BRAUER’S HEIGHT ZERO CONJECTURE FOR TWO PRIMES
GUNTER MALLE AND GABRIEL NAVARRO

ABSTRACT. Let p and g be two primes. We propose that Brauer’s Height Zero Con-
jecture for the principal p-blocks of finite groups can naturally be extended from the
perspective of q. We prove one direction of this new conjecture, and show the reverse di-
rection assuming that the Inductive Alperin—-McKay condition holds for the finite simple
groups.

1. INTRODUCTION

Unlike some celebrated theorems in number theory, there are few results in the repre-
sentation theory of finite groups (outside solvable groups) that take two different primes
into account.

In this paper, we propose what might be an exception. In fact, Conjecture A below
constitutes a generalisation of a famous conjecture of Richard Brauer. If G is a finite
group and p is a prime, let us denote by B,(G) the set of irreducible complex characters
in the principal p-block of G.

Conjecture A. Let G be a finite group, and let p and q be primes. Then the elements
of some Sylow p-subgroup of G commute with the elements of some Sylow q-subgroup of
G if and only if the characters in B,(G) have degree not divisible by g and the characters
in By(G) have degree not divisible by p.

Of course, if p = ¢, then Conjecture A is Brauer’s Height Zero Conjecture for principal
p-blocks.

In this paper we prove the “only if” direction of Conjecture A in Theorem 4.1 below for
p # q. (If p= g, the “only if” direction of Conjecture A is known to hold by Kessar-Malle
[12].) In Theorem 5.2 again for p # ¢, we show the “if” direction under the assumption of
the Inductive Alperin-McKay condition for principal blocks (see Spath [20]). (For p = ¢
this is the (principal block case of the) main result of Navarro-Spéath [17].)

Is there some version of Conjecture A for arbitrary blocks of finite groups? If G = 6.2l7
and p = 5,q = 7, then G has a p-block of maximal defect such that all of its irreducible
characters have degree coprime to ¢, and the other way around with the roles of p and

2010 Mathematics Subject Classification. Primary 20C15.

Key words and phrases. Brauer’s Height Zero Conjecture.

The first author gratefully acknowledges financial support by SFB TRR 195. The research of the
second author is supported by MTM2016-76196-P and FEDER funds. He also thanks B. Spéath for some
discussions on Theorem 2.1.

1



2 GUNTER MALLE AND GABRIEL NAVARRO

q reversed. But in G, the order of the normaliser of a Sylow p-subgroup is not divisible
by ¢, and the order of the normaliser of a Sylow g-subgroup is not divisible by p. So the
extension of Conjecture A to blocks of maximal defect is false in general (although it does
hold for {p, ¢}-separable groups, by Navarro-Wolf [19]). It is perhaps worth remarking
that this is the very same example found by C. Bessenrodt in [3] to the question of when
the irreducible characters of p and g-blocks coincide.

It is an interesting question to characterise when the irreducible characters of the prin-
cipal p-block have degree not divisible by g. For ¢ = 2, this was studied by Giannelli—
Malle—Vallejo [8].

2. EXTENDING CHARACTERS AND PRINCIPAL BLOCKS

If NaG and 6 € Irr(N) is in the principal block of N and extends to G, it is not
necessarily true that 6 has an extension in the principal block of G. (For instance, if G
is the solvable group SmallGroup([144,187]) of order 144, and p = 3, then G has two
normal subgroups of type (C5 x C3) : Cy. Let N be the one that has a complement, Qs,
in G. Also Z = Z(G) = Oy (G) has order 2. Now, the non-trivial linear character of N
extends to G but does not have an extension containing Z in its kernel.)

Let p be a prime. We fix a maximal ideal M of the ring of algebraic integers R containing
p, and we let R be the localisation of R at M. We denote by * : R — R/M = F the
natural ring homomorphism. Notice that if x is in the principal block of a group X,
and x € X is such that |X : Cx(x)| is not divisible by p, then x(x)/x(1) € R and
(x(z)/x(1))* = 1*. We denote by A\, : Z(F'G) — F the algebra homomorphism

wiio = (FE7)

for conjugacy classes K of GG, where K= > sex 9 1s the conjugacy class sum. In general,
we follow the notation of [15] for blocks.

