence the parabolic descent lemma shows that there are no examples in this case.
If G is of type D4, G has an F-stable parabolic subgroup of type (A, F?), and if
G is of type *Eg, G has an F-stable parabolic subgroup of type 2D,. Thus by the
parabolic descent lemma there are no examples in this case as well.

If G is of type 2By, Theorem 5.5 shows that ?By(2) is the only possible example.
But ¢»(*F4(2)) = 13 by [9]. This fact — together with the parabolic descent lemma
— shows also that there are no examples of type 2Fy. If G is of type 2G5, Proposition
5.7 shows that 2Go(3) is the only possible example. O

6. SPORADIC GROUPS
It remains to treat the sporadic simple groups. Here we have:

Theorem 6.1. Let G be a sporadic simple group. Then c,(G) > 1 unless one of:
(a) G = M117 (= 11, or
(b) G = Mys, ¢ = 23.

Proof. The groups in cases (a) and (b) are examples, because there exists an ¢'-Hall
subgroup. Using Lemma 2.3 and the tables in the modular Atlas, one is left with
the groups

{Fi22, HN, Ly, Th, Figg, COl, J47 F3+, B, M}
for some small primes. The decomposition numbers for HN at ¢ = 5 can be found
at the home page of the modular Atlas

http://www.math.rwth-aachen.de/"MOC/.

In the subsequent table, we present triples (G, ¢, H) where H is a subgroup of G of
¢'-index, and such that H is an extension of a soluble group by a simple group S
for which ¢,(S) > 1 by previously proved results. It follows from Lemma 2.4(a) that
the corresponding pairs (G, ¢) do not lead to examples.

TABLE 1. Some {'-index subgroups

G /¢ H G /{ H
Figg 2 210.]\/[22 J4 2 211.M24
Fisy 3 07(3) Ff 2 21 My,
HN 3 349, F 3 [313].22.L4(3)
Ly 5 53L3(5) B 2 21+22.COQ
Th 2 2148 9L, B 3 Figs
Fig 2 2. Figy B 5 53 L (5)
Figg 3 [310] 2L3(3) M 2 21+24.001
001 2 211.M24 M 3 [317].2.64.M11
001 3 36.2.M12 M 5 [59]2L3(5)
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Using this, we are left with the following three cases:
{(HN,2),(Th,3),(Co,5)}.

For ¢ = 5 the only non-trivial character degrees of C'o; below 5* = |Co,|5 are 276
and 299. Clearly, 5* — 1 is not a non-negative integral linear combination of these
two. The Harada-Norton group H N contains the alternating group 2l15. The 1-PIM
of ;> has dimension 204288, which is larger than |HN|, = 2. Thus this is no
example by Lemma 2.1.

Let now G := Th, with £ = 3. Clearly the character of the 1-PIM ®# of the
maximal subgroup H :=3D,(2): 3 contains all three linear characters of H. But the
two non-trivial linear characters of H are only contained in restrictions of characters
of G of degree at least 4881 384. In particular

ch(®$)(1) > 4881384 > 3 = |G|,
This completes the proof. 0

7. FINITE GROUPS WITH AN ¢-HALL SUBGROUP

In this section we assume that G is a finite group and that ¢ is a prime number.
In order to prove Theorem C we make use of the following lemma.

Lemma 7.1. Let G be a finite group satisfying c¢,(G) = 1, and let N be a normal
subgroup of G with the following property:
(i) G/N has an {'-Hall subgroup, and there exists a unique G /N -conjugacy class
of ¢'-Hall subgroups.
(ii) N has an ¢'-Hall subgroup, and there exists a unique N -conjugacy class of
0'-Hall subgroups.

Then G has an ¢'-Hall subgroup, and there exists a unique G-conjugacy class of
¢'-Hall subgroups.

Proof. Let Hy < N be an {-Hall subgroup in N. Since there is a unique N-
conjugacy class of such groups, the Frattini argument implies that G = Ng(Hy).N.
Let 7: Ng(Hy) — G/N denote the canonical projection, and let H < G//N be an
¢'-Hall subgroup. Put X: = {g € Ng(Hy) | m(h) € H}. Then X has normal
subgroups Hy < Ny (Hy), and Ny(Hy)/Hy is an f-group, and X/Ny(Hy) ~ H is
an {'-group. In particular, X is f-soluble and thus contains an ¢-Hall subgroup H.
By construction, this subgroup is also an ¢-Hall subgroup of G.

Assume that H; and H, are ¢'-Hall subgroup of G. Then N N H; is an ¢'-Hall
subgroup of N, and, by hypothesis (ii), we may assume that Hy: = HiNN = HyNN.
In particular, Hy, Hy < Ng(Hy). From hypothesis (i) one concludes that H; and
H, are conjugate in Ng(Hy). This yields the claim. O

From Theorem A and Lemma 7.1 the proof of Theorem C can be deduced as
follows:

Proof of Theorem C. It suffices to show that if G is a finite group satisfying c,(G) =
1, ¢ € {2,3,5}, then G contains an ¢'-Hall subgroup and that there exists a unique
G-conjugacy class of such subgroups. Suppose that the assertion is false, and that
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G is a counterexample of minimal order. Then by Lemma 7.1, G must be simple
and non-abelian. Theorem A implies that either G = 5, £ = 5, or G = L,(q),
(¢" —1)/(qg — 1) = ¢/. As A5 contains a unique conjugacy class of subgroups of
index 5, one can eliminate the first case. In the latter case Zsigmondy’s theorem (cf.
Lemma 2.9) implies that either (a) n = 2, or (b) ¢" =64, n > 3 or (c¢) n is prime,
n >3 and £ =1 mod n. Since we assumed that ¢ € {2,3,5}, one can discard the
cases (b) and (c). Thus assume that case (a) holds. Then ¢+ 1 = ¢/ and (g, ¢/) are
consecutive prime powers. If £ = 2 one has ¢ = p and G = Ly(p) for a Mersenne
prime number p. In particular, the normalizer of a Sylow p-subgroup is an 2’-Hall
subgroup of G, and there is a unique G-conjugacy class of such groups. If / = 3, one
has ¢/ = 32 and ¢ = 8, and if ¢ = 5 one has ¢/ = 5 and ¢ = 4. Both cases can be
eliminated by the previously mentioned argument. Hence such a counter example
cannot exist and this yields the claim. 0

Remark 7.2. The classification of subgroups of Ls(g) shows that Ly(¢) does not
contain an ¢-Hall subgroup for ¢ > 13, and PGLy(¢) does not contain an ¢-Hall
subgroup for £ = 7 or £ = 11. Hence Theorem C(a) does not hold for ¢ > 7.

Both end node parabolics are 7-Hall subgroups of L3(2). Hence Theorem C(b)
certainly fails for £ = 7.
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