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The determination of polynomials over Q(t) with a given primitive nonsolvable permutation 
group of degree d ~< 15 as Galois group is completed. Sections 1-3 deal with the remaining 
three cases Hol(Es), PGL2(D:11) and PSL3(~:3). In section 4 the same methods are applied to 
calculate polynomials with the maximal transitive subgroups of the symmetric group S 6 as 
Galois groups. In all cases infinitely many specialisations t ~ z  E Q preserving the Galois 
group of the original polynomial are found according to the Hilbert irreducibility theorem. 

Introduction 

All nonsolvable groups having a faithful primitive permutation representation of degree 
d ~< 15 are known to occur as Galois groups over the rationals Q (see Matzat, 1984; 
Matzat & Zeh, 1986). A constructive way to obtain polynomials having one of these 
groups as Galois groups was also presented in Matzat (1984). The construction depends 
on solving a system of nonlinear algebraic equations in as many variables as the degree of 
the permutation group. This remained an obstacle to computing polynomials with the 
aforementioned groups as Galois groups. Still a comparison of the list of primitive 
permutation groups in Sims (1970) with the cases treated in Matzat (1984), Malle & 
Matzat (1985) and Matzat & Zeh (1986) shows that only polynomials with Galois groups 
Hol(Es) , PGL2(0=tl ) and PSL30=3) over Q(t) remain to be determined. Using mainly the 
methods of Matzat (1984) we will construct the fixed fields of the stabiliser of a point in 
the primitive permutation representations of these groups (Stammktrper) .  This yields 
generating polynomials of the Galois extensions whose existence was shown in Matzat  
(1984). For the first time the case of a fixed field of genus different from zero (i.e. 9 = 1) 
will be treated. The systems of nonlinear algebraic equations were solved using a 
p-modular version of the Buchberger algorithm according to Malle & Trinks (1985). 

In the last section the determination of extensions over Q(t) with a fixed ramification 
structure (Verzweigungsstruktur) of $6 will permit the realisation of the maximal 
transitive subgroups of S 6 as Galois groups. 

According to the Hilbert irreducibility theorem specialisations t ~-* ~ E Q preserving the 
Galois group will be given for each polynomial. 

1. Polynomials with the Galois group HoI(Es) 

By Matzat (1984), Lemma 10.1, there exists a Galois extension N/Q(t) with Galois 
group G = Hol(Es) and ramification structure c~, = (C4, C~,, C6)*. (For the notation we 
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refer to Matzat (1984).) In this section a polynomial f( t ,  X) e Q(t)[X] of degree eight 
with splitting field equal to N will be calculated. 

Let L be the fixed field of the stabiliser in G of a point in a permutation representation 
of degree eight. Then L has degree eight over Q(t). The ramification structure 
cg. = (C,, C~, C6)* of N/(l(t) implies that three prime divisors ill ,  fi2,/*a of residue class 
degree one are ramified in L : =  ~ L  over Q(t) with ramification orders el = e2 = 4, 
e 3 = 6. In a transitive permutation representation of G of degree eight the elements of C4 
have the type (4, 2, 1, l), those of C6 the type (6, 2). So according to Satz B in Malle & 
Matzat  (1985) the divisors ~1,/*2 and/~3 ramify as follows 

. ~ 2  /T ,=~ , .1 ,~2-"  , "~.a  fo r i  1,2 and ; ~ 3 = ~ 6 ,1  3,=, 

with a(~,.i) = 1 for j ~< 2 and 0(~1, a) = a(~z.3) = 2. Using the Hurwitz formula the genus 
of L and L is calculated as 

g(L) = g(L) = 1 - 8 + ½ ( 4 + 4 + 6 )  = 0. 