Theorem 2.1. Suppose that NG, P € Syl (N), G = NCg(P), 0 € B,(N) is in the
principal p-block of N and extends to G. Then there is x € B,(G) in the principal block of
G extending 6 such that xj is in the principal block of J for every subgroup N < J < G.
Furthermore, if § € Irr(G) has N in its kernel, then x (3 lies in the principal block of G if
and only if B lies in the principal block of G.

Proof. Let n € Irr(G) be an extension of §. Write C'= C(P), D = Cn(P). Let x € C be
p-regular. Write N, = N(x). Then 6 has a unique extension 6, € Irr(V,) in the principal
block, using [1]. Hence

NN, = Axem
for a unique linear character A\, € Irr(N,/N). If z € C, we define

v(z) = Ay, (Ty) -
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We claim that v is a linear character of C'. Since N, = N,_,-1, then A\, = \,-1, and notice
that v(x~!) = v(z)~!. Suppose that H = R x @ is a nilpotent subgroup of C, where R
is a p-group and @ is a p’-group. We show that vy is a generalised character of H. By
[18, Thm. 3.2], there exists a unique 0 e Irr(NQ) in the principal block of N@Q, extending
6. Furthermore, 6, lies in the principal block of J for N C J C NQ@Q. By Gallagher’s
theorem ([10, Corollary 6.17]), write nyg = A, for some A € Irr(NQ/N). Thus 6, = éNy
for y € ). By the uniqueness in Gallagher’s theorem we conclude that

)\y:)\Ny-

Therefore, if h € H, then v(h) = v(hy) = A(hy), and we conclude that vy is a linear
character of H. Thus v is a generalised character of C'; by Brauer’s characterisation of

characters. Now L
Cliv ) = S uewle) = |1,
ceC
and we conclude that v is an irreducible (linear) character of C. Since D C ker v, we may
view v as a character of G/N. We claim that x = nv~! is in the principal block of G. Let
E be a defect group of the block of x. By [15, Thm. 9.26], we have that ENN & Syl (N).
Since xn € Irr(IV), it follows that p does not divide |G : NE|, by [17, Prop. 2.5(d)]. Hence
E € Syl (G), and x lives in a block of maximal defect. By [15, Problem 4.5], it suffices

to show that )\X(K ) = |K|* for every conjugacy class K = 2¢, where z is p-regular and
| K| is not divisible by p. Now,

) =1k (S0) =1t () = st
x(1) (1)
as wanted. The same proof shows that x; is in the principal block of J for every N <
J <G.

Let 8 € Irr(G) with N C ker 3, and consider the corresponding character 3 of G =
G/N. Suppose that v € Irr(G) is such that vy € Irr(N), x € G, and Cgn(zN) = L/N.
Let K = 29 X =2l and Y = (xN)%, be the conjugacy classes of x in GG, L and of xN
in G, respectively. Then, by [17, Lemma 2.2|, we have that

)WB(K) = Ay (X))‘B(}A/) .
Now, since x € Irr(L) lies in the principal block of L, we have that
As(K) = Mga(K) = My (X)A5(Y) = A (X)A5(Y) = Ags(K).
Therefore, we conclude that § and y( lie in the same p-block of G. 0

3. QUASI-SIMPLE GROUPS

In this section we show the “only if” direction of Conjecture A for quasi-simple groups.
The condition of possessing Sylow p- and Sylow g-subgroups for different primes p and
q dividing the order and that commute elementwise is quite restrictive for finite simple
groups. In fact, apart from two “accidents” in sporadic groups, it can only happen in
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groups of Lie type, and only if both Sylow subgroups are abelian, as was already shown
in [2].
We need an easy lemma.

Lemma 3.1. Let G be a finite group, and suppose that Z < Z(G). Let P € Syl (G) and
Q € Syl (G), where p and q are different primes. If [PZ/Z,QZ/Z] =1, then [P,Q] = 1.

Proof. We have that P<PZ. Hence P is characteristic in PZ. Since () normalises PZ,
it follows that @ normalises P. Also, [P, Q] C Z by hypothesis. Hence [P, Q, Q] = 1, and
by coprime action [10, Lemma 4.29], [P, Q] = 1. O

We will deal with the various cases according to the classification of finite simple groups.

Proposition 3.2. Let G be a quasi-simple group such that G/Z(G) is sporadic. Suppose
that p # q are primes dividing |G|. If [P,Q] = 1 for some P € Syl (G) and some
Q € Syl (G), then either G = Jy for {p,q} = {3,5}, or G = Jy for {p,q} = {5,7}.

