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THE PROOF OF ORE’S CONJECTURE

[after Ellers–Gordeev and Liebeck–O’Brien–Shalev–Tiep]

by Gunter MALLE

INTRODUCTION

The commutator [g, h] := g−1h−1gh of two elements g, h of a group G is introduced

in every first course in group theory, as well as the commutator subgroup

[G, G] := 〈[g, h] | g, h ∈ G〉,

generated by all commutators in G, and usually it is stated that not all elements of

[G, G] need to be commutators. The first such example of finite order may have been

given by Fite [Fi02]. The smallest example of a finite group G for which [G, G] contains

non-commutators has order 96; in fact there are two non-isomorphic groups of that

order in which the set of commutators does not equal the commutator subgroup, see

Guralnick [Gu80].

In a 1951 paper, Oystein Ore [Ore] shows that every even element in a symmetric

group of degree at least 3 is a commutator and claims that the proof can be extended

to show that every element in a simple alternating group An is a commutator. He

concludes by saying that “It is possible that a similar theorem holds for any simple

group of finite order, but it seems that at present we do not have the necessary methods

to investigate the question.” This has become known as Ore’s conjecture, the recent

solution of which [LOST] is the topic of this lecture:

Theorem 0.1 (Liebeck–O’Brien–Shalev–Tiep). — Let G be a finite non-abelian simple

group. Then every element of G is a commutator.

In fact, at almost the same time as Ore, Noboru Ito [Ito51] showed the same statement

for the alternating groups An, but without speculating about other finite simple groups.

The proof of Ore’s conjecture relies on the classification of the finite simple groups

and, through Lusztig’s parametrization of irreducible characters of finite reductive

groups, on the Weil conjectures; the final step also required a considerable amount

of computer calculation.

Note that obvious generalizations of Theorem 0.1 fail to hold. For example Guralnick

[Gu10] gives a quite general construction of groups, including non-solvable ones, with the

property that [G, G] does not consist of commutators only: let G = U oH be the regular

wreath product of two finite groups U,H with U abelian. If |U | > 2 or |[H, H]| > 2
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then some element of [H, G] is not a commutator in G (see also Isaacs [Is77] for a

weaker result). Thus, for U of order at least 3 and any non-abelian simple group H this

gives a non-solvable example G with factor group H, and in fact one may also obtain

a perfect one (that is, a group G with G = [G, G]). Computer calculations show that

the smallest example of a perfect group not all of whose elements are commutators is

an extension of an elementary abelian group of order 24 with the alternating group A5.

Even closer to the case of simple groups, H. I. Blau [Bl94] proved that there exist

(finitely many) quasisimple groups that contain non-commutator central elements (see

Theorem 6.1 below). Recall that a group G is called quasisimple if it is perfect and

the quotient G/Z(G) by its center Z(G) is (non-abelian) simple. The smallest such

example is the exceptional 6-fold covering group of the alternating group A6 (that is, a

non-split central extension of the cyclic group of order 6 by A6), for which the central

elements of order 6 can be seen not to be commutators. So the property required by

Ore’s conjecture seems to be closely tied to simple groups.

We want to mention another open problem closely related to Ore’s conjecture, which

is concerned with the square C2 := {xy | x, y ∈ C} of a conjugacy class C, and which

in the introduction to the book [AH85] is attributed to J. G. Thompson:

Conjecture 0.2 (J. G. Thompson). — Let G be a finite non-abelian simple group.

Then there exists a conjugacy class C ⊆ G such that C2 = G.

Clearly, if C2 = G then every element in the product C2 is a commutator, so the

Thompson conjecture implies the (now proven) Ore conjecture. Many papers on the Ore

conjecture actually show that the stronger Thompson conjecture holds for particular

families of groups, so in this survey we will consider both conjectures simultaneously.

In a broader context, the Ore conjecture can be thought of as a particular instance

of the surjectivity of word maps. For any word w in a free group Fr on r genera-

tors, and any group G, one can ask whether the corresponding word map is surjec-

tive, the Ore conjecture being the special case of the commutator word. This gives

(non-commutative) analogues of diophantine equations on groups. For example, the

representability of a group element by a product of kth powers, or by the kth power of

a given word, can be considered to be analogues of Waring’s problem in number theory.

This point of view has been propagated by Shalev (see e.g. [Sh09, LS09, LST11]).

One attractive feature of these questions, which we will insist on throughout this

survey, is the fact that they also make sense for simple algebraic groups, where more

powerful methods are available and much more can be shown to hold.

Let us end this introduction with a short historical overview on the proof of Ore’s

conjecture. After Ore and Ito proved the conjecture for the simple alternating groups,

R.C. Thompson [Th61, Th62, Th62a] established it for the finite projective special

linear groups PSLn(q) = SLn(q)/Z(SLn(q)). The symplectic groups Sp2n(q) with q ≡ 1

(mod 4) were handled by Gow [Gow88], and Bonten [Bo93] dealt with exceptional
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groups of Lie type of low rank. The case of sporadic groups was settled by Neubüser,

Pahlings and Cleuvers [NPC84].

In 1998, E.W. Ellers and N.L. Gordeev [EG98] verified Ore’s conjecture (and in fact

Thompson’s conjecture) for all finite simple groups of Lie type over a finite field Fq,

whenever q ≥ 9. This will be explained in Section 1. Building on this result, Shalev

[Sh09] then used asymptotic methods to show that for finite simple groups G, the

proportion of commutators tends to 1 as |G| tends to infinity. In that same paper he

also showed that for any word w 6= 1, there exists N = N(w) such that for every finite

simple group G of order |G| > N(w) we have w(G)3 = G. The exponent 3 was later

improved to 2 by Larsen, Shalev and Tiep [LST11]. We will discuss these methods and

results in Sections 4 and 5. The remaining (infinitely many) simple groups of Lie type

over small fields were then treated in the paper of Liebeck, O’Brien, Shalev and Tiep

[LOST]. We sketch their approach in Section 2.