While ~a is defined over Q(t), Lemma 10.1 in Matzat  (1984) shows that the divisors/ i  1 
and/T 2 are permuted by Gal(Q(t)/~(t)). Therefore one prime divisor/*a of degree one and 
one divisor ¢ of degree two are ramified in Lfl;l(t) with respective ramification order 6 and 
4. Choose a generating function t of Q(t) over Q with ¢.p~-2 = (t 2 _ ~ ) ,  rC e I~. This 
determines t up to rational multiples. As/~a = ~ 6  t ' ~2 a.2 in L/~(t),  the field L contains 
prime divisors of degree one and therefore is a rational function field. A generating 
function x of L over Q will be determined up to rational multiples by (x) = ~a 2" N3-). In 

• . ~ 7.d 

the splitting field k(t) of ¢, with (k : ~ )  = 2 the divisor ¢ sphts into the product of fit  and 
~2, and the following equalities of divisors hold: 

-~-=/~1 (t + co),  -~--=~2 ( t -  co), with 092 = ~ e Q .  

In L := kL over k(t) the two divisors of ¢ split further to 

/~, = ~ ,  ' ~ 2 "~,.3 for i = 1,2. 

Let ~3,j be a prime divisor of ~3.1 in ~,. Then rational numbers a, fl, 3' and 6 are 
~ - - 1  ~ ' ~  ~ - 1  ~ ~ - 2  determined by 1,1.~a.1 - ( x + a ) ,  ~1.2.¢~3.1 = (x+fl) and ~ l , s - ~ 3 ,  1 = (x=+?x+~5). 

Writing : k--*k, ~ c ~  for the generating automorphism of k/Q we have 

~2. x "~3,~ = (x+a )  = (x+~),  9g2.~ '~3,~ = (x+f l )  and ~2.3 "~37~ 2 = (xZ+'~x+~). This 
leads to 

~ ~t,, '~,~'~,~ /'.(x+~)'(~+~)~(~+~+~)~ I (t+co) =t, ) 
and  the equation of divisors conjugate to this in L/L. So there exists t /~  k ~ with 

x~( t + co) = tl(x + o04(x +/~)~(x 2 + ~x + 5) 
(1) 

x ~ ( t -  co) = ~(x + a)~(x + ~)~(x ~ + ~x +-~). 

Eliminating t from (1) we obtain 

2cox ~ = ~(x + ~)~(x +/~)~(x ~ + yx + 5 ) -  ~(x + a)~(x + ~)~(x ~ + ?x + ~). (2) 

The generating element x of L is transcendent over k, so the last equation can be regarded 
as a polynomial identity in x, which gives t / =  ~. Subtracting (2) differentiated with 
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respect to x and multiplied by x from (2) multiplied by two, we have 

paq(2pqr- x(4qr + 2pr + pqr')) = paq(2p/ff - x (4~  + 2 ~  + ~ 7 ) )  (3) 

with p = x + ~ ,  q = x + f l  and r = x2+~x+6. As ~ 3 1 - ~ 1 , 2  and 9~,1.9~2,2 do not have a 
common factor, the same holds for the polynomials paq and ~3~, and (3) can be divided 
up into 

6paq + 2 ~ -  x(4?/~ + 2 ~  + , ~ P )  = 0 

6~a~ + 2pqr-- x(4qr + 2pr + pqr') = O. 

Comparing coefficients this leads to a system of eight nonlinear equations in eight 
unknowns. The generating function x which was determined only up to rational multiples 
can be fixed by one additional condition. Setting ~t + ~ = 0 does not lead to a solution of 
the system of equations, so let ct + fi = 2. Using the modular algorithm of Matle & Trink8 

(1985) one finds exactly two solutions in a quadratic extension field of Q; with 0 = ___x/~ 
they are ct = 1 - 0 ,  fl = - 1 3 - 0 ,  y = - 2 + 6 0  and ~ = 32+100. As co ~ k we may choose 
o9 = 0 and thereby fix t. From (1) it follows 

THEOREM 1: The splitting field N of  the polynomial 

f ( X ,  t) = X s - 2 4 X  7 +2128X 5 +218 4 X 4 -6 6 5 2 8 X  3 

- 28672X 2 - 243648X + 104976- 87808X2t 

has the Galois group Hol(E8) over Q(t) and the ramification structure c¢, = (C4, C'4, C6)*. 