Proof. This is easily read off from the known character tables [6]. O

Proposition 3.3. Let G be a covering group of an alternating group 2A,, n > 5, and
p < q < n two primes. Then there are no P € Syl,(G) and Q € Syl (G) such that

[P,Q]=1.

Proof. First observe that the exceptional 3- and 6-fold coverings of 2z and A7 satisfy the
conclusion, so we may assume that G is at most a 2-fold cover. Now Sylow 2-subgroups of
2,, n > b, are self-normalising and thus certainly do not centralise other Sylow subgroups.
Clearly this also holds for Sylow 2-subgroups of the covering groups 2.2(,,. Thus we may
assume that p, ¢ # 2. But then, our statement will follow if we prove it for the symmetric
groups G, instead. Let P be a Sylow p-subgroup of G = &,,. Then Cg(P)/Z(P) = &,
where m is the residue of n modulo p. Clearly, this has order prime to any prime ¢ > p,
so indeed there are no examples. O

Thus we are left to consider the quasi-simple groups of Lie type.

Proposition 3.4. Let G be quasi-simple of Lie type in characteristic p. Then the cen-
traliser of a Sylow p-subgroup P of G is Z(P)Z(G). In particular, P does not centralise
a Sylow q-subgroup for q # p.

Proof. This follows immediately from the fact that the centraliser of a regular unipotent
element of GG is an extension of a p-group with the centre of G, see [5, Prop. 5.1.5]. O

In order to study the non-defining primes we introduce the following setup. Let G be
a simple algebraic group of simply connected type over an algebraically closed field of
positive characteristic and F' : G — G a Steinberg endomorphism, with finite group of
fixed points G = GI". Then, as is well-known, S := G/Z(G) is almost always simple, and
moreover the universal covering groups of all but finitely many simple groups of Lie type
are among the groups thus constructed (see, e.g., [9, §6.1]).



BRAUER’S HEIGHT ZERO CONJECTURE FOR TWO PRIMES 5

We start off by characterising the situations in which there exist commuting Sylow
subgroups; this can also be extracted from the proof of [2, Thm. 26|, but we prefer to give
a shorter, more conceptual proof. Note that by Lemma 3.1 we can pass freely between the
various perfect central extensions of a simple group and in particular solve the problem
for just one such extension, for example for the group G as constructed above.

If F'is a Frobenius endomorphism it defines an [, -rational structure on G for some
power r of the characteristic. If F' is not a Frobenius endomorphism we let r be the
absolute value of all eigenvalues of F? on the character group of an F-stable maximal
torus of G; it is an integral power of the characteristic as well.

For a prime p not dividing r we denote by d,(r) the order of » modulo p when p is odd,
respectively the order of r modulo 4 when p = 2, and we set e,(r) := d,(r)/ ged(2, d,(1)).

Proposition 3.5. Let G = G be quasi-simple of Lie type and p # q two prime divisors
of |G| different from the defining characteristic of G. Assume that [P,Q] = 1 for some
P € Syl,(G) and some Q € Syl (G). Then p and q are odd, d := dy(r) = dy(r), P and Q
are abelian and PQ lies in a Sylow d-torus of G.

Proof. We first assume that F' is a Frobenius endomorphism. Let d := d,(r), d' := d,(r).
We may and will assume that d < d’. Now by [14, Thm. 5.9] any g-element g centralising
a Sylow p-subgroup P of G lies in a torus of G centralising a Sylow d-torus S of G. The
centraliser Cg(S) is an F-stable Levi subgroup of G. If G = SL,(r) is a special linear
group then it has the structure

Ca(S) = (r* —1)"/(r —1).GL4(1),

where n = ad 4+ s with 0 < s < d. Since s < d < d’ the order of GL(r) is prime to ¢, so
in fact g lies in the torus of order (r¢ — 1)®/(r — 1). But then necessarily d’ < d, whence
the two are equal. The situation for SU, (r) is entirely similar, with r formally replaced
by —r.

If G is of classical type then set e = e,(r), ¢ = e,(r), and now assume that e < €.

Here we have

Ca(S) = (r° + (=1)")* G(r),
where G has rank n, n = ae+ s with 0 < s < e, and G4(r) is a group of the same classical
type as G but of rank s. As before we see that ¢ must divide 7¢ + (—1)¢ and so d’ = d.
Finally, for groups of exceptional type an easy case-by-case check shows that the same
conclusion holds. So d = d' in all cases.