1. THE APPROACH BY ELLERS AND GORDEEV

Ellers and Gordeev [EG98] succeeded in proving Ore’s conjecture for the finite simple

groups of Lie type defined over fields of order at least 9. Since there are infinitely many

distinct classical groups over any given finite field, this still leaves infinitely many open

cases. The approach of Ellers–Gordeev is by direct computation. To get some idea on

the method, one should consider the following model case for algebraic groups. This was

proved by Pasiencier–Wang [PW62] over the complex numbers (with a precursor result

by Goto [Go49] for compact semisimple Lie groups), and then Ree [Ree64] noticed that

their argument can be extended to arbitrary algebraically closed fields:

Theorem 1.1 (Pasiencier–Wang, Ree). — Let G be a semisimple linear algebraic

group over an algebraically closed field. Then each element of G is a commutator.

Proof (Sketch) — We want to show that g ∈ G is a commutator. First note that a

conjugate of a commutator is again a commutator, so we may replace g by any of its

conjugates. By a result of Borel, any element of G lies in some Borel subgroup B of G,

so we may assume that g ∈ B. Let U = Ru(B) be the unipotent radical of B, and

T ≤ B a maximal torus. One now needs the following auxiliary claim, whose proof

relies on a result of Kostant on the action of the Weyl group on the character group

of T , see [Ree64, (3.1)]:

(∗) For any s ∈ T there exists a regular element t ∈ T (that is, with CG(t) = T ) and

x ∈ NG(T ) such that x−1tx = ts.

Now let g = su be the Jordan decomposition of g, where we may assume that s ∈ T ,

since all maximal tori of B are conjugate. By (∗) there exists a regular element t ∈ T
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and x ∈ NG(T ) with x−1tx = ts. By Lemma 1.2 below applied to the regular element

ts ∈ T there is b ∈ B with b−1tsb = tsu, so that finally

g = su = t−1b−1tsb = t−1b−1x−1txb = [t, xb]

is a commutator. �

Lemma 1.2. — Let B = U ·T be a semidirect product of a nilpotent normal subgroup U

with an abelian group T . Then for t ∈ T with CB(t) = T the coset tU is a single

B-conjugacy class.

Proof — By induction over a central series of U one easily shows that the map U → U ,

u 7→ [t, u], is bijective, so any tv ∈ tU has the form tu for some u ∈ U . �

An attempt to adapt this approach to finite groups of Lie type faces several problems.

First, it is no longer true that all elements lie in a Borel subgroup. So one has to consider

a larger collection of subgroups. Secondly, regular semisimple elements exist in the Borel

subgroup only if the underlying field is sufficiently large compared to the rank. This is

the principal reason why the Ellers–Gordeev method cannot handle all simple groups

of Lie type.

In a series of three papers Ellers–Gordeev show a particular form of Gauss decom-

position for elements of finite reductive groups. Recall that any finite simple group of

Lie type G can be obtained by the following construction. (This does not apply to the

Tits simple group 2F4(2)′, which for most purposes should rather be considered as a

27th sporadic simple group.) There exist a simple linear algebraic group H of simply

connected type over the algebraic closure of a finite field, and a Steinberg endomor-

phism F : H → H, that is, a bijective morphism with finite fixed point set H := HF ,

such that G = H/Z(H). Elements of G will be called regular if their preimages in the

algebraic group H are. If T ≤ B ≤ H is an F -stable maximal torus inside an F -stable

Borel subgroup of H, then the image in G of TF , respectively of BF , is called a max-

imally split torus, respectively a Borel subgroup of G. The group of F -fixed points

of the unipotent radical Ru(B) is then called the unipotent radical of BF . Ellers–

Gordeev [EG94, EG95, EG96] obtain the following statement on Gauss decompositions

of elements:

Theorem 1.3 (Ellers–Gordeev). — Let G be a finite simple group of Lie type,

T ≤ B ≤ G a maximally split torus inside a Borel subgroup of G, U the unipotent

radical of B and U− the unipotent radical of the opposite Borel subgroup. Fix t ∈ T .

Then for any 1 6= g ∈ G there exists x ∈ G such that

xgx−1 = u1tu2 for suitable u1 ∈ U−, u2 ∈ U.

For the special linear groups this was first shown by Sourour [So86]. In fact, Ellers–

Gordeev prove the statement for Chevalley groups over any field K. Their proof takes

roughly 50 pages of explicit calculation in the various families of groups of Lie type.
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Corollary 1.4. — In the situation of Theorem 1.3, suppose that t1, t2 ∈ T are regular

elements, and write C1, C2 for their conjugacy classes. Then C1C2 ∪ {1} = G.

Proof — Let 1 6= g ∈ G, then by Theorem 1.3 some conjugate xgx−1 of g has the

form u1t1t2u2 with u1 ∈ U−, u2 ∈ U . Now by Lemma 1.2 applied to the semidirect

products B = UT and U−T we can write u1t1 = v1t1v
−1
1 , and t2u2 = v2t2v

−1
2 for suitable

v1 ∈ U−, v2 ∈ U , whence

xgx−1 = u1t1t2u2 = v1t1v
−1
1 v2t2v

−1
2 ∈ C1C2,

as claimed. �

Corollary 1.5. — In the situation of Theorem 1.3, assume that T contains a regular

element. Then the Ore conjecture holds for G.

Proof — Let t ∈ T be regular and let C1, C2 in the previous corollary be the class of t,

t−1 respectively. Then any element of G \ {1} is a commutator, and 1 ∈ G trivially is.

�

Now note that, given H, F : H → H, and a maximally split maximal torus T ≤ H

as above, any regular semisimple element s ∈ T is Fm-stable for m sufficiently large.

Thus there exist regular semisimple elements in T over fields of sufficiently large order.

But this field size might vary with the characteristic and with the type of G. So more

elaborate arguments are needed to establish a uniform, explicit bound:

Theorem 1.6 (Ellers–Gordeev [EG98]). — Let G be a finite simple group of Lie type

over a field of order at least 9. Then Thompson’s and Ore’s conjectures hold for G.

In fact, for most families of groups they obtain an even smaller bound on the field

size; for example, they show that Ore’s conjecture holds for symplectic groups over

fields of order at least 4. Note that this still leaves infinitely many open cases, namely

the classical groups of unbounded rank.

In their proof, Ellers–Gordeev use the following factorization result by Lev [Lev94],

which is shown by direct computation (a similar, but weaker decomposition statement

had been shown by Sourour [So86] in his proof of Thompson’s conjecture for SLn(K)):

Theorem 1.7 (Lev). — Let K be a field, |K| ≥ 4, and a1, a2 ∈ GLn(K) with n ≥ 3

such that all eigenvalues of a1, a2 lie in K. Then any non-scalar matrix g ∈ GLn(K)

with det a1 · det a2 = det g can be factorized as g = b1b2 with bi conjugate to ai, for

i = 1, 2.

