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Abstract. We investigate positive-dimensional closed reductive subgroups of almost
simple algebraic groups containing a regular unipotent element. Our main result states
that such subgroups do not lie inside proper parabolic subgroups unless possibly when
their connected component is a torus. This extends the earlier result of Testerman and
Zalesski treating connected reductive subgroups.

1. Introduction

Let G be a simple linear algebraic group defined over an algebraically closed field.
The regular unipotent elements of G are those whose centraliser has minimal possible
dimension (the rank of G) and these form a single conjugacy class which is dense in
the variety of unipotent elements of G. The main result of our paper is a contribution
to the study of positive-dimensional subgroups of G which meet the class of regular
unipotent elements. Since any parabolic subgroup must contain representatives from
every unipotent conjugacy class, the question arises only for reductive, not necessarily
connected subgroups, where we establish the following:

Theorem 1. Let G be a simple linear algebraic group over an algebraically closed field,
X ≤ G a closed reductive subgroup containing a regular unipotent element of G. If
[X◦, X◦] 6= 1, then X lies in no proper parabolic subgroup of G.

In addition, we show that for many simple groups G, there exists a closed reductive
subgroup X ≤ G with X◦ 6= 1 a torus and such that X meets the class of regular
unipotent elements of G. (See Proposition 7.2 and Examples 7.7, 7.11.) Finally, we go
on to consider subgroups of non-simple almost simple algebraic groups G where there is a
well-defined notion of regular unipotent elements in unipotent cosets of G◦. We establish
the corresponding result in this setting; see Corollary 6.2.
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The investigation of the possible overgroups of regular unipotent elements in simple
linear algebraic groups has a long history. The maximal closed positive-dimensional re-
ductive subgroups of G which meet the class of regular unipotent elements were classified
by Saxl and Seitz [17] in 1997. In earlier work, see [21, Thm 1.9], Suprunenko obtained
a particular case of their result. In order to derive from the Saxl–Seitz classification an
inductive description of all closed positive-dimensional reductive subgroups X ≤ G con-
taining regular unipotent elements, one needs to exclude that any of these can lie in proper
parabolic subgroups. For connected X this was shown by Testerman and Zalesski in [22,
Thm 1.2] in 2013. They then went on to determine all connected reductive subgroups of
simple algebraic groups which meet the class of regular unipotent elements. Our result
generalises [22, Thm 1.2] to the disconnected case and thus makes the inductive approach
possible. It is worth pointing out that the analogous result is no longer true even for
simple subgroups once one relaxes the condition of positive-dimensionality. For example,
there exist reducible indecomposable representations of the group PSL2(p) whose image
in the corresponding SL(V ) contains a matrix with a single Jordan block, i.e., the image
meets the class of regular unipotent elements in SL(V ). In [3], Burness and Testerman
consider PSL2(p)-subgroups of exceptional type simple algebraic groups which meet the
class of regular unipotent elements and show that with the exception of two precise con-
figurations, such a subgroup does not lie in a proper parabolic subgroup of G (see [3,
Thms 1 and 2]).

Our proof of Theorem 1 relies on the result of Testerman–Zalesski [22] in the connected
case, which actually implies our theorem in characteristic 0 (see Remark 2.1) as well as
on results of Saxl–Seitz [17] classifying almost simple irreducible and tensor indecompos-
able subgroups of classical groups containing regular unipotent elements and maximal
reductive subgroups in exceptional groups with this property. For the exceptional groups
we also use information on centralisers of unipotent elements and detailed knowledge of
Jordan block sizes of unipotent elements acting on small modules, as found in Lawther [6].
For establishing the existence of positive-dimensional reductive subgroups X ≤ G, with
X◦ a torus, and X meeting the class of regular unipotent elements, we produce subgroups
which centralise a non-trivial unipotent element and hence necessarily lie in a proper
parabolic subgroup of G. (See [15, Thm 17.10, Cor. 17.15].)

After collecting some useful preliminary results we deal with the case of G = SL(V ) in
Section 3, with the orthogonal case in Section 4, and with the simple groups of exceptional
type in Section 5. The case of almost simple groups is deduced from the connected case
in Corollary 6.2. Finally, in Section 7 we discuss the case when X◦ is a torus.

Acknowledgements: This work was motivated in part by a question which Jay Taylor
raised after a talk by the second author in Pisa. In addition, we acknowledge having had
several useful conservations on cohomology with Steve Donkin, Jacques Thévenaz and
Adam Thomas, and thank Thomas, Mikko Korhonen and David Craven for their careful
reading of and comments on an earlier version, and David for spotting a gap in a proof.

2. Preliminary results

In this paper we consider almost simple algebraic groups defined over an algebraically
closed field k of characteristic p ≥ 0 and investigate closed positive-dimensional subgroups
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that contain a regular unipotent element. For us, throughout “algebraic group” will mean
“linear algebraic group”, and all vector spaces will be finite-dimensional vector spaces over
k. An algebraic group G is called an almost simple algebraic group if G◦ is simple and
G/Z(G◦) embeds into Aut(G◦). Thus, G is an extension of G◦ by a subgroup of its
group of graph automorphisms (see, e.g., [15, Thm 11.11]). As a matter of convention,
a “reductive subgroup” of an algebraic group will always mean a closed subgroup whose
unipotent radical is trivial. In particular, a reductive group may be disconnected. For an
algebraic group H, we write Ru(H) to denote the unipotent radical of H. Throughout, all
kG-modules are rational, as are all extensions, and cohomology groups are those associated
to rational cocycles.

Let us point out that for the question treated here, the precise isogeny type of the
ambient simple algebraic group G◦ will not matter, as isogenies preserve parabolic sub-
groups as well as regular unipotent elements. (If G is almost simple and p does not divide
the order of the fundamental group of G◦, the natural map G → G/Z(G◦) induces an
isogeny of G◦ onto its adjoint quotient, preserving regular unipotent elements in G; in the
general case, a reduction to G◦ of adjoint type is given in [18, I.1.7].) In particular, for
G a classical type simple algebraic group we will argue for the groups SL(V ), Sp(V ) and
SO(V ), and for the groups of type Bl and Cl defined over k of characteristic 2, we may
choose to work with whichever group is more convenient under the given circumstances.

We start by making two useful observations which will simplify the later analysis.

Remark 2.1. In the situation of Theorem 1, assume that p = 0. As |X : X◦| is finite,
some power of a regular unipotent element u ∈ X will lie in X◦. In characteristic 0 any
power of a regular unipotent element is again regular unipotent, so here we are thus re-
duced to studying the connected reductive subgroup X◦ satisfying the same assumptions.
In that case, the conclusion of Theorem 1 was established in [22, Thm 1.2]. Hence, in
proving Theorem 1 we may assume p > 0 whenever convenient. Furthermore, we will
assume without loss of generality that X = X◦〈u〉.

Remark 2.2. Let X = X◦〈u〉 be a reductive subgroup of a connected reductive group
G such that u is regular unipotent in G and [X◦, X◦] 6= 1. Let X1 be one of the simple

components of [X◦, X◦] and set H := 〈X1, u〉. Then H◦ =
∏

iX
ui

1 , so 〈u〉 acts transitively
on the set of simple components of H◦, and if X lies in a proper parabolic subgroup of G,
then so does H. Thus, when proving Theorem 1 we may as well assume that the simple
components of X◦ are permuted transitively by u.

2.1. Jordan forms and tensor products. The following elementary fact will be used
throughout (see also [17, Lemma 1.3(i)]):

Lemma 2.3. Assume that p > 0 and let u ∈ SL(V ) be unipotent with a single Jordan
block. Write dimV = ap+ b with 0 ≤ b < p. Then up has p Jordan blocks, b of size a+ 1
and the other p− b of size a.

Lemma 2.4. Let u ∈ SL(V ) be a unipotent element with a single Jordan block of size n =
dimV , or with two Jordan blocks of sizes n − 1, 1 or n − 2, 2. If u preserves the factors
in a non-trivial tensor product decomposition of V then dimV = 4 and u has two Jordan
blocks on V . If p = 2 these are of sizes 2, 2.
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Proof. Using the description of Jordan block sizes of unipotent elements in tensor products
given in [17, Lemma 1.5] we see that necessarily dimV = 4 and either u has Jordan block
sizes 2, 2, or p 6= 2 and u has Jordan block sizes 3, 1, as claimed. �

Before establishing a useful consequence of Lemma 2.4, we recall the following well-
known Clifford-theoretic result, see, e.g., [2, Prop. 2.6.2]:

Lemma 2.5. Let N EH be groups with H/N finite cyclic and V be a finite-dimensional
irreducible kH-module. Then V |N =

⊕
g U

g, where U is any irreducible kN-submodule of
V and g runs over a system of coset representatives of the stabiliser of U in H. Moreover,
the U g are pairwise non-isomorphic kN-modules.

We now show the desired corollary of Lemma 2.4:

Lemma 2.6. Let H ≤ SL(V ) be connected reductive with non-trivial derived subgroup
and assume that V |H is completely reducible and homogeneous. If H is normalised by a
unipotent element u ∈ SL(V ) with a single Jordan block of size n = dimV , or with two
Jordan blocks of sizes n − 1, 1 or n − 2, 2 then either V is an irreducible H-module, or
dimV = 4, H〈u〉 preserves a non-trivial tensor product decomposition of V , and u has
two Jordan blocks on V , of sizes 2, 2 if p = 2.