Now first assume that p, ¢ # 2. Then by [14, Thm. 5.14], apart from very few exceptions
when p = 3, the centraliser of our Sylow p-subgroup P of GG is contained in the normaliser
of a Sylow d-torus S of G. So then @ lies in Cg(S) and thus, by what we showed before,
in a torus containing S. In particular, it is abelian. Interchanging the roles of p, ¢ shows
the same for P. In the three cases with p = 3 and G of rank 2, the claim is easily checked
directly.

If ¢ = 2 then the preceding argument shows that a Sylow 2-subgroup is abelian, but
this never happens in groups G for G simple.
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If G is a covering group of a Suzuki or Ree group then a slight modification of the
previous argument still applies, or alternatively the claim is readily checked from the
well-known Sylow structure of these groups. O

Theorem 3.6. Let G be a finite quasi-simple group, and let p,q be primes. Suppose that
there exist P € Syl (G) and Q € Syl (G) such that [P,Q] = 1. Then q does not divide
the degrees of the irreducible characters in the principal p-block of G.

Proof. Let G be quasi-simple and p # ¢ two primes dividing |G| such that there exists a
Sylow p-subgroup P and a Sylow g-subgroup @ of G with [P, Q] = 1. By Propositions 3.2,
3.3, 3.4 and 3.5 either G = J; or G = Jy, or G is of Lie type and p, ¢ are non-defining
primes. In the first case, the claim is immediate from the known character tables [6].

Now assume that G is of Lie type. By Lemma 3.1 the universal covering group of
S = G/Z(G) satisfies the same assumptions, and clearly it is enough to prove the claim
for it. So assume that G is the universal covering group of S. For the finitely many groups
S with an exceptional Schur multiplier we can again refer to the known character tables
[6]. Thus we have that G = G for some simple algebraic group G of simply connected
type, as above.

First observe that if p is a bad prime for G then it divides at least two distinct cyclotomic
polynomials dividing the order polynomial of G and so the Sylow p-subgroups of G are
non-abelian. So p, ¢ are both good for G, and furthermore they do not divide |Z(G)].
Moreover, by Proposition 3.5 both primes p and ¢ are odd. In this case the principal
p-block of G is described by Cabanes and Enguehard [4]: a character y € Irr(G) lying
in the principal p-block of G must lie in a Lusztig series £(G, s) where s € G* is a p-
element and moreover the Jordan correspondent of x in £(Cg«(s), 1) lies in the principal
d-Harish-Chandra series of Cg«(s), where d = d,(r). Observe that Cg-(s) is connected
as p does not divide |Z(G)|. Thus, ¢4 is the unique cyclotomic polynomial dividing the
order polynomial of G such that p|®4(r). Then x(1) is prime to p if and only if ¢, does
not divide the degree polynomial of x. In particular, these properties of x only depend
on combinatorial data: the rational structure of Cg+(s) and the label of the Jordan
corresponding unipotent character of Cgx(s).

Now choose f =1 (mod d) to be an integer big enough such that

e there exists a Zsigmondy primitive prime divisor £ of ®4(r/) (that is, dy(1/) = d);
and

e for all p- and g-elements s € G* there exists an (-clement §' € G* := G*F' ! having
the same centraliser Cg«(s") = Cg+(s) in G.

Then for x € £(G, s) lying in the principal p-block of G, for some p-element s € G*, there
is an f-element s’ € G and a corresponding character x’ in £(G7, s') lying in the principal
{-block having the same degree polynomial as y. Since dy(r/) = d by assumption, the
Sylow /-subgroups of G’ are also abelian, and then by the proved direction of Brauer’s
height zero conjecture [12, Thm. 1.1], the degree of x’ is not divisible by ¢, thus its degree
polynomial is not divisible by ®; and so the degree polynomial of y is not divisible by
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®,. But then (1) is prime to ¢ as well. Now reversing the roles of p and ¢ we reach our
conclusion. ]

4. THE “ONLY IF” DIRECTION
We can now present the proof of the “only if” direction of Conjecture A .

Theorem 4.1. Let G be a finite group, and let p,q be primes. Suppose that there exists
P € Syl (G) and Q € Syl (G) such that [P,Q] = 1. Then q does not divide the degrees of
the irreducible characters in the principal p-block of G.