According to the Hilbert irreducibility theorem there exist infinitely many 
specialisations t ~ • e ~ such that f (X ,  z) still has the Galois group Hol(Es). A series of 
such specialisations shall now be found. 

COROLLARY 1: The polynomial f ( X ,  z) has the Galois group HoI(E8) over Q for all values 
z ~ 7/with 

z ~ 2 (rood 715). 

PROOF: The Galois group of f ( X ,  ~) is isomorphic to a subgroup of Gal(f(X, t)). For  
z =- 2 (rood 715) the polynomial f (X ,  z) has the following factorisations 

f ( X ,  ~) -- (X+ 1 ) ( X + 2 ) ( X E + 2 x + 3 ) ( X 4 + X a + 4 X 2 + 4 X +  1) (mod 5), 

f ( X , z )  = ( X 2 + 8 X + 9 ) ( X 6 + X ~ + 5 X 4 + 5 X 2 + 4 X + 4 )  (mod 11), 

f ( X ,  z) =- (X + 5)(X 7 + 10X 6 + 2X s + 12X 4 + 5X 3 + 7X 2 + 11X + 8) (rood 13). 

Therefore Gal ( f (X,  zj) contains elements of cycle shapes (4, 2, 1, 1), (6, 2) and (7, 1) and 
so is isomorphic to Hol(E8). • 

The Galois group of N / L = N / Q ( x )  with f (x , t )  = 0  has index eight in 
Gal(N/G(t)) ~ Hol(E8). Thus it is isomorphic to PSL2(U:7). By setting 
f ( X ,  t) =: #(X) + t. h(X) a generating polynomial of N/L can be obtained as in Matzat & 
Zeh (1986), Bemerkung 4: 

THEOREM 2: N is the splitting field of 

A ( x ,  x) = 
g(X)h(x)-g(x)h(X) 

X - x  
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over O(x) with the Galois group Gal(N/O(x))~-PSLz(~:7) and ramification structure 
= c4,  c , ,  

2. Polynomials with the Galois groups PGL2(Ft 1) and PSL2(~= i 1) 

In Matzat (1984), Satz 7.2, the existence of a Galois'extension N/C~(t) with the group 
G = PGL20=ll) and the ramification structure c~, = (Cf ,  C4, Cll)* was proved. Let L be 
the fixed field in N of a one point stabiliser in a permutation representation of G of degree 
twelve. In such a permutation representation the elements in Cf  have the permutation 
type (2, 2, 2, 2, 2, 1, 1), the elements in C~ have the type (4, 4, 4) and those in Cil have the 
type (11, 1). The Hurwitz genus formula then yields g(L) = 1 - 12 + ½(5 + 9 + 10) = 1. 
Denote by ~1,/12,/~3 the three prime divisors of degree one ramified in L/Q(t). By Satz B 
in Malle & Matzat (1985) they ramify as follows 

with 0(~3, 1) = 0(~3.2) = 1, 0(~2) = 3, 0(~1; l) = 5 and 0(~l, 2) = 2. So L contains prime 
divisors of degree one and is a disclosed elliptic function field. Choose a function u e L 
with divisor of poles equal to ~ .  ~ according to the theorem of Riemann-Roch. Then the 
extension L/Q(u) has degree two. Denote by -: L -~  L the generating automorphism of 
that  field extension. A generating function t of Q(t) is determined by f12' ~ f  1 = (t) and 
/ z l . ~  -1 = ( t - i ) .  Suppose t 6 K : = Q ( u ) .  Then to K as a subfield of N/Q(t)would 
correspond a subgroup of G = PGL20:l i )  of index six. But G does not have such a 
subgroup. So t generates L over K, The ramification of ~1, ~2 and ~3 now yields 

( t O =  22 , = 3,1 3,2 

where the divisors ~ i ,1 ,  ~1,2, ~2,  ~ , i  = ~ 2 ,  i and ~ , 2  are defined over K. (The 
extension L/K is ramified in ~3, 1 because of the choice of u.) 