Taking a1 = a2 a regular unipotent element, this implies that all non-central elements

of SLn(K) with |K| ≥ 4 lie in C2, where C is a class of regular unipotent elements,

showing Thompson’s and thus Ore’s conjecture for SLn(q), q ≥ 4, whence for the simple

factor groups PSLn(q). To treat the other simple groups of Lie type G, Ellers–Gordeev

consider the following situation: Assume that G has root system Φ with respect to a

maximal torus T , G1 is a reductive subgroup of G with root system Φ1 ⊂ Φ, and U is
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the unipotent subgroup of G generated by the root subgroups for roots α ∈ Φ+ \ Φ1.

Then one has the following inductive statement (see [EG98, Prop. 5.1]):

Proposition 1.8. — Let C ⊂ G be a real conjugacy class. Let g ∈ TG1 ∩ C and

denote by C1 the union of the TG1-conjugacy classes of g and g−1. Suppose that

(1) T ∩G1 6= Z(G1),

(2) C2
1 ∪ Z(G1) = G1, and

(3) g acts fixed point freely on all quotients Ui/Ui+1 of the central series (Ui)i of U .

Then C2 ∪ Z(G) = G. If G is simple, then C2 = G.

Here, an element (and its conjugacy class) is called real if it is conjugate to its inverse.

For the proof of Theorem 1.6 it then remains to verify these technical conditions for

the various families of simple groups of Lie type, where G1 is usually taken to be a

subgroup of type A, and g is the product of a regular unipotent element of G1 with a

suitable semisimple element of G.

2. THE CHARACTER THEORETIC METHOD

In this section we sketch the approach of Liebeck–O’Brien–Shalev–Tiep [LOST] which

completes the proof of Theorem 0.1. Its main ingredient is character-theoretic, relying

on the following lemma of Frobenius:

Lemma 2.1. — Let G be a finite group. Then g ∈ G is a commutator if and only if∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0.

Here, Irr(G) denotes the set of complex irreducible characters of G.

Proof — We want to count pairs (x, y) ∈ G × G with g = [x, y] = x−1y−1xy = x−1xy,

that is, representations of g as a product of x−1 times a conjugate of x. It is a well-

known result of Frobenius that for a fixed conjugacy class C of G the number of pairs

(x1, x2) ∈ C × C with x−1
1 x2 = g is given by

nC :=
|C|2

|G|
∑

χ∈Irr(G)

|χ(x1)|2χ(g)

χ(1)
.

Conjugating x2 by y ∈ CG(x2) fixes the pair, so we get |CG(x2)|nC pairs (x, y) ∈ C×G

with [x, y] = g. Summing over all conjugacy classes C of G (with representative x ∈ C)

yields ∑
C⊆G

|CG(x)|nC =
∑

χ∈Irr(G)

χ(g)

χ(1)

∑
C⊆G

|C| |χ(x)|2 = |G|
∑

χ∈Irr(G)

χ(g)

χ(1)

for the desired number of pairs, where for the last equality we have used the orthogo-

nality relations for characters. The claim follows. �
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This allows us to deal with the 26 sporadic simple groups, since their character tables

are known, see [NPC84], and more generally with any group whose character table is

explicitly available.

Liebeck–O’Brien–Shalev–Tiep’s idea for applying the Frobenius formula to the re-

maining groups of Lie type is as follows. By the orthogonality relations for characters

we have |χ(g)|2 ≤ |CG(g)| for any g ∈ G. Splitting off the contribution by the trivial

character 1G of G we may thus estimate∣∣∣ ∑
χ∈Irr(G)

χ(g)

χ(1)

∣∣∣ ≥ 1− |CG(g)|1/2
∑
χ6=1G

1

χ(1)
.

Thus one may hope that for elements g with small enough centralizer order |CG(g)|,
the second term has absolute value less than 1 so that one gets the desired result for

such elements. The crucial observation which makes this approach work follows easily

from the orthogonality relations and an application of the Cauchy–Schwarz inequality

(see [LOST, Lem. 2.6]):

Lemma 2.2. — Let G be a finite group with kG conjugacy classes. Then for all N > 0

and all g ∈ G ∑
χ∈Irr(G)
χ(1)≥N

|χ(g)|
χ(1)

≤
√

kG |CG(g)|
N

.

In order to apply this formula, one needs information on the number kG of conjugacy

classes in a simple group of Lie type, and on lower bounds for degrees of its non-trivial

complex irreducible characters. Let us write G = Gr(q) if G is a simple group of Lie

type of rank r over the finite field Fq. Asymptotically, the number of conjugacy classes

in Gr(q), for q →∞, is bounded above by a polynomial in q of degree r; more precise

upper bounds for kG were obtained by Fulman and Guralnick [FG12], for example

kG ≤ qn

q − 1
+ qn/2+1 for G = SLn(q) with n ≥ 4.

In practice, the argument sketched above needs to be refined slightly since there often

exist a few non-trivial characters of very low degree which have to be treated separately.

The question on lower bounds for the minimal dimensions of non-trivial irreducible

representations of finite simple groups is a very active area of research; first general

results for groups of Lie type appeared in work of Landazuri and Seitz. For the present

application, only complex irreducible representations matter, and for those, sharp lower

bounds have been derived by Tiep and Zalesski [TZ96] from Lusztig’s classification

[Lu84] of all complex irreducible characters. Often, there exist few irreducible characters

of degree very close to the lower bound, and all others have degree at least roughly the

square of that bound. Such gap results are crucial in many other problems in the study

of finite simple groups. As one example, we cite the result for symplectic groups (see

[TZ96, 5.2]):
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Lemma 2.3. — Let G = Sp2n(q) with n ≥ 2 and q odd. Then G has four complex

irreducible characters of degrees 1
2
(qn ± 1), the so-called Weil characters, and

χ(1) ≥ (qn − 1)(qn − q)

2(q + 1)

for all other 1G 6= χ ∈ Irr(G).