Proof. Let u ∈ SL(V ) be the unipotent element normalising H as in the assumption. Let
V1 ≤ V be an irreducible H〈u〉-submodule of V . As V is homogeneous as an H-module,
Lemma 2.5 shows that V1|H is irreducible. Since [H,H] 6= 1, we have dimV1 > 1. Then
with W = HomH(V1, V ) we have V ∼= V1 ⊗W as an H-module, and this decomposition
is stabilised by u (see e.g. [15, Prop. 18.1]). Applying Lemma 2.4, this implies that either
dimW = 1, whence V = V1 is irreducible for H, or we are in the exceptional case of that
result, as in the conclusion. �

The proof of the next result is modelled after the proof of [17, Prop. 2.1] which treats
a more special situation:

Lemma 2.7. Assume p > 0 and let X = X◦〈u〉 ≤ SL(V ) be a reductive subgroup and
u ∈ SL(V ) a unipotent element with a single Jordan block of size n := dimV > 1, or with
two Jordan blocks of sizes n − 1, 1 or n − 2, 2. If X◦ acts irreducibly on V , then either
[X◦, X◦] is simple, or one of the following holds:

(1) dimV = 4, X preserves a non-trivial tensor decomposition of V and u has two Jordan
blocks on V . If p = 2 these are of size 2, 2;

(2) p ∈ {2, 3}, V = V1⊗· · ·⊗Vp as an X◦-module with dimVi = 2, [X◦, X◦] = Ap1, u per-
mutes both sets of factors transitively and has a single Jordan block on V . Moreover,
up has a single Jordan block on each Vi; or

(3) p = 2, V = V1 ⊗ V2 as an X◦-module with dimVi = 3, u has Jordan blocks of sizes
8, 1 on V and u2 has a single Jordan block on each Vi.

Here, in (2) and (3), X does not preserve the stated tensor product decomposition of V .

Proof. Note that [X◦, X◦] 6= 1 as dimV > 1 and X◦ acts irreducibly. Write [X◦, X◦] =
X1 · · ·Xs with simple algebraic groups Xi, so V = V1⊗· · ·⊗Vs with non-trivial irreducible
Xi-modules Vi. Now u permutes the factors Xi and their corresponding tensor factors Vi.
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Assume that s > 1. If u has at least two orbits on the set of Xi, this yields a corresponding
u-invariant tensor decomposition of V . By Lemma 2.4 we reach case (1).

Henceforth, we may assume that u permutes the Xi, and thus the Vi, transitively. In
particular all Vi have the same dimension m, that is, dimV = ms, and s =: pa > 1 is
a power of p. Let b be minimal with pb ≥ m. Now, up

a
stabilises all Vi, so is a tensor

product of matrices of size m and thus of order at most pb. Hence |u| divides pa+b. On
the other hand,

pa+b ≥ |u| ≥ dimV − 2 = ms − 2 = mpa − 2 > p(b−1)pa − 2.

The above conditions imply that either a = b = 1, m = 2 and s = p ≤ 3, or a = 1,
b = s = p = 2 and m = 3.

In the first case, dimV = ms = 2p, p ≤ 3, and as m = 2 all simple factors Xi of
[X◦, X◦] must have type A1, as in (2). The statement about the Jordan form of u follows
from Lemma 2.3.

In the second case we have dimV = 9, and our inequalities force that |u| = 8 and
hence u has Jordan blocks of sizes 8, 1 or 7, 2 and by Lemma 2.3, u2 has Jordan blocks
of sizes 4, 4, 1, respectively 4, 3, 1, 1. The latter cannot arise as the block sizes of a tensor
product of two 3× 3 unipotent matrices by [17, Lemma 1.5], so we are in the former case
and u2 has a single Jordan block on each Vi, as in (3). �

2.2. On subgroups containing regular unipotent elements. For connected groups,
the following result from [22, Lemma 2.6] will be useful:

Lemma 2.8. Let G be connected reductive, P ≤ G a parabolic subgroup with Levi comple-
ment L and assume that u ∈ P is regular unipotent in G. Then the image of u is regular
unipotent in L and hence in each simple factor of [L,L].

Lemma 2.9. Let G be simple and H ≤ G be a connected reductive subgroup normalised
by a regular unipotent element u of G. Assume that H = Y1 ◦ Y2 is a central product
with Y1 6= 1 such that u acts by an inner automorphism on Y1. Then Y1 = H contains a
regular unipotent element of G.

Proof. By assumption, u acts as an inner automorphism on Y1, say by z ∈ Y1. Thus, uz−1

and Y2 are contained in CH(Y1) and so u ∈ H〈u〉 = (Y1Y2)〈u〉 ≤ Y1 ◦ CH(Y1). But then
[22, Prop. 2.3] implies that Y2 = 1. Now u = z ·uz−1 is regular unipotent. Replacing uz−1

and z by their unipotent parts respectively, we may assume both to be unipotent and
lying in a common Borel subgroup of G. As uz−1 centralises Y1 and thus isn’t regular,
z ∈ Y1 must be regular by [22, Lemma 2.4]. �

Lemma 2.10. Let G be simple and H < G a connected reductive subgroup containing a
regular unipotent element u of G. Then u is regular in H.

Proof. Let B < H be a Borel subgroup of H containing u. Assume u is not regular
unipotent in H. By [19, Ch. III, 1.13] it may be written as a product of root elements

u =
∏
α

uα(1)
∏
β

uβ(cβ) for suitable cβ ∈ k,

where the first product runs over a proper subset of the simple roots of the root system
Φ of H with respect to the pair (T,B) where T < B is some maximal torus, and the



6 GUNTER MALLE AND DONNA M. TESTERMAN

second one over the roots in Φ+ of height at least 2. Thus, u lies in the unipotent radical
of the parabolic subgroup of H whose Levi factor is generated by the root subgroups for
the simple roots not occurring in the representation of u and their negatives, which thus
is not a torus.

By Borel–Tits, u then also lies in the unipotent radical of a proper parabolic subgroup
P of G with non-toral Levi factor. But then, when writing u as a product of root elements
for G with respect to a Borel subgroup contained in P , not all simple roots can occur,
whence u is not regular in G. This contradiction achieves the proof. �

We will make frequent use of the following result, the second part of which was essen-
tially shown by Saxl and Seitz [17, Prop. 2.2]:

Proposition 2.11. Let X = X◦〈u〉 be a reductive subgroup of the simple classical group
G = SL(V ), Sp(V ) or SO(V ) with X◦ simple and irreducible on V , where dimV ≥ 7
when G is of orthogonal type. If X contains a regular unipotent element u of G, then X◦

acts tensor indecomposably on V .
Furthermore, either X = B3 < G = D4, or X and the highest weight of X◦ on V are

as in Table 1 (up to Frobenius twists and taking duals) and u has a single Jordan block.

Table 1. Simple modules with regular unipotent elements

X λ dimV cond. |u|
A1 m$1 m+ 1 m < p p
Al $1 l + 1 l > 1 < p(l + 1)
Bl $1 2l + 1 p > 2 < p(2l + 1)
Cl $1 2l < 2pl
G2 $1 7 p > 2 ≤ p2

G2 $1 6 p = 2 8
A2.2 $1 +$2 8 p = 2 8
Dl.2 $1 2l p = 2, l ≥ 3 < 4l

The last column records (an upper bound for)
the order of a regular unipotent element u ∈ X.

Proof. Assume that V = V1 ⊗ V2 for non-trivial irreducible X◦-modules Vi. If X = X◦,
then Lemma 2.4 gives that dimV = 4 and G = D2, but this is not simple. If some power
uj acts as an inner element y on X◦, then ujy−1 = z ∈ X centralises X◦, hence, as X◦ is
irreducible, we must have that uj equals the unipotent part of y and so lies in X◦. So now
we may assume that u /∈ X◦ and hence X = Al.2 (l ≥ 2), Dl.2 (l ≥ 4) or E6.2, with p = 2,
or X = D4.3 and p = 3. Unipotent elements in X = E6.2 have order at most 32, but there
is no faithful representation of X of dimension less than 54 (the 27-dimensional modules
for E6 are not invariant under the graph automorphism). Thus X◦ is of classical type.
Let d denote the dimension of its natural module. Then, e.g., by [12, Tab. 2] we have
dimVi ≥ d, so dimV ≥ d2, but unipotent elements of X have order less than p2d. Thus
d < p2. Note that D4 with p = 3 cannot occur, as here unipotent elements have order at
most 27 < d2 − 2 = 62. This only leaves the possibility X◦ = A2, p = 2, and dimV = 9.
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But there is no 9-dimensional irreducible orthogonal module in characteristic 2, so in fact
V must be tensor indecomposable for X◦. The remaining assertions are now shown in
[17, Prop. 2.2]. �

We will obtain a similar classification for unipotent elements in SL(V ) with a Jordan
block of size dimV − 1 when p = 2 in Proposition 4.1.

2.3. Jordan forms and orders of regular unipotent elements. While the notion of
regular unipotent element is well known for connected reductive groups, this is much less
so for non-connected reductive groups. Still, similar results hold.

Let G be a not necessarily connected reductive algebraic group and let x ∈ G be
unipotent. Spaltenstein [18, p. 41 and II.10.1] has shown (generalising a result of Steinberg
in the connected case) that the coset xG◦ of the connected component G◦ contains a
unipotent G◦-conjugacy class C that is dense in the variety of unipotent elements of xG◦,
called the class of regular unipotent elements of xG◦. Since this variety is irreducible [18,
Cor. I.1.6], C is also the unique class of unipotent elements in xG◦ of maximal dimension.

We now describe the Jordan block structure of regular unipotent elements in classical
type almost simple groups on their natural representation. For us, the natural represen-
tation for the extension Al−1.2 of Al−1, l ≥ 3, by its graph automorphism of order 2 is
defined by its embedding into the stabiliser in GO2l of a pair of complementary totally
singular subspaces, with Al−1 acting in its natural representation, respectively its dual,
on these subspaces. We do not consider D4.3 or D4.S3 as being of classical type.