Let finally x be a generating function of K = ~(u) with ~ ,  t as divisor of poles and 
the condition v ~ 2 . ~ , ] = ( b ( x ) ) = ( x ~ + ~ l x + f l o  ). Define #i, v~ and )~ in ~ by 

- - 5  ~ . t  "~3,~ = (re(x)) = (x~+l~4x4+#~x~+/l~x~+plX+po), ~ . 2 .  ~ ,  2 = (n(x)) = 
(x~+v~x+Vo) and ~ , 2 '  ~ . ~  = (x+~).  Then there exist q, ~r e O with 

~(x + )O = rib(x) ~ and ( t -  1)(t-- 1)(x+2) = xm(x)2n(x). 

From this the minimal polynomial of t over K is F(t) = (x +)Or ~ -  a(x)t+ rib(x) ~ with 
a(x) := x + 2+  rib(x) 4-~rm(x)~n(x). The extension L/K is ramified in precisely three places 
apart  from ~ ,  ~. So the discriminant D(F) = a(x)2-4rlb(x)4(x+;O of F has to he of the 
form ~cc(x)~d(x) with a polynomial d(x) of degree three in x and ~c e O. In particular the 
degree in x of the discriminant is odd, so the above formula for D(F) shows ~/= ~r, 
~ c - - 4 r ~  and O(c(x)) = 5. As x is transcendental over O, the equation 
D(F) =-4~c(x)2d(x)  can be regarded as an equality in the polynomial ring Q[x]. 
Comparing the coefficients in x leads to a nonlinear system of 24 equations in 19 
variables. The function x may now be determined by setting v~ = 8, because the choice 
v~ = 0 does not  give a solution. For every solution of the original problem, the 
polynomials a(x), b(x), re(x), n(x) and (x + 2) may not have a common factor. Under this 
condition with the algorithm described in Malle & Trinks (1985) only one solution of the 
system of equations is found: /~ = - 6 6 ,  /~0 = - 3 0 8 ,  /~4 = - 4 ,  #3 = - 1 5 2 ,  #2 = 280, 
/~ = 8204, #o = -29888,  vo = 88, 2 = - 1 1  and r /=  -2 -163  - l l .  To simplify the result, 
set T := 2s3~t. 
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THEOREM 3: (a) The splitting field N of the polynomial 

f (X ,  T) = (X 3 - 6 6 X -  308) 4 -  9 T(11X 5 - 44X 4 -  1573X a 

+ 1892X 2 + 57358X + 103763)- 3T2(X - 11) 

has the Galois group PGL2(~: 11) over Q(t) and ramification structure c#, = (C~, C4, C11)*. 
(b) N is the splitting field of 

f (X ,  62208/(11y2+ 1)) e Q(y)[X] 

over Q(y) with the Galois group Gal(N/Q(y))"~ PSL2(0:11 ) and ramification structure 
= 

PROOF: In Satz 7.2 of Matzat (1984) the fixed field M of PSL2(~ 11) in N is shown to be a 
rational function field Q(y). Precisely the two prime divisors ~1 = ~,2 and /~2 = ~2 are 
ramified in M/Q(t). So a generating function y of M may be chosen with (y) = ~1" ~'21. 
This determines y up to rational multiples and the following holds 

= = 

Consequently there exists ct e Q × with c~(t- 1) = ty z. The discriminant of f with respect 
to X is equal to - l l ( t - 1 ) t  -1 up to a square. As this discriminant has to become 
a square in M, we may choose c ~ = - l / l l ,  thereby fixing y. With 
T = 2s35t = 2835/(lly2+ 1) part (b) follows. • 

COROLLARY 2: (a) The polynomial f (X ,  z) has the Galois group PGL20:l l  ) over Q for all 
values z ~ 77 with 

z - 1 (rood 10). 