It is easy to see that any non-trivial irreducible representation of Sp2n(q) has dimen-

sion at least (qn − 1)/2: considering Fqn as an n-dimensional vector space over Fq we

may embed SL2(q
n) = Sp2(q

n) into Sp2n(q), and the smallest non-trivial irreducible

representation of SL2(q
n) over any field of characteristic not dividing q has dimension

(qn − 1)/2. Indeed, the Borel subgroup of SL2(q) is an extension of the elementary

abelian group U of order q with a cyclic group of order q − 1 which acts with two

non-trivial orbits of length (q − 1)/2 on the set of linear characters of U , whence any

non-trivial representation of SL2(q) has at least that dimension.

It is much harder to prove the stated gap result. For symplectic groups an elementary

proof is available (see [GMST02]), but for other types, the full strength of Lusztig’s

classification of irreducible characters [Lu84] is needed.

Returning to Ore’s conjecture, for G = Sp2n(q) we can thus show that elements

with small centralizer are commutators by applying Lemma 2.2 with the bound

N = (qn − 1)(qn − q)/(2(q + 1)) together with the known bound on kG, once we

control the values of the four Weil characters. This is indeed possible by the very

explicit construction of those characters. Let P be the derived subgroup of an end node

maximal parabolic subgroup of Sp2n+2(q). Then P = U.Sp2n(q) where U is a special

group of order q1+2n (that is, the center, the derived subgroup and the Frattini subgroup

of U all agree and are elementary abelian). Then U has q − 1 faithful irreducible

complex representations, of dimension qn, and these can be shown to extend to P .

They take absolute value qN(g)/2 on elements g ∈ Sp2n(q), where N(g) = dim ker(g−1).

Upon restriction to Sp2n(q) these representations split into two irreducible constituents

each, of dimensions (qn±1)/2, the above mentioned Weil representations (see [Ger77]).

Similar bounds as in Lemma 2.3 exist for the other families of groups of Lie type

[TZ96]. In the case of orthogonal groups, Liebeck–O’Brien–Shalev–Tiep need to prove

estimates on character values for the q + 4 smallest irreducible characters (see [LOST,

Prop. 5.12]).

It still remains to show that elements with large centralizer are commutators. For

this, the authors introduce the notion of breakable element. Let V be a vector space

equipped with a non-degenerate symmetric bilinear or hermitean form, and denote its

group of isometries of determinant 1 by Cl(V ). Thus, depending on the type of the

form, Cl(V ) could be a symplectic, a special orthogonal or a special unitary group. An

element g ∈ Cl(V ) is called breakable if there exists a proper non-degenerate subspace

W < V such that g lies in the corresponding product Cl(W ) × Cl(W⊥) of classical

groups with respect to the induced forms, and either both factors Cl(W ) and Cl(W⊥)
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are perfect groups, or at least Cl(W ) is perfect and the component of g in Cl(W⊥)

is a commutator. Since Ore’s conjecture can already be assumed for Cl(W ) (and for

Cl(W⊥) if it is perfect) by induction, such breakable elements are also commutators.

This approach is complementary to the previous one; for example the authors show

that for G = Sp2n(2), g unbreakable implies that |CG(g)| < 22n+15 is indeed small.

This dichotomy approach fails if the factors in the decomposition are rather small,

and thus not perfect or even solvable, like Cl(W ) = Sp2(2), Sp2(3), Sp4(2) or SO+
4 (2).

This leads to various ‘small’ cases which have to be treated by ad hoc calculations with

the computer algebra systems GAP and Magma, either using or constructing their

character tables and applying Lemma 2.2, or by trying to construct commutators in

all conjugacy classes by random methods. Some of the challenging big cases of this

type are the groups Sp16(2), SU6(7), SO11(3), of sizes roughly 6 · 1040, 4 · 1029, 2 · 1026

respectively. In total the authors estimate that their computations used about 3 years

of CPU time.

An additional complication occurs for the projective special unitary groups PSUn(q)

(which by [EG98] have to be treated for q ≤ 7 when n is even, and for q ≤ 3 when n is

odd). Here the bounds for centralizers of unbreakable elements are much weaker than

for the other classical types. Thus, the character-theoretic approach sketched above

fails. Instead the authors imitate Thompson’s direct approach [Th61] for the special

linear groups by representing elements directly as commutators. This again leaves open

several cases with small n and q which have to be treated separately.

For the groups of exceptional types, the small rank cases had already been handled

completely by Bonten [Bo93], and for the remaining finitely many groups of type En,

n = 6, 7, 8, the bounds on character degrees are much more favorable than in classical

types, so that similar but easier arguments allow to conclude.

3. TOWARDS THOMPSON’S CONJECTURE

Let us now turn to Thompson’s conjecture, stated in the introduction, that any finite

non-abelian simple group contains a conjugacy class C ⊆ G such that C2 = G.

The example of 6.A6 mentioned in the introduction shows that there are counter-

examples to an extension of Thompson’s conjecture to quasisimple groups. Moreover,

the quasisimple groups SL2(q), q ≡ 3 (mod 4), are covered by commutators by Theo-

rem 6.1, but they can be seen not to be covered by the square of a single conjugacy

class, so not all groups satisfying Ore’s condition satisfy Thompson’s condition.

Note that a class satisfying Thompson’s conjecture must be real. Again, the ortho-

gonality relations for group characters yield an easy character theoretic criterion:
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Lemma 3.1. — Let G be a finite group, C ⊂ G a real conjugacy class. Then G = C2

if and only if ∑
χ∈Irr(G)

|χ(x)|2χ(g)

χ(1)
6= 0

for all g ∈ G (where x ∈ C is arbitrary).

Thompson’s conjecture has been checked for the sporadic groups [NPC84] (using the

above criterion), for alternating groups by C.-H. Hsü [Hs65] (see also Bertram [Ber72]),

for special linear groups by Brenner [Br83] and Lev [Lev94], and for the groups of Lie

type over fields of cardinality at least 9 by Ellers–Gordeev (see Theorem 1.6). Using

Lemma 3.1, Guralnick and Malle showed that for groups of Lie type of rank 1, almost

any class C has the desired covering property, and furthermore Thompson’s conjecture

holds for all exceptional groups of Lie type of rank less than 4 [GM12, Thm. 7.1 and 7.3].