Lemma 2.12. Let G = G◦〈u〉 be almost simple of classical type with u regular unipotent
in uG◦. Then in the natural representation of G:

(a) u has a single Jordan block for G = Al, Bl (when p 6= 2), Cl, and for G = Dl.2 when
p = 2;

(b) u has two Jordan blocks of sizes 2l, 1 when p = 2 for G = Bl;
(c) u has two Jordan blocks of sizes 2l − 1, 1 when p 6= 2, respectively of sizes 2l − 2, 2

when p = 2 for G = Dl;
(d) u has a single Jordan block of size 2l when p = 2 for G = Al−1.2 with l odd; and
(e) u has two Jordan blocks of sizes 2l − 2, 2 when p = 2 for G = Al−1.2 with l even.

Proof. Only (d) and (e) are not shown in [17, Lemma 1.2]. Spaltenstein [18, I.2.7, I.2.8(c)]
gives a description of the unipotent classes in Al−1.2 \Al−1 in terms of the Jordan normal
form of the square of the elements on the natural Al−1-module, and a formula for the
centraliser dimension. From this it can be seen that elements u with minimal centraliser
dimension are those for which u2 has one Jordan block of size l if l is odd, and two blocks
of sizes l− 1, 1 if l is even. Thus, in the natural 2l-dimensional orthogonal representation
of Al−1.2, the element u2 has two Jordan blocks of size l, respectively four of sizes l −
1, l − 1, 1, 1. Given the possible Jordan block shapes of unipotent elements in Dl.2 in its
natural representation [18, I.2.6], the claim for u follows with Lemma 2.3. �

Since the natural representations are faithful, the above result also allows one to read
off the orders of regular unipotent elements of almost simple classical groups.
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2.4. Some results on extensions. We conclude this preparatory section by collecting
some basic properties on Ext-groups. We state the following well-known result for future
reference (see [24, Prop. 3.3.4]).

Lemma 2.13. Let H be a group, and Vi, Uj with 1 ≤ i ≤ n, 1 ≤ j ≤ m, be kH-modules.
Then

Ext1
H(
⊕
i

Vi,
⊕
j

Uj) ∼=
⊕
i,j

Ext1
H(Vi, Uj).

We thank Jacques Thévenaz for pointing out the following result:

Lemma 2.14. Let k be a field, N E H be groups and U, V two finite-dimensional kH-
modules on which N acts trivially. Assume that Ext1

N(k, k) = 0. Then Ext1
H/N(U, V ) ∼=

Ext1
H(U, V ).

Proof. We use the (exact) inflation-restriction sequence for cohomology (see [24, 6.8.3])
for a kH-module M :

0→ H1(H/N,MN)
inf−→ H1(H,M)

res−→ H1(N,M)H/N → . . .

which by [24, 6.1.2] can be interpreted as the Ext-sequence

0→ Ext1
H/N(k,MN)→ Ext1

H(k,M)→ Ext1
N(k,M)H/N → . . . .

Applying this with M = U∗⊗V and using Ext1(k, U∗⊗V ) ∼= Ext1(U, V ) (see [1, Cor. 1])
the previous sequence becomes

0→ Ext1
H/N(k, (U∗ ⊗ V )N)→ Ext1

H(U, V )→ Ext1
N(U, V )H/N → . . . .

As N acts trivially on U and V , the first term equals Ext1
H/N(k, U∗⊗V ) ∼= Ext1

H/N(U, V ),

while the third is Ext1
N(kdimU , kdimV )H/N = 0 by our hypothesis on Ext1

N(k, k) and
Lemma 2.13, whence exactness of the sequence implies our claim. �

Lemma 2.15. (a) Let H be a semisimple algebraic group. Then there are no non-
trivial self-extensions between irreducible H-modules.

(b) Let H1 ◦H2 be a semisimple group acting on V1 ⊕ V2, with Hi acting trivially on
V3−i. Then

H1(H1H2, V1 ⊕ V2) ∼= H1(H1, V1)⊕H1(H2, V2).

Proof. Part (a) is [4, II.2.12(1)]. In (b) by Lemma 2.13 we have

H1(H1H2, V1 ⊕ V2) ∼= H1(H1H2, V1)⊕H1(H1H2, V2).

As H2 acts trivially on V1, the first summand is isomorphic to

H1(H1/(H1 ∩H2), V1) ∼= H1(H1, V1)

by two applications of Lemma 2.14, and similarly for the second summand. �



REGULAR UNIPOTENT ELEMENTS 9

3. The case of SL(V )

In this section we prove Theorem 1 for those classical type simple algebraic groups
for which regular unipotent elements have a single Jordan block on their natural module
(see Lemma 2.12). We are in the following situation: X ≤ SL(V ) is a (not necessarily
connected) reductive subgroup of the form X = X◦〈u〉 for a regular unipotent element u of
SL(V ). We also assume that X◦ is not a torus; this case will be considered in Section 7.1.
We will show that X cannot be contained in a proper parabolic subgroup of SL(V ), that
is, X acts irreducibly on V . For this, we may whenever convenient, assume that X◦ is
semisimple, since if [X◦, X◦]〈u〉 is not contained in a proper parabolic subgroup of SL(V )
then neither is X◦〈u〉. As u has a single Jordan block on V , if V1 < V2 ≤ V are u-invariant
subspaces, then u has a single Jordan block on V2/V1.

3.1. The completely reducible case. We first deal with the case when V is completely
reducible for X◦.

Lemma 3.1. Let X ≤ SL(V ) be a reductive subgroup of the form X = X◦〈u〉 for a
regular unipotent element u of SL(V ), such that X◦ is not a torus. Assume that V |X◦ is
completely reducible. Then V is an irreducible X-module.

Proof. Decompose V |X◦ = V1 ⊕ · · · ⊕ Vm into its homogeneous components Vi. Then
〈u〉 acts on the set of components, transitively since otherwise we obtain a u-invariant
decomposition of V , contradicting regularity of u. Thus v := um stabilises each component
Vi, acting as a single Jordan block on it by Lemma 2.3, and Vi is homogeneous as an X◦-
module. Since X◦ is not a torus, Lemma 2.6 implies that Vi is an irreducible X◦-module.
As the Vi are permuted transitively by u, the module V is irreducible for X. �

In view of Lemma 3.1, it seems interesting to determine the structure of irreducible
subgroups containing regular unipotent elements.

Proposition 3.2. Assume p > 0. Let X ≤ SL(V ) be a reductive subgroup of the form
X = X◦〈u〉 for a regular unipotent element u of SL(V ), such that X◦ 6= 1 is semisimple.
Assume that X acts irreducibly on V . Then

• V |X◦ = V1 ⊕ · · · ⊕ Vm for submodules Vi, transitively permuted by u, on which um acts
with a single Jordan block; and
• X◦ = Y1 · · ·Yr for distinct semisimple normal subgroups Y1, . . . , Yr transitively permuted

by u, with r | m, where Yi acts trivially on Vj for j 6≡ i (mod r), and in addition one
of the following holds:
(1) the Yi are isomorphic simple algebraic groups and Vi is an irreducible tensor inde-

composable Yi (mod r)-module, for 1 ≤ i ≤ m; if r < m then p = 2, Yi = Al for some
l ≥ 2, dimVi = l + 1 and m = 2r; or

(2) p ∈ {2, 3}, m = r, Yi = Ap1 for all i, with um permuting the p factors transitively,
and each Vi, as a Yi-module, is a tensor product of p irreducible 2-dimensional
A1-modules.

Proof. As V is irreducible for X, by Lemma 2.5, V |X◦ = V1 ⊕ · · · ⊕ Vm is a direct sum of
non-isomorphic irreducible X◦-modules permuted transitively by u, with u(Vi) = Vi+1 for
all i. Thus um stabilises each Vi and acts with a single Jordan block on it by Lemma 2.3.
The semisimple group X◦ is a product of simple normal subgroups. Let Y1 denote the
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product of those simple factors of X◦ acting non-trivially on V1. By Lemma 2.7 applied
to Y1〈um〉 acting on V1, either Y1 is simple, and then it acts tensor indecomposably on V1

by Proposition 2.11; or p ∈ {2, 3}, Y1 = Ap1, um permutes the p factors transitively, and
V1 is a tensor product of p irreducible 2-dimensional A1-modules.

Now Yi+1 := Y u−i

1 acts non-trivially on ui(V1) = Vi+1 for i = 1, . . . ,m− 1. Thus X◦ is
generated by, and hence equal to the product of the Yi, which are permuted transitively
by u. Since each Yi is an orbit of um on the set of simple factors of X◦, these sets are
mutually disjoint. Let ur be the smallest power of u stabilising Y1. Then X◦ = Y1 · · ·Yr
and r | m.

Assume Yi is simple and r 6= m. As ur normalises Y1 but does not stabilise V1, it must
act as an outer automorphism of the simple group Y1. So p ∈ {2, 3} and moreover, urp

acts as an inner automorphism on Y1 and stabilises the Y1-module V1. So urp ≤ 〈um〉,
and as r | m this implies that m = rp. By Proposition 2.11 the group Y1〈um〉 acting on
V1 occurs in Table 1. If p = 3, so Y1 = D4, there is no such entry. So we have p = 2. The
case Dl.2 on the natural module does not occur here, as V1 is not ur-stable. So Y1 = Al
with l ≥ 2, Y1〈ur〉 = Al.2 and dimV1 = dimur(V1) = l + 1 while u2r = um stabilises all
Vi, as in (1).

Finally, assume that p ∈ {2, 3} and Y1 = Ap1. Then Y1 is normalised by ur, and um

permutes its p factors transitively, where r|m. This forces r = m, as in (2). �

Remark 3.3. In the situation of Proposition 3.2, for 1 ≤ i ≤ r set Wi := Vi if m = r,
and Wi := Vi ⊕ ur(Vi) if m = 2r. Then Wi is an irreducible Yi〈ur〉-module and Yi acts
trivially on Wj for j 6= i. So W ′

i :=
⊕

j 6=iWj is the trivial Yi-homogeneous component of
V and the decomposition V = Wi ⊕W ′

i is stabilised by ur. Moreover, ur acts by a single
Jordan block on each Wi.