(b) The polynomial f (X ,  66208/(11z2+ 1)) has the Gatois group PSL2(nzll) over Q for all 
values z ~ 7/with 

z = 1 (rood 65). 

PROOF: The polynomial f (X ,  1) remains irreducible modulo the prime 5 and has factors of 
degrees 10, 1 and 1 modulo two. So as Gal(f(X, 1)) contains elements of orders ten and 
twelve it is already equal to Gal(f(X, T)) ~ PGL20:I 1). The congruences remain valid for 
all z = 1 (rood 10), so (a) follows. 

f (X ,  5184) has two irreducible factors of degree six modulo 5 and two factors of degrees 
11 and 1 modulo 13. As PSL2(D:11) does not have a proper subgroup containing elements 
of orders six and eleven, this shows (b). • 

3. Polynomials with the Galois group PSL3([]z3) 

By Matzat (1984), Satz 10.4, there exists a regular Galois extension N/Q(t) with Galois 
group G = PSL30:3) and ramification structure cg ,=  (C2, C8, C~)*. In a permutation 
representation of G of degree thirteen, elements of the class C2 have the permutation type 
(2, 2, 2, 2, 1, 1, 1, 1, 1), elements of the classes C s and C~ have the type (8, 4, 1). Let L be 
the fixed field in N of the stabiliser of a point in that permutation representation. If x 
denotes a generating element of L/Q(t) then the minimal polynomial of x has splitting 
field N and its Galois group is equal to G. 
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According to the ramification structure of N/Q(t)  three prime divisors ill, fi2, /~  of 
residue class degree one are ramified in f, := QL over Q(t) with ramification order e 1 = 2, 
e2 = e3 = 8 respectively. The cycle shapes of elements in the three classes of ~, yield the 
ramification 

t~4 " ~ a  fori  2,3, ~1=.~ ,1 . .~1 ,2  and ~ , = ~ 1 .  ,.2 , = 

with 0(.~1, 1) = 4, a(-~1,2) = 5 and 0(~4) = 1 for i ~> 2. The genus of L and L is equal to 
o(E) = g(L) = 1 - 13 + : } ( 4 +  1 0 +  10) --- 0. 

The divisor ~I is defined over Q(t), while fi2 and ~3 are permuted by Gal(Q(t)/Q(t)) 
(Matzat, 1984). So in L/Q(t)  one prime divisor fil of degree one and one divisor ¢ of 
degree two are ramified with respective ramification orders 2 and 8. A generating function 
t of Q(t) is determined up to rational multiples by ¢'//i-2 = (t2--rc) with n e G. The 
centraliser of an involution in PSL3(IF3) is contained in the stabiliser of a point in the 
permutation representation of degree thirteen. So it does not act transitively on the five 
prime divisors of-~1.2 in P(QL/Q). This gives the ramification 

~1---~2 "~12"~13 1 , 1  , , 

with 0(~1, ~) = 0(~'1.2) = 4, 0(~ .  3) = 1 in L/Q(t).  Let x be a generating function of the 
rational function field L with divisor of poles ~ . 3 .  Define #i, vt~ Q by 
~1, t" t~174 =: (x 4 + #a xa + #2 x2 + #1 x + #o) =: (p(x)) and ¢~1.2" ~lSt  =: 
(x4+ vax3+ v2x 2 +vx x +  Vo)=: (q(x)). By a theorem of Shih (1974) the splitting field of 
is k ( t ) =  Q(x/Z-2)(t) (compare Bemerkung 5.3 in Matzat (1985) for a more general 
version). We have 

~2 (t + co), /~3 ( t -  e)) with co a rc ~ Q, 

for the three divisors ~2, ~3 of ¢ and fil of ~t  in k(t). In L:---- kL over k(t), the first two 
divisors split further into 

~, = ~ x . ~ Z ~ . @ , . ~  for ~= 2,3. 