In these investigations one is naturally led to study pairs of conjugacy classes whose

product covers all of G, except possibly for the identity element. In order to verify the

latter, one again uses Frobenius’ character theoretic formula for structure constants,

saying that for conjugacy classes C1, C2 of G, an element g ∈ G is a product of elements

x ∈ C1, y ∈ C2 if and only if ∑
χ∈Irr(G)

χ(x)χ(y)χ(g−1)

χ(1)
6= 0.

This sum is very hard to evaluate in general, but as was first recognized by Malle [M88]

in the construction of Galois realizations with given group and then used extensively

in Malle–Saxl–Weigel [MSW94], for groups of Lie type, Deligne–Lusztig theory allows

to identify classes C1, C2 such that very few irreducible characters do in fact contribute

to this sum.

Let G be an almost simple or quasisimple group of Lie type. Following Lübeck–Malle

[LM99] we say that a pair T1, T2 of maximal tori of G is strongly orthogonal, if only one

non-trivial irreducible character χ ∈ Irr(G) has the property that χ(s1)χ(s2) 6= 0 for

any regular elements si ∈ Ti. This irreducible character is then necessarily the so-called

Steinberg character St of G.

Corollary 3.2. — Let T1, T2 be a pair of strongly orthogonal tori of a finite quasi-

simple group of Lie type G, and Ci ⊆ G classes of regular semisimple elements of Ti,

i = 1, 2. Then C1C2 ∪ Z(G) = G.

Proof — By assumption, the only non-trivial irreducible character not vanishing on

either si ∈ Ti is the Steinberg character St. This is known to take values ±1 on regular

semisimple elements, see [Ca85, Thm. 6.5.9]. Thus the above formula for the structure

constant evaluates to 1± St(g)/St(1), which is non-zero whenever g ∈ G is non-central

since then |St(g)| < St(1). �
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Such pairs of maximal tori were first considered in [MSW94] in the proof that all finite

non-abelian simple groups except for PSU3(3) can be generated by three involutions.

Perhaps rather unexpectedly it turned out in [MSW94] and [LM99, Thm. 10.1] that:

Proposition 3.3. — All families of finite simple groups of Lie type, with the possible

exception of orthogonal groups of type D2n, possess strongly orthogonal pairs of maximal

tori. Moreover, one of the tori in such a pair can be chosen to contain real elements.

The proof requires Lusztig’s classification of unipotent characters as well as his results

on character values on semisimple elements, see [Lu84]. As a direct consequence one

obtains the following approximation to Thompson’s conjecture:

Corollary 3.4. — Let G be a finite simple group of Lie type, not of type D2n. Then

G has a conjugacy class C such that C2 ∪ C3 = G.

Proof — By Corollary 3.2 the product C1C2 covers G \ {1}, for Ci classes of regular

elements in the two strongly orthogonal tori, where moreover we may assume that

C2 contains real elements. In particular, any element of C1 can be written as a product

of two elements in C2. As elements in C2 are real, the identity lies in C2
2 as well, so the

claim follows with C = C2. �

This has recently been improved as follows (see [GT13, Cor. 1.3]):

Theorem 3.5 (Guralnick–Tiep). — Let G be a finite simple group. Then G has a

conjugacy class C such that C3 = G.

In order to deal with groups of type D2n, but also in other types, it is sometimes

useful to consider the following weaker concept, formalized in [LST11]: Two maximal

tori T1, T2 of G are called weakly orthogonal if the intersection of T1 with any conjugate

of T2 only contains the identity. Examples are any pairs of maximal tori T1, T2 of

mutually coprime orders. The relevance of such pairs of tori comes again from Lusztig’s

classification of irreducible characters of finite reductive groups in terms of semisimple

elements in the dual group (see [MSW94], [LM99] or [LST11, Prop. 2.2]):

Proposition 3.6. — Let G be a finite simple group of Lie type, T1, T2 ≤ G maximal

tori such that the corresponding tori in the Langlands dual group are weakly orthogonal.

Let χ ∈ Irr(G) and si ∈ Ti be regular elements. Then χ(s1)χ(s2) = 0 unless χ is a

so-called unipotent character of G.

Using this, the following second approximation to Thompson’s conjecture can be

shown (see [GM12, Thm. 1.4], and also [LST11, Thm. 1.1.4] for an asymptotic version):

Theorem 3.7. — Let G be a finite non-abelian simple group. Then there exist conju-

gacy classes C1, C2 ⊂ G with G = C1C2 ∪ {1}.
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Proof — For alternating groups, this is the main result of [Hs65]. For groups of Lie

type different from D2n, the assertion is an immediate consequence of Proposition 3.3 in

conjunction with Corollary 3.2. For type D2n, one has to establish bounds on the values

of unipotent characters on elements of a pair of weakly orthogonal tori from [MSW94,

2.5], see [GM12, Thm. 7.6] or [LST11, Prop. 7.1.1]. �

In fact, for all but the two simple groups PSL2(7) and PSL2(17) we can arrange so

that both classes contain elements of order prime to 6, see [GM12, Thm. 1.4]. Using this

one gets (see [GM12, Cor. 1.5], and [LOST3, Thm. 2] for a slightly weaker statement):

Theorem 3.8 (Guralnick–Malle). — Let k be a prime power or a power of 6. Then

every element of any finite non-abelian simple group is a product of two kth powers.

We will come back to the question on representing elements as products of powers in

Section 5.

For alternating groups, much better results can be obtained at least asymptotically.

For example, the following is shown in [LS09, Thm. 1.1]:

Theorem 3.9 (Larsen–Shalev). — There exists a constant n0 such that for all n ≥ n0

and all permutations g ∈ Sn with at most n1/128 orbits on {1, . . . , n}, the Sn-conjugacy

class C of g satisfies C2 = An.

Choosing g ∈ An with not all cycle lengths distinct, this gives a solution of Thomp-

son’s conjecture for An. The proof again relies on Frobenius’ formula and a careful

estimate of character values on permutations with few cycles using the Murnaghan–

Nakayama rule.

Thus, at the time of writing, the Thompson conjecture remains open for simple groups

of Lie type defined over fields of size at most 8, and of rank at least 4. One might hope

that taking for C a class of regular unipotent elements should give the result. Indeed,

for G of adjoint Lie type in good characteristic and x ∈ G regular unipotent, it is known

that χ(x) ∈ {0, 1,−1} for all irreducible characters χ of G, but even with this choice

the known estimates on character values are too weak to allow for an application of

Lemma 3.1.