3.2. The not completely reducible case.

Lemma 3.4. Let X ≤ SL(V ) be a reductive subgroup of the form X = X◦〈u〉 for a regular
unipotent element u of SL(V ), with [X◦, X◦] 6= 1. Then Soc(V |[X◦,X◦]) is an irreducible
X-module. That is, the socle series of V as [X◦, X◦]-module is a composition series as
X-module.

Proof. By definition, Soc(V |[X◦,X◦]) is a completely reducible [X◦, X◦]-module, on which
u acts as a single Jordan block since that property passes to quotients and submodules.
So by Lemma 3.1, it is an irreducible X-module. The claim now follows by induction on
the length of the socle series of V |[X◦,X◦]. �

Lemma 3.5. Let N E H be groups with H = N〈v〉. Assume that v has order pa and
acts by an inner automorphism on N . If N does not contain elements of order pa then
H = N ◦ 〈z〉 for some element z ∈ H of infinite order or of order a multiple of pa.

Proof. By assumption there is y ∈ N such that z := vy centralises N . As z centralises
y, either both y and z are of infinite order, or both have finite order and then the order
pa of v = zy−1 divides the least common multiple of |z| and |y|. In the latter case, |y|
is not divisible by pa by assumption, which implies that pa divides |z|. Clearly, 〈N, z〉 =
〈N, v〉 = H, whence our claim. �

Lemma 3.6. Let H ≤ SL(V ) be a group, and assume that all composition factors of V |H
are mutually non-isomorphic. Then Z(H) contains no non-trivial unipotent elements.
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Proof. Let u ∈ Z(H) be unipotent. Set x = u − 1 ∈ CEnd(V )(H), so x acts as 0 on any
irreducible kH-subquotient of V . Let V1 = kerx and set V̄ = V/V1. If x 6= 0 then V1 6= V ,
so V̄ 6= 0. Let Ū ≤ V̄ be an irreducible kH-submodule. Then x.U ≤ V1 where U is the full
preimage of Ū in V . But then x.U ∼= U/(U ∩ kerx) = U/V1 = Ū is a simple submodule
of V1 isomorphic to Ū , contradicting our assumption. Thus x = 0 and so u = 1. �

We now use results of McNinch on semisimplicity of low-dimensional modules in order
to study extensions of irreducible modules for simple algebraic groups on which a full
Jordan block acts.

Proposition 3.7. Let X = X◦〈u〉 ≤ SL(V ) with X◦ a simple algebraic group and u
regular unipotent in SL(V ). If V has at most two X-composition factors then X acts
irreducibly on V .

Proof. By [22, Prop. 2.11] we may assume that X is not connected. We argue by con-
tradiction and so assume V has two X-composition factors V1, V2 := V/V1. Then by
Lemma 3.4 these are the socle and the head of V as an X◦-module. Applying Proposi-
tion 3.2 to Vi and invoking the hypothesis that X◦ is simple, we find that 3.2(1) holds
with r = 1. In particular, for each i we have Vi = Vi1 ⊕ · · · ⊕ Vimi

with irreducible X◦-
modules Vij where mi = 1, or p = 2 and mi ∈ {1, 2}. Note that for any j there must be
a non-trivial extension between V1j and some V2l.

First assume that m1 = m2 = 1, so Vi is an irreducible X◦-module for i = 1, 2. Since X◦

is simple, up must act as an inner automorphism on X◦. We claim that the order of up in
its action on V is bounded above by the order of a unipotent element of X◦. Indeed, if the
order of up is larger than that, then by Lemma 3.5 there is a non-trivial central unipotent
element in X. On the other hand by Lemma 2.15(a) the two composition factors V1, V2

are not isomorphic as X◦-modules. This contradicts Lemma 3.6.
Now u acts by a single Jordan block on both X◦-composition factors, and both are

tensor indecomposable for X◦ by Proposition 2.11. Thus each of these two X-modules is
either trivial or occurs in Table 1.

By a result of McNinch [16, Thm 1] the possibilities for non-split extensions between
such X◦-modules are very restricted. Namely, he shows that all X◦-modules of dimension
below a certain explicit bound are either completely reducible or contained on a short list
of exceptions in [16, Tab. 5.1.1]. Based on his dimension bounds one sees that there is
no non-trivial extension between a module in Table 1 and the trivial X◦-module with X
disconnected.

Hence V1 and V2 are non-trivial. Then again combining Table 1 with [16, Thm 1] we
only arrive at the case that X acts as A2.2 on Vi, with p = 2, dimVi = 8. Here, V has
dimension 16, so u has order 16, while A2.2 has no such element. So by Lemma 3.5 there
is some non-trivial unipotent element of X centralising X◦, which implies with Lemma 3.6
that the two composition factors must be isomorphic. So by Lemma 2.15(a) there is no
such non-split extension V , and hence V is irreducible.

Next consider the case that m1 = p. Then we have p = 2, X◦ = Al with l ≥ 2 and
dimV1j = l+ 1. Then V2 cannot be trivial as argued in the preceding case. So if m2 = 1,
then V2 is an irreducible Al- and Al.2-module on which u acts with a single Jordan block.
By Table 1 this implies that l = 2 and dimV2 = 8. Recall that here dimV1 = 6. A regular
unipotent element u of SL(V ) has order 16. If u ∈ X then u2 acts as an inner element
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on A2. Since the unipotent elements of A2 have order at most 4, there is an element of
order 8 centralising A2 by Lemma 3.5. This contradicts Lemma 3.6.

If m2 = 2, then dimV2j = l+ 1 as well. Now unipotent elements of Al.2 have order less
than 4(l+1) = dimV . So u has bigger order than any unipotent element of Al.2. Arguing
as before this shows with Lemma 3.6 that V11

∼= V21 (after possibly renumbering), and
so also V ∗11 = V12

∼= V22. By untwisting we may assume that V11 is the natural module.
But there is no non-trivial extension between the natural Al-module and itself or its dual.
This final contradiction completes the proof. �

The extension question for the exceptional modules showing up in Proposition 3.2(2)
can be discussed in a similar manner:

Proposition 3.8. Let X = Ap1.〈u〉 ≤ SL(V ) with p ∈ {2, 3} and u regular unipotent in
SL(V ). If V has at most two X◦-composition factors, one of which is the p-fold tensor
product of isomorphic 2-dimensional A1-modules, then V is an irreducible X-module.

Proof. Assume that V has two X-composition factors V1 < V and V2 = V/V1, on one
of which X◦ acts non-trivially. By passing to the dual, we may assume that this is V2.
First consider p = 2. Then dimV2 = 2p = 4 and dimV ≥ dimV2 + 1 = 5, so the
regular unipotent element u ∈ SL(V ) has order at least 8. But it normalises an A2

1, so
by Lemma 3.5 that A2

1 is centralised by an element of order 4. Then Lemma 3.6 shows
that the two X◦-composition factors must be isomorphic. As there are no non-trivial self-
extensions for X◦ by Lemma 2.15(a), V is in fact completely reducible as an X◦-module,
and hence an irreducible X-module by Lemma 3.4, contrary to our assumption.

When p = 3 then note that there cannot be a non-trivial extension between the A3
1-

module V2 and the trivial module, since the zero weight is not subdominant to the highest
weight of V2. Thus we may assume that X also acts by a non-trivial semisimple group on
V1. Since the smallest dimension of a faithful A3

1-module is 6, dimV ≥ dimV2 + 6 ≥ 14,
and so u ∈ SL(V ) has order at least 27. We can now argue exactly as in the case p = 2,
with an element of order 9 centralising X◦. �

We can now prove the main result of this section, establishing Theorem 1 for the
classical algebraic groups G of type Al, Bl and Cl. Recall that it suffices to consider any
group isogenous to G.

Theorem 3.9. Let G be simple of type Al, Bl or Cl and X ≤ G be a reductive subgroup
of the form X = X◦〈u〉 for a regular unipotent element u of G with [X◦, X◦] 6= 1. Then
X does not lie in any proper parabolic subgroup of G.

Proof. As noted in Remark 2.1 we may assume p > 0. If p = 2 then we need not
consider G = Bl as it is isogenous to Cl. Now embed X ≤ G ≤ SL(V ) via its natural
representation. Then by Lemma 2.12, u has a single Jordan block on V . If X lies in some
proper parabolic subgroup of G, with unipotent radical U , then X ≤ NSL(V )(U), which by
Borel–Tits lies in a proper parabolic subgroup of SL(V ). Thus it is sufficient to establish
the result in the case that G = SL(V ). Here the claim is equivalent to showing that X is
irreducible on V . For this we may replace X◦ by [X◦, X◦] and therefore assume that X◦

is a non-trivial semisimple group. Furthermore, by Remark 2.2 we may also assume that
u is transitive on the set of simple components of X◦ by replacing the latter by one of
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the u-orbits. In particular, any component of X◦ acts non-trivially on any X-composition
factor of V on which X◦ acts non-trivially.

For a contradiction, assume X is reducible on V . By passing to a suitable quotient
of V , where u still acts by a single Jordan block, we may assume that X has exactly two
composition factors on V . By Lemma 3.4, any composition series for X is a socle series
for X◦, which thus also has two layers.

As X◦ 6= 1 there is at least one term in the socle series 0 < V1 < V on which X◦

does not act trivially (which we may assume to be the top layer V2 = V/V1, by going
to the dual if necessary). By Proposition 3.2, X◦ acts on V2 through Y1 · · ·Yr with
isomorphic semisimple groups Yi and r > 0. Let V2 = W1⊕· · ·⊕Wr be the corresponding
decomposition into X◦〈ur〉 modules as in Remark 3.3, with Wi an irreducible Yi〈ur〉-
module and Yi acting trivially on Wj for j 6= i.