Let ~, 2, p ~ k  be defined by ~,X'~-:31=(X"I-K:), ~,2"~_31~---(X-1-~.) and 
~23 ~ , 3  = ( x + p ) .  Then we have ~3.1 .~i~-1=(x+~) ,  ~ 3 z ' ~ l ~ ' ~ = ( x + 2 )  and 
~3, 3" ~ ,  3 (x + ~) with the generating automorphism -: k --* k, ~ ~-, a of k/Q. So we get 
the equation 

(~+~o) = ~~~ = ~ , 1 .  ~ ,~ .  ~,~ = ((~ + ~)~(~ + ~)'(~ + p)) 
~, - ~  .~1 ~..~,~ t, ~-'~)~--8~ ) 

and the conjugate of it in L/L. By the equality of divisors there exists a r/~ k × with 

p(x)2q(x)(t + co) = rl(X + ~:)=(x + 2)4(x + p), 
(1) 

p(x)~-q(x)(t-- ~o) = O(x + ~)S(x + ~D4(x + ~). 

Eliminating t from (1) yields the polynomial identity in X 

2ogp(X)~q(X) = rl(X + x)S(X + 2)4(X + p) - ?/(X + ~)s(X + 1)4(X + ~), (2) 

showing t /=  ~. Subtract equation (2) differentiated with respect to X multiplied by 
p(X)q (X)  from (2) multiplied by 2p(X)'q(X)+ p(X)q(X)' to get 

u V va ( uvw( 2p' q + pq') -- pq( Suw + 4uw + uv) ) 

---- fi 7fia(fi~(2p'q + pq') -- pq(8r)fv + 4fi# + fi~)) (3) 
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with u = X + x, v = X + 2 and w = X + p. The divisors ~2.-7 1 . a~3 2 and ~3 v, 1" t ~ ,  z do not 
have a common factor, so neither do uTv 3 and fi7~3. So (3) may be divided up into 

uTv 3 + f i~(2p 'q  + pq')-  pq(8?)fv + 4fi~ + fib) = 0, 

fi7~3 + uvw(2p' q + pq' ) -  pq(8vw + 4uw + uv) = O. 

Comparison of coefficients leads to a system of twenty nonlinear equations in fourteen 
unknowns. Because x was determined only up to linear substitutions, we may choose 
2 + 2 = 0 and (as x + ~: = 0 does not give a solution) x + ~ = 4. The resulting system of 

equations has exactly two solutions in k = Q(x/-Z2), which were found with the 

algorithm in Malle & Trinks (1985); with 0 = + x/--Z2 they are #3 = -~,/~2 = 4, #~ = - 8 ,  
#0 = - ~ ,  v3 = 16, v 2 = 72, v 1 = 128, v o = 188, lc = 2+30 ,  ;t = - 0  and p - - - 2 0 .  

Now t may be fixed by setting t / =  1. 

TrmOREM 4: The splitting field N of the polynomial 

f ( X ,  t) = X 13 + 16X 12 - 132X 11 - 2016Xl° -9060X 9 - 4 3 7 7 6 X  s - 144096X 7 

- 377088X 6 - 1015056X s - 1743616X 4 -  3388480X a - 3177984X 2 - 3311040X 

+ 989184-  t(3X ~ -  4X 3 + 12X 2 - 2 4 X -  68)2(X 4 + 16X 3 + 72X 2 + 128X + 188) 

has the Galois group PSL3(~:a) over Q(t) and ramification structure c¢, = (C2, C8, C~)*. 