4. WORD MAPS FOR ALGEBRAIC GROUPS AND FINITE

GROUPS OF LIE TYPE

The formulation of Ore’s conjecture fits into the more general framework of word

maps on groups. Here, surprisingly strong results for groups of sufficiently large order

can be obtained by asymptotic arguments. Again, the approach relies on the theory of

algebraic groups. In order to phrase the results, we need the concept of word map: Let

Fr be the free group on r generators x1, . . . , xr and w = xi1 · · ·xim ∈ Fr a word. Then

for any group G, w defines a map fw,G : Gr → G by sending (g1, . . . , gr) to gi1 · · · gim .



1069–13

Slightly abusing notation we will write w(G) := im(fw,G) for the image of G under this

word map.

Again, let’s first consider the case of algebraic groups:

Theorem 4.1 (Borel [Bor83]). — Let G be a semisimple linear algebraic group over

an algebraically closed field K and 1 6= w ∈ Fr a word. Then fw,G is a dominant

morphism, that is, w(G) contains a Zariski open dense subset of G.

Proof (Sketch) — First note that if π : H → G is an isogeny, then the diagram

Hr fw,H−→ H

πr ↓ ↓ π

Gr fw,G−→ G

commutes, so if the claim holds for H, it also holds for G. In particular we may take

for π the simply connected covering, so it suffices to consider semisimple groups of

simply connected type. Since these are direct products of simple algebraic groups, we

may even assume that G is simple.

Secondly, we may reduce to the case of SLn. Indeed, let H ≤ G be a subgroup of

maximal rank. Then any maximal torus of H is a maximal torus of G. If the claim holds

for H, then the image of fw,H intersects the dense open subset of regular semisimple

elements of H in a dense open subset and so its image is dense in a maximal torus of H.

Hence the image of fw,G is dense in a maximal torus of G, and so in G, whence the

claim also holds for G. Now any simple algebraic group contains a semisimple maximal

rank subgroup all of whose simple components are of type A. For example, we have

SLn
2 ≤ Sp2n, A2

2 ≤ F4 and A2
4 ≤ E8. Thus, we are done when the result holds for groups

SLn.

For SLn consider the morphism χn : SLn → Kn−1 sending an element to the vector

of coefficients of its characteristic polynomial (except for the first and last one). By

induction, the claim holds for SLn−1, so χn ◦ fw,G contains a dense open subset of the

hyperplane {(a1, . . . , an−1) | 1 + (−1)n +
∑

ai = 0} of Kn−1 corresponding to elements

with an eigenvalue 1. By going to the closure one sees that it suffices to exhibit an

element in w(G) without eigenvalue 1. This is achieved by working inside an anisotropic

subgroup of SLn (i.e., a division algebra of degree n over some global subfield of K).�

Theorem 1.1 shows that the commutator word map is surjective, but in general, word

maps on simple algebraic groups need not be surjective: already on SL2 in characteris-

tic 0, the word x2 is not surjective. See Mycielski [My77] for this and further examples.

Similarly, in positive characteristic p, the image of the p-power word map does not con-

tain regular unipotent elements. It is intriguing to speculate under which conditions

surjectivity might hold for non-power words.

Returning to finite groups, Theorem 4.1 allows us to deduce the following:
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Theorem 4.2 (Larsen [La04]). — Let 1 6= w ∈ Fr, and G1, G2, . . . be an infinite

sequence of pairwise non-isomorphic finite non-abelian simple groups. Then

lim
n→∞

log |Gn|
log |w(Gn)|

= 1.

Proof (Rough sketch) — Since w(Gn) is closed under conjugation, it suffices to exhibit

an element in the image with small enough centralizer, so with large class size.

One distinguishes three cases: for a sequence of simple groups of Lie type with a

fixed root system, Larsen shows that |w(Gn)| > c|Gn| for some c > 0, basically using

Theorem 4.1, but the details are quite involved. In fact, it turns out that it is sufficient

to prove this for groups of type A1.

As a second step, one shows the same statement for a sequence of alternating groups.

For this, one decomposes n =
∑k

i=1(pi +1) with suitable primes pi, embeds the product

PSL2(p1) × . . . × PSL2(pk) into An via the natural permutation action of PSL2(p) on

the projective line over Fp, and uses the first part for the factors PSL2(pi) to find an

element in w(An) with small centralizer.

Finally, for the classical groups of arbitrary rank, one uses natural embeddings like

An ≤ SLn(q) ≤ SO+
2n(q) ≤ SO2n+1(q) ≤ SL2n+1(q) to exhibit elements with small

centralizer, starting with those for An. �

A different proof of Theorem 4.2 is given in [LS09] using the following important

irreducibility property enjoyed by word maps, the proof of which would lead too far

away from the topic of this lecture (see [LS09, Thm. 3.3]):

Theorem 4.3 (Larsen–Shalev). — Let wi ∈ Fri
, i = 1, 2, be non-trivial words in two

disjoint sets of letters, and w ∈ Fr1+r2 their concatenation. Let G be a simple algebraic

group of simply connected type over an algebraically closed field. Then for all non-central

elements g ∈ G, the fiber f−1
w,G(g) is irreducible.

5. ASYMPTOTIC WARING TYPE RESULTS

The results stated in the previous section form a key ingredient for the study of

various asymptotic Waring type questions on the image of word maps. Recall that

in number theory the Waring problem, solved by Hilbert, asks whether there exists a

function f such that any positive integer can be represented by f(k) kth powers. In

analogy, in the setting of group theory, given any non-trivial word w ∈ Fr one may

ask whether some power w(G) · · ·w(G) covers G for all sufficiently large non-abelian

finite simple groups G. (Recall that we write w(G) for the image of the word map

on Gr associated to w.) Here the best and most general results are consequences of the

following (see [LST11, Thm. 1.1.1]):



1069–15

Theorem 5.1 (Larsen–Shalev–Tiep). — Let w1, w2 ∈ Fr be non-trivial words. Then

there exists a constant N = N(w1, w2) such that for all finite non-abelian simple

groups G of order |G| ≥ N we have w1(G) w2(G) = G.