Proof. Let x € Irr(B,(G)). We prove that ¢ does not divide x(1) by induction first on
x(1), and then on |G|. By the proved direction of Brauer’s height zero conjecture (see
[12]), we may assume that p and ¢ are different.

Suppose that N4G is a maximal normal subgroup of G, and let 6 € Irr(B,(N)) be
under x. Since PN N € Syl,(N), and QNN € Syl (N), we have that [PNN,QNN] = 1,
and by induction we have that ¢ does not divide §(1). If G/N is a ¢’-group, then x(1)/6(1)
divides |G/N/|, and we are done. So we may assume that g divides |G/N|. Let Py = PNN.
Since [@, Py] = 1, it follows then that N < NCg(Fp). Since G = NNg(Fp) by the Frattini
argument, then we have that G = NCq(F), using that G/N is simple. Now, if r is a
prime different from p, we have that 6 extends to RN, where R € Syl .(G) by the theory
of isomorphic blocks [1]. Hence, if T' = G is the stabiliser of 6 in G, we have that |G : T)|
is a power of p. In particular, TN P € Syl (T') and Q@ C T Let ¢ € Irr(T") be the Clifford
correspondent of x over #. By [15, Cor. 6.2] and the Third Main Theorem [15, Thm. 6.7,
we have that ¢ € Irr(B,(7)). Now, [N P,Q] = 1. If T < G, by induction ¢ does not
divide (1), and therefore ¢ does not divide |G : T'|1)(1) = x(1). Hence, we may assume
that 6 is G-invariant. If G/N is cyclic, then xy = 6, and we are done. So we may assume
that G/N is a non-abelian simple group. Since N was an arbitrary maximal subgroup,
we conclude that G is a perfect group.

Now we use the representation group G of G with respect to 6 (see [16, Sect. 5.3]).
Let 7 : G — G be the canonical epimorphism, with kernel Z C Z(@) Since G/Z has a
commuting Sylow p and ¢-subgroup, so does G by Lemma 3.1. Now N« G and 0 extends
to G (by [16, Thm. 5.6]). Using that in G, we have that (n,1)(g,z) = (ng, 2) for n € N,
g € G and z € Z (by [16, Lemma 5.3(a)]), we readily check that C5(F) = Cq(Fy) x Z,
and that G = N Cs(Fy). By Theorem 2.1, there is an extension 7 € Irr(@) in the principal
block of G. View now X as an irreducible character of G with Z in its kernel. Then x lies
over #, and lies in the principal block of G (because it lies in the principal block of G /7).
By Gallagher, we can write

X = b,
where £ lies in the principal block of G' by Theorem 2.1. If 3(1) < x(1), then ¢ does not

divide 5(1), and therefore we are done (since 7(1) = (1) has ¢-degree). Therefore, we
may assume that x(1) = §(1). Hence 7(1) = (1) = 1. Now, since Oc, (p,) € Irr(Cn(F)),
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by [15, Lemma 6.8(d)] we have that xc,(p,) € Irr(Cg(F)). Since P C Ng(Fy), we have
that |G : Ng(Fy)| is not divisible by p. Then, by [11, Thm. A], xn(p,) is in the principal
block of N¢(Fp). Since Cg(FPy)<Ng(F), we have that xc(p,) is in the principal block.
Since PQ C Ng(Fy) and Cq(Py)<Ng(F), we have that P N Co(Fy) € Syl,(Ca(FR)),
and the hypotheses of the theorem are satisfied in Cs(F). By induction, we deduce that
Py CZ(G). Hence N = Py x K, where K = Oy(N). Since x is in the principal p-block
of G, we have that K C ker y. By [15, Thm. 9.9(c)], x € Irr(G/K) lies in the principal
p-block of G/K, and since PK/K and QK/K commute, we may assume that K = 1,
by induction. Thus N C Z(G), G is perfect, and G/N is a simple group, whence the
assertion follows from Theorem 3.6. 0

5. THE “IF” DIRECTION

In this section we show that the “if” direction of Conjecture A is true if we assume the
inductive Alperin—-McKay condition.

We start off with the case of simple groups:

Theorem 5.1. Let G be non-abelian simple and assume that [P, Q] # 1 for every P €
Syl,(G) and Q € Syl (G). Then, up to interchanging p and q, the principal p-block of G
contains an irreducible character of degree divisible by q.

Proof. If p = ¢ then the claim is a special case of the main result of Kessar-Malle [13].
So we may and will assume for the rest of the proof that the two primes p, ¢ are different.