We claim that X◦ also acts non-trivially on V1. Assume otherwise, so dimV1 = 1. Now
u permutes the semisimple factors Y1, . . . , Yr transitively, as well as the W1, . . . ,Wr. For
1 ≤ i ≤ r let W̃i denote the full preimage of Wi in V . As Yi〈ur〉 stabilises Wi, it acts on
W̃i. If Yi is simple, then by Proposition 3.7, ur cannot act with a single Jordan block on
any of the W̃i. If Yi is not simple, so we are in case (2) of Proposition 3.2, we reach the
same conclusion by Proposition 3.8. With dimV = r dimW1 + 1 this contradicts the fact
that by Lemma 2.3, ur has at least one Jordan block of size dimW1 + 1 on V .

Thus, X◦ acts non-trivially on V1 and on V2. So we have Vs = Ws1 ⊕ · · · ⊕Wsr, where
Wsi is an irreducible Yi〈ur〉-module, for s = 1, 2 and i = 1, . . . , r. Then

Ext1
X◦(V1, V2) =

⊕
i

Ext1
X◦(W1i,W2i)⊕

⊕
i 6=j

Ext1
X◦(W1i,W2j)

=
⊕
i

Ext1
Yi

(W1i,W2i)⊕
⊕
i 6=j

Ext1
X◦(W1i,W2j)

by Lemmas 2.13 and 2.14. Now note that the second sum is zero by comparing highest
weights (where we use the fact that if there is a non-trivial extension between two simple
modules for a semisimple algebraic group then their weights are comparable, see, e.g., [4,
II.2.14]). Thus, Ext1

Yi
(W1i,W2i) 6= 0 for some, and hence, all i. So V |Y1 = W̃1 ⊕ V ′ with

W̃1 a non-split extension of W11 with W21 as a Y1-module and Y1 acting trivially on V ′.
Since ur normalises Y1, it stabilises this decomposition of V . But ur acts with r Jordan
blocks of size dimV/r = dim W̃1 on V , so it must act by a single Jordan block on W̃1.

If Yi is simple, as in case (1) of Proposition 3.2, there is no such extension W̃1 of the two
irreducible Y1〈ur〉-modules W11,W21 by Proposition 3.7, giving the desired contradiction.
Hence we must be in the case that Y1 = Ap1, r = m, and the action on the W2i is as in
Proposition 3.2(2). Again, there is no such non-split extension by Proposition 3.8. �

Thus for Theorem 1, as far as simple groups of classical type are concerned, it remains
to consider groups of type Dl.

4. The case of SO(V )

In this section we consider the following situation: dimV = 2l for l ≥ 4, and X ≤
SO(V ) is a (not necessarily connected) reductive subgroup of the form X = X◦〈u〉, with
X◦ not a torus, for a regular unipotent element u of SO(V ). Recall from Lemma 2.12(c)
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that regular unipotent elements of SO(V ) have two Jordan blocks on V , of sizes 2l− 1, 1
if p 6= 2, and sizes 2l − 2, 2 when p = 2.

4.1. Almost simple groups containing an element with a large Jordan block.

Proposition 4.1. Let p = 2 and G ≤ SL(V ) be an almost simple algebraic group acting
irreducibly on V and such that some unipotent element of G has a Jordan block of size
dimV − 1. Then G = SL(V ).

Proof. ForG a simple group of exceptional type, the irreducible representations ofG whose
image contains a unipotent element with a single non-trivial Jordan block are classified
in [23, Thm 1.1], and only G2 in its 6-dimensional representation comes up. But here no
unipotent elements have blocks of size 5. (See e.g. [6].) The only almost simple but not
simple group of exceptional type is G = E6.2. Here, the regular unipotent elements of G
have order 32, but G has no faithful irreducible representation of dimension less than 54.

Now assume that G is simple, simply connected, of classical type but not equal to
SL(V ) and let d denote the dimension of its natural module. Here we may assume G
is not an odd-dimensional orthogonal group as we will consider the isogenous symplectic
group. The unipotent elements of G have order less than 2d. On the other hand, writing
n = dimV , an element with a Jordan block of size n− 1 has order at least n− 1, so we
get n < 2d+1. All irreducible representations of such dimensions are known (see e.g. [12,
Thms 4.4 and 5.1]), and we find that either n = d, or up to twists one of the following
holds:

• G = A1 with d = 2 and V is the tensor product of two 2-dimensional modules, or
• G = Ad−1 with 4 ≤ d ≤ 5 and V is the exterior square of the natural module, or
• G = Cd/2 for d ∈ {4, 6, 8} and V is the spin module, or
• G = Dd/2 for d = 8, 10 and V is a spin module.

Looking at the precise order of unipotent elements rules out all cases except spin modules
for C2, C3 and D4. In the latter two cases, the image of the representation lies in the 8-
dimensional orthogonal group, where there are no unipotent elements with Jordan blocks
of size 7, and for the case of G = C2, both 4-dimensional representations have image in
the symplectic group where there are also no unipotent elements with a block of size 3.
Finally, if n = d, by the above remarks we may assume V is the natural representation of
G (6= SL(V )), we note that G does not have unipotent elements of the required Jordan
block sizes on V in characteristic 2 (see [9, Lemma 6.2]).

It remains to consider G almost simple of type Am−1.2 or Dm.2 = GO2m. Here, unipo-
tent elements have order less than 4m, so as before we conclude n < 4m + 1. Now note
that the natural module for Am−1 is not invariant under the graph automorphism, nor
is its exterior square for m 6= 4. For m > 4 the spin modules for Dm do not afford
representations of Dm.2. Again with [12] we arrive at the Lie algebra for A2, the exterior
square of the natural module for A3, and modules of dimension 2m. All of these embed
G into a general orthogonal group, but the latter does not have unipotent elements of the
required Jordan type in its natural representation (see [9, Lemma 6.2]). So none of these
leads to examples, completing the proof. �

4.2. A reduction result.



REGULAR UNIPOTENT ELEMENTS 15

Proposition 4.2. Assume p > 0. Let X = X◦〈u〉 ≤ SO(V ) be reductive with dimV =
2l ≥ 6, X◦ 6= 1 semisimple, and u regular unipotent in SO(V ). Assume that X does
not stabilise any non-zero totally singular subspace of V . Then one of the following four
mutually exclusive cases occurs:

(1) X = X◦ is irreducible on V ; more specifically, either X = SO(V ), or l = 4 and
X = B3;

(2) p = 2, l is even, X = Al−1.2 is irreducible on V stabilising a pair of complementary
totally singular subspaces interchanged by u;

(3) there is an orthogonal decomposition V = V ′ ⊥ V ′′ into X-submodules V ′, V ′′, where
dimV ′′ = gcd(p, 2) and V ′ is irreducible and tensor indecomposable for X; or

(4) p = 2, X stabilises a 1-dimensional non-singular subspace V1 of V , X acts as a
subgroup of Bl−1 on V ⊥1 with u having a single Jordan block on V ⊥1 /V1, and there
exists no X◦-complement to V1 in V ⊥1 .

Proof. First assume that V is a decomposable X-module. Then by the Jordan block
shape of u we must have V = V ′ ⊕ V ′′ with dimV ′′ = gcd(2, p), and u acts with a single
Jordan block on both summands. If X◦ acts non-trivially on V ′ then by Theorem 3.9, X
acts irreducibly on V ′. Since dimV ′ > dimV/2 then V ′ must be non-degenerate, so we
obtain an X-invariant decomposition V = V ′ ⊥ (V ′)⊥. Lemma 2.4 shows that V ′ is tensor
indecomposable for X, so we reach conclusion (3). On the other hand, if X◦ is trivial on
V ′ then it must act faithfully on V ′′ and hence X◦ = A1 and p = 2. In particular, u acts
by an inner automorphism on X◦ and thus X◦ contains a regular unipotent element of
SO(V ) by Lemma 2.9, which is impossible as these have order at least 4.

So now assume that V is an indecomposable X-module. In particular, there is no X-
invariant non-degenerate non-trivial proper subspace of V . Thus, if V1 denotes a non-zero
X-invariant subspace of V of minimal dimension, then either V1 = V , that is, X acts
irreducibly on V , or V1 is non-singular of dimension 1 and p = 2. In the latter case X is
contained in the stabiliser of V1, isomorphic toBl−1, and V ⊥1 is the natural module forBl−1.
Let’s first discuss this situation. Now u is regular unipotent in Bl−1 by Lemma 2.10, so it
has a single Jordan block on V ⊥1 /V1. By Theorem 3.9, X acts irreducibly on V ⊥1 /V1, and
thus (V ⊥1 /V1)|X◦ is a direct sum of non-isomorphic irreducible X◦-modules by Lemma 2.5,
all non-trivial as X◦ acts non-trivially on V ⊥1 /V1. Assume that V ⊥1 |X◦ = V1 ⊕ N . As
N ∼= V ⊥1 /V1 has no trivial X◦-composition factor, this decomposition is X-invariant. By
dimension reasons, the irreducible X-module N must be non-degenerate, but this was
excluded before. Thus V1 has no X◦-complement in V ⊥1 , and hence (4) holds.