The case of alternating groups and of groups of Lie type of bounded rank had already

been established earlier by Larsen and Shalev [LS09]. Using Theorem 4.3 and suitable

embeddings as in the proof of Theorem 4.2 they show, for example, that each word map

on An with n large enough contains elements with few cycles in their image and then

conclude by Theorem 3.9.

As an immediate consequence one has:

Corollary 5.2. — For any 1 6= w ∈ Fr there exists a constant N = N(w) such that

w(G)2 = G for all finite non-abelian simple groups G of order |G| ≥ N .

Taking for w the commutator word shows in particular that any element in a suffi-

ciently large finite non-abelian simple group is the product of two commutators. Earlier,

Liebeck and Shalev [LS01] had proved that for any word w there exists an unspecified

constant c = c(w) such that if G is a finite non-abelian simple group and w(G) 6= 1 then

w(G)c = G. This was then improved by Shalev [Sh09, Thm. 1.1] who showed the state-

ment of the above corollary with 3 in place of 2. Nikolov and Pyber [NP11] reproved

this using different methods. A recent result of Jambor, Liebeck and O’Brien [JLO13,

Cor. 3] shows that the exponent 2 in Corollary 5.2 cannot in general be replaced by 1,

even for non-power words: the word map for w = x2
1[x

−2
1 , x2]

2 is not surjective on in-

finitely many groups PSL2(q). It is not clear whether this also leads to a counterexample

for simple algebraic groups.

The constants in all of the above statements are not explicit. Guralnick and Tiep

[GT13, Thm. 1.4 and Cor. 1.5] have recently obtained the following explicit bounds for

the power word w = xk
1:

Theorem 5.3 (Guralnick–Tiep). — Let G be a finite non-abelian simple group.

(a) Let 1 ≤ k ≤ m. If |G| ≥ m8m2
, then every element of G can be written as xkym

for some x, y ∈ G.

(b) Let m ≥ 1 be not divisible by the exponent of G. Then every element of G is a

product of at most 80m
√

2 log2 m + 56 mth powers in G.

Recall that by Theorem 3.8, the conclusion of Theorem 5.3(a) actually holds for all

non-abelian simple groups when k = m is restricted to prime powers or powers of 6.

This particular question has a long history. Mart́ınez and Zelmanov [MZ96] and

independently Saxl and Wilson [SW97] showed that there exists a function f such that

any element in a finite non-abelian simple group G is a product of f(k) kth powers,

provided there are any non-trivial kth powers in G.

Shalev [Sh09] uses Theorem 4.2 of Larsen (to deal with Lie type groups of large rank)

and Theorem 1.6 of Ellers–Gordeev (to dispose of groups of bounded rank) to show the

following asymptotic version of Thompson’s conjecture:
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Theorem 5.4 (Shalev). — For any sequence (Gn)n of finite simple groups of increas-

ing order there exist conjugacy classes Cn ⊂ Gn such that

|C2
n|

|Gn|
−→ 1 for n →∞.

The idea of proof for Theorem 5.1 is quite simple: by the result of Larsen and Shalev

[LS09] one only has to consider groups of Lie type G. For these, one shows that wi(G)

contains (elements of) a conjugacy class Ci of regular elements in a pair of (strongly or

weakly) orthogonal maximal tori (as in Section 3), so that the product C1C2 covers all of

G except possibly for the identity element (which is clearly contained in w1(G)w2(G)).

The main result guaranteeing this is [LST11, Thm. 5.3.2]:

Theorem 5.5 (Larsen–Shalev–Tiep). — Let w be a non-trivial word. Then for any

sequence of finite simple groups G(q) of fixed Lie type and any maximal torus T (q), we

have

qdim G−rkG |{(g1, . . . , gr) ∈ G(q)r | w(g1, . . . , gr) ∈ T (q)}|
|G(q)|r

−→ 1.

Corollary 5.6. — Let w be a non-trivial word. Then for any sequence of finite simple

groups G(q) of fixed Lie type of rank at most d there exists q0 such that w(G(q)) contains

regular elements of any maximal torus of G(q) for all q ≥ q0.

Proof — Fix a type of group G. It follows from Theorem 5.5 that there exists δ > 0

such that |T (q) ∩ w(G(q))| ≥ δ|T (q)| for any maximally split torus T (q) of G(q). But

the number of regular elements in a maximal torus T (q) is larger than (1− δ)|T (q)| for

q larger than a suitable q0. We conclude by taking the maximum over all such q0 for

all classes of maximal tori and all types of groups of rank at most d. �

We thus obtain the conclusion of Theorem 5.1 for groups of bounded rank, a case

which had already been settled (in a slightly different way) in [LS09]:

Corollary 5.7 (Larsen–Shalev). — Let w1, w2 be non-trivial words and d0 ≥ 0.

Then there exists a constant N = N(w1, w2, d0) such that for all simple groups of Lie

type G of rank d ≤ d0 and order |G| ≥ N we have w1(G)w2(G) = G.

Proof — By Corollary 5.6 the image wi(G) meets (and hence contains) a conjugacy class

Ci of regular elements in a maximally split torus of G. Thus we are in the situation of

Corollary 1.4, so G \ {1} is covered by C1C2. Since clearly 1 is also in the image, the

claim follows.

For groups G = Gr(q) not of type D2n, instead of appealing to the result of Ellers–

Gordeev, one may use that there exist pairs of strongly orthogonal maximal tori T1, T2

in G by Proposition 3.3, and that wi(G) contains regular semisimple elements of Ti

whenever d ≤ d0 and q is large enough, again by Theorem 5.5. The claim then follows

by Corollary 3.2. �
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This leaves the case of (classical) groups of unbounded rank. Again, we want to

exhibit regular semisimple elements in pairs of strongly or weakly orthogonal tori, but

this time the argument must work for all fields Fq. We give the details in the easiest

case:

Proposition 5.8. — The claim of Theorem 5.1 holds for simple symplectic groups.