The sporadic groups and the Tits group can easily be checked from the known character
tables [6]. The alternating groups, which probably constitute the most involved case, had
already been handled by Giannelli-Malle-Vallejo [8, Thm. 3.5].

Now assume that G is simple of Lie type. Let p be the defining prime for G and let
q # p. The principal p-block of G contains all irreducible characters of G except the
Steinberg character. By the Ito-Michler theorem [16, Thm. 7.1] there is x € Irr(G) of
positive g-height, and this cannot be the Steinberg character, as the latter has degree a
power of p. Thus x lies in the principal p-block of G and we are done.

Finally assume that G is of Lie type and neither p nor ¢ are equal to the defining char-
acteristic of G, and such that a Sylow p-subgroup of GG centralises no Sylow ¢-subgroup.
We claim that the principal p-block of G contains an irreducible character y of degree
divisible by g. Observe that the hypotheses are also satisfied for any covering group of G.
Thus we will assume that G = G* for a simple algebraic group G of simply connected
type and F' : G — G a Steinberg endomorphism. We let G* denote a group dual to G
with corresponding Steinberg endomorphism also denoted F, and set G* = G*F'.

Now note that our condition for commuting Sylow subgroups is purely combinatorial,
only in terms of the order of the underlying field size » modulo p and modulo ¢. Let
G.aa be a group of adjoint type but same root system as G, with dual G};. Since G,
G.q and G}, have identical order polynomials, it follows that this condition is satisfied
for G if and only if it is satisfied for G7; := G:J. Thus, no Sylow p-subgroup of G,
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centralises a Sylow g-subgroup of G},. Now note that there is a morphism with central
kernel G%; — [G*,G*], and so by Lemma 3.1 the same holds for [G*, G*|. Then by the
main result of [2], there is a p-element s € [G*, G*] whose centraliser Cg+(s) does not
contain a Sylow g¢-subgroup of G*. But then by Lusztig’s Jordan decomposition any
semisimple character x in £(G, s) has degree divisible by ¢, and as s € [G*, G*], it has
Z(G*) in its kernel. Since s is a p-element, y lies in a unipotent p-block of G. Moreover,
by the description of unipotent blocks in [4, 7], x being semisimple implies that it is even
contained in the principal p-block. The proof is complete. 0

Theorem 5.2. Let p and q be different primes. Assume that the Inductive Alperin—
McKay condition holds for the principal blocks of non-abelian simple groups. Suppose
that p does not divide the degrees of the irreducible characters in By(G), and q does not
divide the degrees of the irreducible characters in B,(G). Then there are P € Syl (G) and
Q € Syl,(G) such that [P, Q] = 1.

Proof. We argue by induction on |G|. The case of non-abelian simple groups holds by
Theorem 5.1. We notice that the hypotheses are clearly inherited by factor groups and
normal subgroups. Indeed, if NaG, we know that B,(G/N) C B,(G) (see the remark
before Theorem 7.6 of [15]). Also, since every 6 € B,(N) lies over some x € B,(G) by
[15, Thm. 9.4], it easily follows that normal subgroups also satisfy the hypotheses.

Let N be a maximal proper normal subgroup of . By induction, there are Fy € Syl (N)
and Qo € Syl,(N) such that [P, Qo] = 1. We have that G = NN¢g(F) = NNg(Qo), by
the Frattini argument.

Suppose first that G/N is a g-group. In this case, P = P € Syl,(G). Since [Qo, P] = 1,
we have that |N : Ny(P)| is not divisible by ¢. Since G = NNg(P), we have that
|G : Ng(P)| is not divisible by ¢. Hence, there is @ € Syl (G) that normalises P. Let
K = 0, (Ny(P)). Since [Qo, P] = 1, we have that Qg C Cn(P) = Z(P) x K (using the
Schur—Zassenhaus theorem). Hence Qg C K and Ny (P)/K is a ¢-group. Now, by using
the hypothesis, we show that the irreducible characters of p’-degree of the principal p-block
of N are Q-invariant. Indeed, if 6 € Irr(B,(N)), then 6 lies under some x € Irr(B,(G)).
Since ¢ does not divide x(1), it follows that yy = 6 by [16, Thm. 5.12]. By [17, Thm. B|
(which assumes that the Inductive Alperin-McKay condition holds), we have that all of
the irreducible characters of p/-degree in the principal p-block of N (P) are Q-invariant.
Using [15, Thm. 10.20], we conclude that all the irreducible characters of Ny (P)/P'K
are Q-invariant. Since this is a ¢’-group, by [16, Thm. 2.4], the group @ acts trivially on
Ny (P)/P' K. In particular, () acts trivially on P/P’. Again by coprime action (use for
instance [10, Lemma 4.28] and the fact that P’ C ®(P)), it follows that @ acts trivially
on P, and we are done in this case. The same happens if G/N is a p-group.