Thus we are left to consider the case that X acts irreducibly on V . By Lemma 2.5
then V |X◦ = V1 ⊕ · · · ⊕ Vm is a direct sum of non-isomorphic irreducible X◦-modules
transitively permuted by u. Then 2l = mr with r = dimV1 > 1 and m is a power of p.
First assume u has Jordan blocks of sizes 2l−1, 1 on V . Induction from Lemma 2.3 shows
that um has m− 1 Jordan blocks of size r, one Jordan block of size r− 1 and one Jordan
block of size 1 on V . Since um has the same Jordan blocks on each Vi by transitivity, the
only compatible solution is m = 1. If u has Jordan blocks of sizes 2l − 2, 2 on V (and so
in particular p = 2) then Lemma 2.3 shows that either m = 1, or um has m− 2 blocks of
size r, and 2 blocks of sizes r − 1, 1 each. Again this forces m = 2. In conclusion either
m = 1, or m = p = 2. Let us consider these two cases in turn.
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If m = 1, that is, if V |X◦ is irreducible, then X◦ is simple by Lemma 2.7 as none of
(1)–(3) there can occur here. If X◦ = X = SO(V ) we are in case (1) of our statement. If
not, then by Proposition 2.11 the only possibility for l ≥ 4 is again the one given in (1).
For l = 3, using that X◦ must also be irreducible on the natural 4-dimensional module U
for A3

∼= D3 (e.g. by Borel–Tits), Proposition 2.11 implies that we must have X◦ = A1

with p ≥ 5 or X◦ = C2 = B2. But in neither of these cases does X◦ act irreducibly on
the exterior square Λ2(U) = V , so this case does not occur here.

Now consider the case where m = p = 2 so that the Jordan blocks of u2 on Vi, i = 1, 2,
have sizes l−1, 1. We claim that V1 is totally singular. For otherwise, V1 is non-degenerate
and thus so is V ⊥1 which must be V2, and therefore X is contained in the stabiliser in SO(V )
of the orthogonal decomposition V = V1 ⊥ V2, hence in GO(V1) GO(V2).2 ∩ SO(V ). But
by [17, Thm B(ii)(a)] there is no reductive maximal subgroup of SO(V ) containing this
stabiliser and a regular unipotent element of SO(V ).

We thus have that V1 is totally singular as claimed; then so is its image V2 under u.
Hence X stabilises a decomposition of V into a direct sum of maximal totally singular
subspaces and thus X ≤ GLl .2. According to Lemma 2.12(d) when l is odd, the regular
unipotent elements of the stabiliser GLl .2 of such a decomposition have a single Jordan
block, so cannot lie in SO(V ). Thus X ≤ GLl .2 ∩ SO(V ) = GLl, which does not contain
elements with a Jordan block of size 2l − 2. On the other hand, when l is even the
stabiliser GLl .2 contains regular unipotent elements of SO(V ). Lemma 2.7 now implies
that X◦ is simple, since the case (3) with dimV1 = 9 cannot occur here as l is even. By
Proposition 4.1 this gives the examples in (2). �

In what follows we investigate further the case (4) of the preceding result.

Proposition 4.3. In the situation of Proposition 4.2(4), the following hold:

(a) X◦ = Y1 · · ·Yr, with pairwise isomorphic factors Yi = Bn, Yi = Cn (with n ≥ 1) or
Yi = G2, permuted transitively by u;

(b) there is a decomposition V ⊥1 /V1
∼=
⊕r

i=1 Ui into Yi〈ur〉-modules Ui, irreducible for Yi
and transitively permuted by u, and on which ur acts by a single Jordan block, with
dimUi = 2n when Yi = Bn or Cn, respectively dimUi = 6 when Yi = G2.

Proof. We keep the notation from Proposition 4.2(4). Recall that here p = 2. As u acts
by a single Jordan block on V ⊥1 /V1, this is an irreducible X-module by Theorem 3.9. So
by Proposition 3.2 there is a decomposition X◦ = Y1 · · ·Yr with u transitively permuting
the semisimple factors Yi.

We first show that we are not in case (2) of Proposition 3.2. Suppose the contrary.
Then Yi = X2i−1X2i with Xj = A1, r = m, and V ⊥1 /V1 = U1 ⊕ · · · ⊕ Ur, where Ui is an
X2i−1X2i-module which is a twist of a tensor product of two natural modules for A1 and
the Ui are transitively permuted by u. Let Ũi denote the full preimage of Ui in V ⊥1 , so
V ⊥1 =

∑
Ũi. The Künneth formula [20, Lemma 3.3.6] shows that Ext1

X2i−1X2i
(Ui, k) = 0,

whence Ũ1 = V1 ⊕ N1, with N1
∼= U1. So there is a similar decomposition for all of

the Ũi, leading to a decomposition of the X◦-module V ⊥1 = V1 ⊕ (
∑
Ni), contradicting

Proposition 4.2(4).
Hence we are in case (1) of Proposition 3.2 and all Yi are simple. Let us write ī := i

(mod r). Now V ⊥1 /V1 = U1⊕· · ·⊕Um, where the Ui are irreducible tensor indecomposable
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Yī-modules, transitively permuted by u, and um acts by a single Jordan block on each.
Hence the possibilities for (Yī〈um〉, Ui) are as listed in Table 1. Moreover, arguing as in
the preceding paragraph we see that Ext1

Yī
(Ui, k) 6= 0. Now by [16] all pairs (Yī〈um〉, Ui)

have Ext1
Yī

(Ui, k) = 0 except possibly for Yī = Bn, Yī = Cn or Yī = G2 with dimUi as

claimed, so by Proposition 3.2 we have r = m and we get (a) and (b). �

Proposition 4.4. Let X = X◦〈u〉 ≤ SO(V ) be reductive with dimV = 2l ≥ 8, X◦ 6= 1
semisimple, and u regular unipotent in SO(V ). Then X does not stabilise a maximal
totally singular subspace of V .

Proof. Arguing by contradiction, assume that X stabilises some maximal totally singular
W < V . Then its stabilizer P has Levi factor L = GL(W ). By Lemma 2.8, for Q = Ru(P )
the image of X in P/Q ∼= L contains a regular unipotent element of L, and X acts
irreducibly on W by Theorem 3.9 and hence on its dual V/W . Note that X◦ acts non-
trivially on W .

Let us first consider the case when p = 2. Assume that u acts with different orders on
W and on V . Then a non-trivial power v of u, which we may take to be an involution, is
in the kernel of the representation on W . Letting ϕ1 : P → GL(W ) denote the projection
into the Levi factor of P , we thus have [v,X◦] lies in the normal subgroup X◦, and has
image ϕ1([v,X◦]) = [ϕ1(v), ϕ1(X◦)] = 1, so in fact [v,X◦] = 1, that is, v centralises X◦.
As u2 has two Jordan blocks J1, the element v has Jordan blocks Ja2 ⊕ J b1 with a ≥ 1,
b ≥ 2 on V . (Here Ji denotes a Jordan block of size i.) Then by [9, Thm 3.1], setting
C = CSL(V )(v), we have that C/Ru(C) ∼= GLa GLb and the action of this group on V
is via two copies of the natural module for GLa and one copy of the natural module
for GLb. As X ⊆ C, the dimensions of the X-composition factors on V (two factors of
dimension l) must be obtained as a refinement of the dimensions a, a, b coming from the
action of GLa GLb, which is not possible. So u has the same order on W as on V . As
u has a Jordan block of size l on W , and blocks of sizes 2l − 2, 2 on V , we must have
l = 2f + 1 ≥ 5. So we have proved that l is odd when p = 2.

Now let p be arbitrary again and write W |X◦ = W1 ⊕ · · · ⊕Wr for the decomposition
of W into pairwise non-isomorphic irreducible X◦〈ur〉-modules as in Remark 3.3, with u
transitively permuting the summands. Note that since l = dimW has to be odd when
p = 2 we cannot be in case (1) of Proposition 3.2. As W and V/W are dual to each
other, then (V/W )|X◦ ∼= W ∗

1 ⊕ · · · ⊕ W ∗
r with W ∗

i dual to Wi. Let V1 be the X◦〈ur〉-
submodule of V with composition factors W1 and W ∗

1 (if V is not completely reducible
as an X◦〈ur〉-module, this exists by Lemma 2.13 together with Remark 3.3). Then the
transitive action of u yields V |X◦ =

⊕r
i=1 u

i−1(V1). From the block structure of u, as in
the proof of Proposition 4.2 this implies that r = 1 or r = p = 2. But the latter cannot
occur as l is odd when p = 2. So r = 1, and V1 = V is an extension of an irreducible
X◦-module by its dual, on both of which ur = u has a single Jordan block. Assume
that this extension splits. If W |X◦ ∼= W ∗|X◦ is self-dual, so V |X◦ is homogenous, then
it is an irreducible X-module by Lemma 2.6, a contradiction. Else, the decomposition
V = W ⊕W ∗ is X-invariant, contrary to the block structure of u.

So V |X◦ is a non-trivial extension, and since by Lemma 2.15(a) there are no self-
extensions for simple groups, W cannot be a self-dual X◦-module. Moreover, still by
Proposition 3.2, X◦ is now either simple or X◦ = Ap1 with p ≤ 3. The second possibility



18 GUNTER MALLE AND DONNA M. TESTERMAN

is ruled out as W is not self-dual. The possible non-self-dual W for X◦ simple are listed
in Table 1, and we find that X◦ = Al with l ≥ 2. But according to [16, Cor. 1.1.1], there
is no non-trivial extension of a twist of the natural module of Al with its dual. �

The following proposition treats the special case arising out of Proposition 4.3 when
r = 1. By our Lemma 2.9, X◦ contains a regular unipotent element. This case should
have been treated in [22] but the argument there is incomplete in precisely this setting.
So we have included a proof here.

Proposition 4.5. Let X be a simple algebraic group with X < G = SO(V ), dimV =
2l ≥ 8, defined over a field of characteristic 2. Assume that X stabilises a non-zero totally
singular subspace of V . Then X does not contain a regular unipotent element of G.

Proof. Assume u ∈ X is regular unipotent. Choose a maximal totally singular X-invariant
subspace W . Then the stabilizer P = NG(W ) has Levi factor L = GL(W ) SO(W⊥/W )
and the projection of X into the second factor does not lie in a proper parabolic subgroup.