COROLLARY 3: The polynomial f (X ,  z) has the Galois group PSL3(IF3) over • for all values 
z ~ 7/ with 

- 1 (mod 385). 

PROOF: The Galois group of f ( X ,  z) is isomorphic to a subgroup of Gal(f(X,  t)). For  
z = 1 (mod 385) the polynomial  f ( X ,  z) has the factorisations 

f (X,  ~) = (X + 6)(X 4 + 5X 3 + 4X 2 + 3) 

( X S + 3 X T + 3 x 6 + 6 X 4 + 4 X a + 4 X 2 +  1) (mod 7), 

f (X ,  z) =-- (X + 1)(X 3 + 5X 2 + 9X + 8)(X 3 + 5X 2 + 4 X  + 3) 

(X 3 + 3X 2 + 5X + 7)(X 3 + 4X 2 + 2X + 9) (mod 11), 

and remains irreducible modulo 5. So Gal(f (X,  ~)) contains elements of orders 3, 8 and 
13 and is isomorphic to PSL30:3). [] 

4. Transitive subgroups of S 6 as Galois groups 

Apart  from A 6 and S5, the symmetric group S6 on six symbols possesses two further 
maximal subgroups; these are G72 (imprimitive on two sets of three symbols each) of  
index ten and G,s (imprimitive on three sets of two symbols each) of index fifteen. Clearly 
by the result of Shafarevich these solvable groups are known to occur as Galois groups 
over the rationals. Here polynomials of degree six with corresponding Galois groups will 
be given. 

In Matzat  (1984), Lemma 6.1, the existence of a regular field extension N/Q(t) having 
Galois group $6 and ramification structure ~* = (C2, C5, C6)* was proved. Denote by Lo 
the fixed field in N of an intransitive subgroup Ss in a permutat ion representation of S~ of 
degree six. In Matzat  (1984) Lo was shown to be a rational function field and a generating 
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trinomial of degree six for N/~(t)  was calculated. The outer automorphism of $6 
transforms ~* into c~, = (C~, C5, C~)* where C~ and C; contain elements of cycle shapes 
(2, 2, 2) and (3, 2, 1) respectively. The fixed field L1 of a transitive subgroup $5 in $6 is a 
rational function field. Using the primitive permutation representations of $6 of degrees 
ten and fifteen in Sims (1970) and Satz B in Malle & Matzat (1985) the fixed fields L2, L3 
of subgroups G72 and Gas are seen to be rational function fields, of degrees ten and fifteen 
over ~(t).  So with the methods of the preceding sections generating polynomials of 
degrees six, ten and fifteen for N/Q(t) may be calculated. 

THEOREM 5: The splitting field of  each of  the four polynomials 

fo(X,  T) = X6--6XS+ T, 

f~(W, T) = W 6 - 120W s + 64(W+ 8)2(W+ 5)T, 

f2(Y,  T) = ( y 2  14Y+4)5_27(Y_ 16)YaT, 

f3 (Z, T) = (Z 2 - 45) 5Z s _ ~(2Z + 15)2(Z- 6)(Z 2 - 2 Z -  15)3 T 

is equal to N and the orders of  ramification in the ramified places oo, 0 and 55 are 6, 5 and 2 
respectively. 

PROOF: The polynomial fo(X, T) is obtained from f(x,  t) in Matzat (1984) by the 
transformation X := 5x, T := 5st. The remaining three polynomials are calculated along 
the lines of the first three sections, with only the last case leading to a moderately 
complicated system of nonlinear equations which can be solved with the algorithm of 
Malle & Trinks (1985). II 

We can now find trinomials having Galois groups PGL2(D:5) _-__ $5, G72 and G4s. For 
this let w, y, z be zeros in N of fx(W, T), f2(Y, T), f3(Z, T) respectively. So without loss 
of generality LI = O(w), L 2 = Q(y), L 3 = Q(z) and we have: 