Let C' = Cg(F). We claim that G = NC. Let M = NC. Notice that M<G since
G = NNg(F). By [18, Lemma 3.1], the principal p-block of G is the unique p-block
covering the principal p-block of M. Hence, if § € Irr(G/M), then 6 belongs to the
principal p-block of G. By hypothesis, ¢ does not divide #(1). Thus, if @ € Syl (&), then
it follows that @M< G by the Ito-Michler theorem [16, Thm. 7.1]. Assume that M < G.



10 GUNTER MALLE AND GABRIEL NAVARRO

Then M = N and G/N has a normal Sylow g-subgroup. Since G/N cannot be a g-group
by the claim in the third paragraph, we have that G//N is a ¢’-group. Thus Qo € Syl (G).
Suppose that Cg(Qo) C N. Again by [18, Lemma 3.1], the principal ¢-block of G is the
unique g-block covering the principal g-block of N. If § € Irr(G/N), then 6 belongs to
the principal g-block of G. By hypothesis, p does not divide 6(1). Thus, if P € Syl,(G),
then it follows that PN< G by the Ito-Michler theorem [16, Thm. 7.1]. Since G/N cannot
be a p-group, then it follows that G//N is a p’-group. In this case Fy € Syl (G), and we
are done since [Py, Qo] = 1. Therefore we have that G = NCg(Qy). Since [Py, Qo] = 1,
we have that |V : Cy(Qo)| is not divisible by p. Therefore |G : C5(Qo)| is not divisible
by p. This means that there is some Sylow p-subgroup of GG that centralizes (g, and this
proves the theorem. Hence, we conclude that M = G. That is, G = NCg(F,). By the
same argument, we have that G = NCg(Qo)-

By Wielandt’s theorem on nilpotent Hall m-subgroups of finite groups, and the Frattini
argument, we have that G = NNg(PyQp). Also, notice that Ng(FPyQo) = Ng(Fy) N
N¢(Qo). This is because if € Ng(PyQo), then PyQf = PyQo, and therefore Py = P
and Qf = Qo. Now, |G : Cg(Py)| = |N : Cn(Fp)] is not divisible by g. Therefore Cg(FP)
contains a Sylow g-subgroup of G. Since Qg C Cg(Fp), thereis Qy C Q C Cg(Fp) a Sylow
g-subgroup of G. Furthermore, since () is a ¢g-Sylow of the normal subgroup Cy(F,) of
Cqg(Fy), we have that @ N Cy(Fy) = Qo. In particular, Qp< @, and ) normalises Q).
Hence Q € N¢(FPoQo). In the same way, we choose P € Syl (G) such that P C Cg(Qo),
P0<1 P. Again P C Ng(PoQo).

Now, since G/N = N¢g(FPoQo)/Nn(PyQo), we have that N (FPoQo)/Nn(FyQo) has a
nilpotent {p, ¢}-Hall subgroup R/Ny(FyQo). By the Schur-Zassenhaus theorem applied
in the group R/FPyQo, we deduce that R has a Hall {p, ¢}-subgroup S, which therefore
is a Hall {p, ¢}-subgroup of Ng(FyQo). Hence there are P, € Syl (Ng(FoQo)) and Q; €
Syl,(Nea(PoQo)) such that S = P1Q;. Choose z,y € Ng(FoQo) such that P, = P* and
Q1 = QY. Since z,y € Ng(FPy) N Ng(Qop), we have

PP, [P,Qo) =1, Q<@ and [Qy,F]=1.

Now @1 normalises P1Qy/PyQo. Then @1 normalises Py = P; X Qy. Thus () normalises
P;. Since )y centralises P1Qo/PyQo it follows that ()1 centralises P;/P,. Therefore
[P, Q1] C Py and [P, Q1, Q1] = 1. Hence [Py, Q1] = 1, as desired. O
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