By Lemma 2.8, for Q = Ru(P ) the image of X in P/Q ∼= L contains a regular unipotent
element of L. Thus, if dimW > 1, the projection onto the factor GL(W ) of L is injective
when restricted to X. But the order of a regular unipotent element in GL(W ) is strictly
less than the order of u unless possibly when W is maximal totally singular, and this
latter case does not occur by Proposition 4.4. Hence we need only consider the case
where dimW = 1. Let π : P → SO(W⊥/W ) be the natural projection. Since π(X) does
not lie in a proper parabolic subgroup of SO(W⊥/W ), by [10, Lemma 2.2], one of:

(i) (W⊥/W )|π(X) = W1 ⊥ W2 ⊥ · · · ⊥ Wt, with all Wi non-degenerate, inequivalent
and irreducible π(X)-modules; or

(ii) π(X) stabilizes a nonsingular 1-space of W⊥/W .

In the first case, when t = 1, since π(X) contains a regular unipotent element of
SO(W⊥/W ), Proposition 2.11 implies that either dim(W⊥/W ) = 8, X = B3 and the
action of X on W⊥/W is via a spin module, or X = SO(W⊥/W ). In both cases, there
are no non-trivial extensions between W⊥/W and the trivial X-module and we deduce
that X (and hence u) lies in the Levi factor, a contradiction.

In the first case, with t ≥ 2, the Jordan block structure of u then implies that t = 2
and we may assume dimW2 = 2. But then the projection of π(X) to SO(W2) is trivial
as the latter is a torus, contradicting the Jordan block structure of π(u).

So we now have that π(X) lies in the stabilizer of a nonsingular 1-space of W⊥/W ; let
U/W be such a subspace, so that X stabilizes the flag 0 < W < U < U⊥ < W⊥ < V .

Now Proposition 4.2(4) gives that π(u) has one block on U⊥/U and so by Table 1 we
are left with the following irreducible actions on U⊥/U :

• π(X) = Cl−2 or Bl−2;
• X = G2, l = 5.

In the first case, we deduce that π(X) = Bl−2 (the full stabilizer in SO(W⊥/W ) of a
non-singular 1-space), and so W⊥/W is a (2l − 2)-dimensional tilting module for π(X).
In particular, there is no extension of this module by a trivial and we find that X lies in
a Levi factor of G. This rules out the case where X = Bl−2 or Cl−2.

In the second case, we have G2Q/Q ≤ B3Q/Q ≤ D4T1
∼= P/Q, and the action of X

on W⊥/W is as an 8-dimensional indecomposable tilting module (see [8, Lemma 9.1.1])
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and as above there is no non-trivial extension with the trivial module. So X lies in a
proper Levi factor of G, and hence cannot contain a regular unipotent element. This final
contradiction completes the proof. �

Proposition 4.6. Let X = X◦〈u〉 ≤ SO(V ) be reductive with dimV = 2l ≥ 8, X◦ 6= 1
semisimple, and u regular unipotent in SO(V ). Assume that X lies in a proper parabolic
subgroup of SO(V ). Then, with W an X-invariant totally singular subspace of V of
maximal possible dimension, we have: 0 < W < W⊥, dimW⊥/W ≥ 6, and X◦ acts
non-trivially on W⊥/W and is not completely reducible on W⊥.

Proof. Let 0 < W < V be as in the statement. So X lies in a proper parabolic subgroup
of SO(V ) with Levi complement GL(W ) SO(W⊥/W ). By Lemma 2.8 the image of u in
the Levi factor is again regular unipotent, in particular u acts by a single Jordan block
on W . Also note that X◦ acts non-trivially on W⊥, as otherwise it would act trivially on
V/W⊥ ∼= W ∗ as well and hence on all of V . By Proposition 4.4, W cannot be maximal
totally singular.

So, we now assume that 0 < W < W⊥, and thus X is reducible on W⊥. By Theorem 3.9
this implies that u cannot have a single Jordan block on W⊥. Thus, u has exactly two
Jordan blocks on W⊥, one of which has size at most gcd(p, 2). We set n := dimW⊥.

Note that X does not stabilise any non-zero totally singular subspace of W⊥/W by the
choice of W . This then implies that X◦ acts non-trivially on W⊥/W since u, lying in a
Borel subgroup, has some totally singular fixed points. In particular dimW⊥/W ≥ 4. In
fact, if dim(W⊥/W ) = 4 then the image of X◦ in SO4 and hence X◦ itself is either A1 or
A2

1. If X◦ = A1 then u acts on it by an inner automorphism, so X◦ contains a regular
unipotent element of G by Lemma 2.9, contradicting the main result of [22]. Similarly,
if X◦ = A2

1
∼= SO4 is the full Levi factor and thus X = X◦, we conclude by the same

argument. Hence we have dimW⊥/W ≥ 6. If X◦ is not completely reducible on W⊥,
then we arrive at conclusion (2).

So now assume that W⊥ is a completely reducible X◦-module. We will show that this
leads to a contradiction. Write W⊥|X◦ = V1⊕ · · · ⊕ Vm for the decomposition of W⊥ into
its X◦-homogeneous components. Then u permutes these components and can have at
most two orbits on {V1, . . . , Vm}, as it has two Jordan blocks on W⊥.

Case 1: We first discuss the case where u is transitive on {V1, . . . , Vm}. Arguing precisely
as in the proof of Proposition 4.2 the Jordan block shape of u forces either m = 1, or
m = p = 2. We consider these two cases in turn.

If m = 1, that is, if W⊥|X◦ is homogeneous, then by Lemma 2.6 we find that dimW⊥ =
4, as X◦ is reducible on W⊥, contradicting dimW⊥/W ≥ 6.

Ifm = p = 2, one checks that the Jordan blocks of u2 on Vi, i = 1, 2, have sizes n/2−1, 1.
As Vi is X◦〈u2〉-invariant and homogeneous as an X◦-module, it must be irreducible for X◦

by Lemma 2.6. Now u interchanges V1 and V2, so W⊥ is irreducible for X, a contradiction.

Case 2: So now assume that u has two orbits on {V1, . . . , Vm}. Let V ′, V ′′ denote the
subspaces spanned by these orbits, with dimV ′′ = gcd(2, p). Then u acts with a single
Jordan block on each of them.

Consider first the case that X◦ acts non-trivially on V ′. Then, since u has a single
Jordan block on V ′ we obtain by Theorem 3.9 that V ′ is an irreducible X-module. Then
either V ′ = W or W ∩ V ′ = 0. In the first case W⊥/W must be isomorphic to V ′′ (as
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W 6= W⊥), contradicting that dimW⊥/W ≥ 6. If on the other hand W ∩ V ′ = 0 then
V ′ is isomorphic to a submodule of W⊥/W . Thus the orthogonal group SO(W⊥/W ) of
dimension n − dimW contains a unipotent element with a Jordan block of size at least
n−gcd(2, p). By the knowledge of possible Jordan block shapes (see [9, Lemma 6.2]) this
is not possible as dimW ≥ 1.

Finally, in Case 2 it remains to discuss the situation where X◦ acts trivially on V ′. Then
it must act irreducibly and faithfully on V ′′ and hence X◦ = A1 and p = 2. In particular,
u acts by an inner automorphism on X◦ and thus X◦ contains a regular unipotent element
of SO(V ) by Lemma 2.9, which is impossible by order considerations. �

4.3. Proof of Theorem 1 for SO(V ), dimV = 2l.

Theorem 4.7. Let X = X◦〈u〉 ≤ G := SO(V ), where dimV = 2l ≥ 8, be a reductive
subgroup, with u a regular unipotent element of G. Assume that [X◦, X◦] 6= 1. Then X
does not lie in any proper parabolic subgroup of G.

Proof. It suffices to prove the claim for [X◦, X◦]〈u〉, and hence we may and will assume
that X◦ = [X◦, X◦] is semisimple. Moreover, by Remark 2.2 we may assume that X◦ is
the product over a single u-orbit of simple components. Assume that X lies in a proper
parabolic subgroup P of G = SO(V ). Then there is an X-invariant flag 0 < W ≤ W⊥ < V
with W totally singular and dual to V/W⊥ as an X-module, and W⊥/W non-degenerate.
We choose P such that dimW is maximal possible (and so dimW⊥/W is minimal).
Hence, we are in the setting of Proposition 4.6.

By the choice of W and since dimW⊥/W ≥ 6, we have that X acts as in (1)–(4) of
Proposition 4.2 on W⊥/W . Also, by Lemma 2.8, u acts with a single Jordan block on W
as well as on V/W⊥, and with two Jordan blocks on W⊥/W .

Case 1: First assume that X◦ acts non-trivially on W and thus that dimW ≥ 2. By
Proposition 4.6, X◦ acts non-trivially on W⊥/W as well, which has dimension at least 6.

Case 1a: We first discuss the case where p = 2. Let ϕi, i = 1, 2, be the projections
of P into the two factors of the Levi subgroup GL(W ), SO(W⊥/W ) respectively. Since
ϕ1(X) is irreducible on W by Theorem 3.9, it cannot lie in a proper parabolic subgroup
of GL(W ), and by the choice of W , neither is ϕ2(X) contained in a proper parabolic
subgroup of SO(W⊥/W ). Write m = dimW and so dimW⊥/W = 2(l −m). We know
that ϕ1(u) is a single Jordan block, and ϕ2(u) has a block of size 2(l −m) − 2 and one
of size 2, by Lemma 2.8. Since m < l by assumption, ϕ1(u) has order smaller than u,
so some power us 6= 1 with s > 1 lies in kerϕ1; we choose s minimal with this property.
As before, we see that us must centralise X◦. But then ϕ2(us) = 1 as well, as otherwise
ϕ2(us) is a non-trivial unipotent element of SO(W⊥/W ) centralised by ϕ2(X), whence
by Borel–Tits, ϕ2(X) lies in a proper parabolic subgroup of SO(W⊥/W ), which is not
the case. Note that no smaller power of u lies in kerϕ2 as otherwise that element would
(as before) centralise X◦, forcing ϕ1(X) to lie in a proper parabolic of GL(W ), again a
contradiction. So ϕ1(u), ϕ2(u) have the same order s.