Proof — Let G = Sp2n(q). By the previous discussion we may assume that n is large. Let

Ti(q), i = 1, 2, be representatives of the two classes of maximal tori of SL2(q
n). Under

the embedding of SL2(q
n) into Sp2n(q) discussed in Section 2, T1(q), T2(q) are mapped

onto a pair of strongly orthogonal tori of Sp2n(q). By Corollary 5.6, for n large enough,

wi(SL2(q
n)) contains elements of Ti(q) which map to regular elements in Sp2n(q). Thus

G is covered by w1(G)w2(G) by Corollary 3.2, and passing to the quotient by the center

we obtain the desired conclusion. �

A similar approach works for other families of classical groups, but here one cannot

guarantee to find elements in strongly orthogonal tori. For example, in type SLn(q),

one uses embeddings SLk(q
l) < SLkl(q) with k = 2, 3 to find regular elements in a pair

of weakly orthogonal tori. It can be shown that exactly three non-trivial (unipotent)

irreducible characters do not vanish on these elements, all of them of rather large degree.

The non-vanishing of the relevant structure constant then follows by bounding the

values of these characters. The argument for orthogonal groups is even more technically

involved.

6. EXTENSIONS AND OPEN PROBLEMS

We now discuss possible extensions of Ore’s conjecture and related open problems.

As mentioned in the introduction, Blau [Bl94] proved that there is (only) a finite num-

ber of quasisimple (but not simple) finite groups that contain non-commutator central

elements, and in a follow-up paper to their proof of Ore’s conjecture Liebeck–O’Brien–

Shalev–Tiep [LOST2] determined all quasisimple groups containing non-commutators:

Theorem 6.1 (Blau, Liebeck–O’Brien–Shalev–Tiep). — If G is a finite quasisimple

group containing non-commutators, then

G/Z(G) ∈ {PSL3(4), PSU4(3), PSU6(2), 2E6(2), A6, A7, M22, F i22}.

For most quasisimple groups of classical Lie type, this had essentially already been

contained in their first paper [LOST], so only the spin groups, the exceptional covering

groups of classical groups and the exceptional groups of type E6,
2E6 and E7 had to be

considered.

It turns out, though, that in all cases every element of a finite quasisimple group

is a product of at most two commutators. Let us mention here that for more general

groups, Nikolov and Segal [NS07] have shown the following:
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Theorem 6.2 (Nikolov–Segal). — There exists a function f such that for any group G

generated by at most r elements, every element of its commutator subgroup [G, G] is a

product of at most f(r) commutators.

This was one of the key steps in their proof establishing that in a finitely generated

profinite group, every subgroup of finite index is open. (The special case of finitely

generated pro-p groups had long ago been shown by Serre.) The proof eventually relies

on a result on twisted commutators in finite quasisimple groups, which in turn uses the

classification of finite simple groups.

Closely related to Thompson’s conjecture is the concept of covering number. In a

finite non-abelian simple group G, for any non-trivial conjugacy class C ⊂ G there

exists some k = k(C) such that Ck = G. The minimal exponent k which works for all

non-trivial classes C is called the covering number cn(G) of G.

The following upper bound on covering numbers for groups of Lie type has been

obtained in [EGH99] (see also Lawther and Liebeck [LL98] for closely related results on

the covering number with respect to C ∪ C−1):

Theorem 6.3 (Ellers–Gordeev–Herzog). — There exists a constant d such that for

any finite simple group of Lie type G of rank r we have cn(G) ≤ dr.

The expected best possible value for d is 4, but the estimates obtained in the above

reference are weaker. The claim is first shown for classical groups, by embedding a

type A subgroup of maximal possible rank and using that cn(PSLn(q)) = n for q, n ≥ 4.

For the finitely many exceptional types one can clearly assume that q is large enough,

in which case Theorem 1.3 of Ellers–Gordeev can be used to deduce the result.

The lecture notes of Arad and Herzog [AH85] list several further open questions on

products of conjugacy classes in finite non-abelian simple groups. Let us mention one

open problem, the Arad–Herzog conjecture, which claims that products of arbitrary

conjugacy classes can never be too small:

Conjecture 6.4 (Arad–Herzog). — Let G be a finite non-abelian simple group. Then

the product of two non-trivial conjugacy classes of G is never a single conjugacy class.

Note that the claim may fail for arbitrary groups: Let G be a Frobenius group of

order pd with d|(p− 1). Then the product of any class of non-trivial elements of order

dividing d with any class of elements of order p is a single conjugacy class. A more

interesting example can be obtained in the extension of GL2n(q) by the transpose-inverse

automorphism, see [GMT13, Example 7.2]. So, as for the Ore conjecture, the property

in question seems to be tied to simple groups.

The Arad–Herzog conjecture is open in general, but has recently been shown to hold

for various classes of simple groups (see [FA87, GMT13]):

Theorem 6.5 (Fisman–Arad, Guralnick–Malle–Tiep). — Let G be an alternating

group An, n ≥ 5, a simple group PSLn(q) or a simple group of Lie type of rank less

than 4. Then the Arad–Herzog Conjecture holds for G.
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The proofs rely on the following easy character theoretic observation, which again

follows from the orthogonality relations (see [GMT13, Lem. 2.2]):

Lemma 6.6. — Let G be a finite group, C, D ⊂ G two conjugacy classes of G. If

CD is a single conjugacy class, then χ(x)χ(y) = χ(1)χ(xy) for all irreducible complex

characters χ of G and x ∈ C, y ∈ D.

For alternating groups and PSLn(q) this criterion can be applied with a single well-

chosen character; for the groups of Lie type of small rank, one uses the knowledge of

the complete character table (see [GMT13]).

Again, the question becomes much simpler if we turn to the natural analogue for

simple algebraic groups, see [GMT13, Thm. 1.1]:

Theorem 6.7 (Guralnick–Malle–Tiep). — Let G be a simple algebraic group over an

algebraically closed field and C, D non-central conjugacy classes of G. Then the product

CD is never a single conjugacy class.

In fact, the proofs show that except for a small number of well-understood situations

where the product consists of two or three classes, CD is the union of infinitely many

conjugacy classes.

The above result has the following immediate consequence ([GMT13, Cor. 1.2]),

whose analogue in the case of finite groups, formerly known as Szep’s conjecture, was

proved by Fisman–Arad [FA87]:

Corollary 6.8. — Let G be a simple algebraic group over an algebraically closed field.

Let x, y ∈ G be non-central. Then CG(x)CG(y) 6= G.

This investigation has recently been extended to almost simple algebraic groups in

[GM13]; here, in disconnected groups there exist various pairs of conjugacy classes

whose product is again a single class.
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