THEOREM 6: (a) N is the splitting field over Q(w) of  

wS(w- 120) 
91(X, w) ---- X 6 - 6 X  5 -  64(w+8)2(w+5 ) 

and has the Galois group PGL2(0:s) and the ramification structure ~* = (C2, C3, C5, C6)*. 
(b) N is the splitting field over Q(v) of  

gl(x, v~-5) e ~(o)Ex] 

with the Galois group PSLz(gcs) and the ramification structure ~* = (C3, Ca, C3, C5, Cs)*. 
(c) The splitting field N of the polynomial 

( y2 _ 14y + 4) 5 
o2(X, Y) = X6-6XSq- 27(y_16)y3 

has the Galois group Gv2 over Q(y) and the ramification structure ~* = (4. C2, C~, Ca)*, 
(d) The splitting field N of  the polynomial 

4zS(z 2-45) 5 
oa(X, z) = X 6 -  6X s + 

27(2z + 15)Z(z- 6)(z 2 - 2 z -  15) 3 
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has the Galois group Gcs over Q(z) and the ramification structure 
c~ = (3' C2, 2' C~, C 3, C6)*. 

(e) N is the splitting field of 

g3(X, 3(5u 2 - 1)/(3u 2 + 1)) s G(u)[X] 

over Q(u) with the Galois group Za x A  4 ~ G24 < G4s and ramification structure 
~ ----- (6' C2, C3, C3, C6, C6)*. 

PROOF: By definition Q(w), Q(y), O(z) are the fixed fields of PGL2(IFs), G72 and Gcs in 
N/Q(t), so the polynomials in (a), (c) and (d) may be obtained from Theorem 5. The 
precise ramification in Li/Q(t) yields the stated ramification structures. The fixed fields of 
PSL2(U:5) ~ A 5 in N/L~ and of G2,~ in N/L 3 turn out to be rational function fields G(v) 
and Q(u). So generating equations for N/Q(v) and N/Q(u) may be calculated from the 
ones for N/L1 and N/L 3 as in the case of PSL2(~:lt) in section 2. [] 

COROLLARY 4: (a) The polynomial 91(X, co) has the Galois group PGLz(H:s) over Q for all 
values co ~ Z with 

(b) For v ~ 7_ with 

co ~ 1 (mod 209). 

v ~ l  (mod35) 

the Galois group of  ga(X, v2-5)  over Q is isomorphic to PSL2(Dzs). 
(c) For y ~ 2. with 

- 1 ( r o o d  187) 

the Galois group o.f g2(X, ~) over ~ is isomorphic to G72. 
(d) For ( ~ ~ with 

( _-_ 1 (rood 247) 

the Galois group of  ga(X, () over ~ is isomorphic to Gcs. 
(e) For 4 ~ 7/with 

-- 1 (rood 143) 

the Galois group of  ga(X, 3(542- 1)/(34:+ 1)) over Q is isomorphic to G24. 
To prove Corollary 4, the factorisations of the g~ modulo certain primes must be 

studied, similar to the way in the preceding sections. 
Theorem 6 gives trinomials for all the transitive subgroups of S o with rational fixed field 

in N, as can be seen from the ramification structures. For  certain exceptional 
specialisations of the parameters, three further transitive subgroups of $6 can be obtained 
as Galois groups of trinomials over •: 

EXAMPLE: 
(a) 92(X, 2) = x o - 6 x s + 2 6 5 5 3 - 3 7  -1 has the Galois group Ga6 < G~2. 
(b) ca(X, I0) = XO-6XS+2s551 lS3-37-213 -3 has the Galois group G~, ~ S, (acting 

on the subgroups of type Z,). 
(c) g2(X, -2 /7)  = ga(X, - 15/7) = X 6 -  6X s +26361157-619-1 has the Galois group 

Z6. 
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Finally I want to thank Priv. Doz. Dr. B. H. Matzat for the constant encouragement without 
which this work probably would not have been completed. 
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