Recall that u has a single block of size m on W and blocks of sizes 2l − 2m− 2 and 2
on W⊥/W . Also, u has two blocks on W⊥, one of size 1 or 2. But the first possibility is
ruled out as (u− 1)2l−2m−2W⊥ ⊆ W and so (u− 1)m(u− 1)2l−2m−2W⊥ = 0.
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We now show that u has order 2s on W⊥, that is, order twice as large as its order on
W (and on W⊥/W ). Let f be minimal such that 2f ≥ m, so f is also minimal so that
2f ≥ 2l − 2m− 2. Hence we have 2m > 2f ≥ m and 4l − 4m− 4 > 2f ≥ 2l − 2m− 2. In
particular, 2f+1 ≥ 2l−m−2. Since also 2f = 2f−1 +2f−1 < m+2l−2m−2 = 2l−m−2,
the order of u in its action on W⊥ is 2s. In particular, us acts as an involution Ja2 ⊕ J b1
on W⊥, with a ≥ 1 and b ≥ 2 (as s > 1). As before, the centraliser of us in SL(W⊥) has
composition factors of dimensions a, a, b on V , and as us centralises X, the X-composition
factors on W⊥ must be obtained as a refinement of this.

Note that since a ≥ 1 and b ≥ 2, there are at least three composition factors and so X
cannot act irreducibly on W⊥/W , ruling out configurations (1) and (2) of Proposition 4.2.
Considering the cases in (3) and (4), we see that X has composition factor dimensions on
W⊥ among

{m, 2l − 2m− 2, 2} and {m, 2l − 2m− 2, 1, 1}.
As l ≥ 8 and 2l − 2m ≥ 6, the first case yields a = m = 2l − 2m − 2 and b = 2. In the
second case, the natural module for GLa must remain irreducible for X, as else there are
five composition factors, and so either a = 1, or a = m = 2l − 2m− 2 and b = 2.

If a = 1, then us has one block of size 2 and the remaining blocks of size 1 on W⊥. By
Lemma 2.3 this can only happen if 2l −m − 2 = 2c + 1 for some c, so u has order 2c+1

on W⊥ and by the previous analysis, its order on W and on W⊥/W is 2c (so c = f as
above). But this implies 2c−1 < m < 2c−1 + 1, a contradiction.

Hence we have b = 2 and a = m = 2l−2m−2 and us has exactly two blocks of size 1 on
W⊥ (coming from the block J2 of u on W⊥), while the one block of size 2l−m−2 produces
only blocks of size 2 for us. So 2l −m− 2 is a power of 2, say 2l −m− 2 = 2c. Thus, u
has order 2c on W⊥ and the order of u on W is 2c−1, so 2c−1 ≥ m and 2c−1 ≥ 2l− 2m− 2,
forcing m = 2c−1 = 2l − 2m− 2.

We claim that neither of the possible actions of X on W⊥/W (as in Proposition 4.2(3)
and (4)) is consistent with this. First suppose we have the configuration of Proposi-
tion 4.2(3), where W⊥/W = V1⊕V2, X is irreducible on V1 and dimV2 = 2. Let Ṽi be the
X-submodules of W⊥ such that Ṽi/W = Vi, i = 1, 2. On each of these X acts reducibly
and so u has at least two Jordan blocks. Hence we have dim Ṽ u

i ≥ 2 and Ṽ1 ∩ Ṽ2 = W ,
whence dim(Ṽ u

1 ∩ Ṽ u
2 ) = dimW u = 1 as u has a single Jordan block on W , which gives

dim(Ṽ1 + Ṽ2)u ≥ 3, contradiction.
So finally we are left to consider the case where X acts on W⊥/W as in Proposi-

tion 4.2(4). Here we have 0 ≤ W ≤ V1 ≤ V ⊥1 ≤ W⊥, with dimW = m, dimV1/W = 1 =
dimW⊥/V ⊥1 and dimV ⊥1 /V1 = m. Recall that u has order 2m = 2c on W⊥ and thus the
same order on the codimension 1 subspace V ⊥1 , which is again twice the order of u on W
and on W⊥/W . So again us acts as an involution on V ⊥1 and the X-composition factors
are of dimensions m, 1,m. This is only consistent with the GLa GLb analysis if b = 1.
This is the final contradiction settling Case 1a.

Case 1b: So now we have p > 2. As dim(W⊥/W ) ≥ 6, we may apply Proposition 4.2
to the action of X on W⊥/W , and as p > 2 we are in either case (1) or (3). If we are in
case (1), X◦ acts as B3 on W⊥, so u acts by an inner automorphism on a component of
X◦ and we are done by Lemma 2.9 and [22].
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In case (3) of Proposition 4.2, we have W⊥/W = V1 ⊕ V2, with preimages Ṽ1, Ṽ2 in
W⊥. Now X◦ acts non-trivially on both Ṽi, normalised by u, so u has two Jordan blocks
on each Ṽi, by Theorem 3.9. Counting fixed points on Ṽ1 + Ṽ2 as in Case 1a, we reach a
contradiction.

Case 2: Now assume that X◦ acts trivially on W . Let W0 be the u-invariant subspace
of W of codimension 1. Note that W⊥

0 /W0 is non-degenerate and u acts as a regular
unipotent element of SO(W⊥

0 /W0) by Lemma 2.8 and the image of X lies in a proper
parabolic subgroup of this orthogonal group. So it suffices to derive a contradiction in
that situation, whence henceforth we assume dimW = 1. Again, as dim(W⊥/W ) ≥ 6, we
may apply the conclusion of Proposition 4.2 to the image of X in SO(W⊥/W ) = SO2l−2

(using our assumption that dimW = 1).

Case 2a: In case (1) of Proposition 4.2 again we have X = X◦ as in Case 1b, a situation
that was handled in [22].

Case 2b: In case (2) of Proposition 4.2 we have X◦ = Al−2, with l ≥ 4 as dim(W⊥/W ) ≥
6. Note that V is then a completely reducible X◦-module since there are no extensions
between the natural and the trivial module for Al−2, so W⊥/W is isomorphic to an
X◦-submodule M of W⊥. Assume that M ∩ M⊥ 6= 0. Then, by dimension reasons,
this intersection must be one of the two non-isomorphic irreducible X◦-summands. But
then M/(M ∩M⊥) has a non-degenerate X◦-invariant form and thus is a self-dual Al−2-
module, which it is not. Thus, M is a non-degenerate X◦-submodule of V , and M⊥ is
its 2-dimensional orthogonal complement. Since M,M⊥ are both sums of homogeneous
X◦-components of V , the decomposition V = M ⊥ M⊥ is u-invariant, making M an
irreducible X-module. Thus W ≤ M⊥ is a 1-dimensional totally singular subspace, but
the 1-dimensional fixed points of unipotent elements of GO(M⊥) are non-singular.

Case 2c: In case (3) of Proposition 4.2, we have an X-stable decomposition W⊥/W =
V1 ⊕ V2 with X irreducible on V1. Write Ṽi for the full preimage of Vi in W⊥, i = 1, 2,
both X-submodules of V . By Theorem 3.9, as Ṽ1 is reducible for X, we deduce that u
has two blocks on Ṽ1. If u has more than one Jordan block on Ṽ2 as well, then counting
fixed points as in Case 1a we obtain a contradiction. So u has a single Jordan block on
Ṽ2, whence Ṽ u

2 = W and (W⊥)u = Ṽ u
1 .

Now first assume that p 6= 2 so that dimV2 = 1. Using that W⊥ = Ṽ1 + Ṽ2 we have
W⊥/(W⊥)u = W⊥/Ṽ u

1
∼= Ṽ1/Ṽ

u
1 + Ṽ2/W , and a dimension count then shows the sum is

direct. Hence dim(W⊥/(W⊥)u)u ≥ 2, contradicting the Jordan block structure of u on V .
Similarly, when p = 2 and hence dimV2 = 2, consider M := ker((u − 1)2|W⊥). Then
dimM ∩ Ṽ1 ≥ 3, dimM ∩ Ṽ2 = 2, and these two intersect in W . By assumption, u has
one fixed point on V/ ker((u− 1)2), but on W⊥/M = (Ṽ1 +M)/M ⊕ (Ṽ2 +M)/M it has
a two-dimensional fixed point space, giving a contradiction.

Case 2d: In case (4) of Proposition 4.2, we have p = 2 and W⊥/W has X-invariant
subspaces 0 < V̄1 < V̄ ⊥1 with V̄1 non-singular of dimension 1, such that u acts with one
Jordan block on V̄ ⊥1 /V̄1. By Proposition 4.3 we may decompose X◦ = X1 · · ·Xr into a
product of simple groups all isomorphic to either Bm, Cm or G2, with dimV = 2l =
2mr + 4, where we set m := 3 in the case of G2. Furthermore, r is a power of 2, with
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r ≥ 2 since otherwise we are done by Lemma 2.9 and Proposition 4.5. As u has Jordan
blocks of sizes 2mr+ 2, 2 on V , u2 has two Jordan blocks of size mr+ 1 and two of size 1.

Note that v := u2 acts trivially on the 2-dimensional full preimage V1 of V̄1 in V . By our
assumption, V1 cannot be totally singular. Let N ≤ V1 be a 1-dimensional non-singular
subspace. Then X◦〈v〉 lies in the stabiliser NSO(V )(N) isomorphic to Bl−1

∼= Cl−1, so in
Sp(N⊥/N). We claim that v has Jordan block sizes mr+ 1,mr+ 1 on N⊥/N . Indeed, as
it has block sizes mr+1,mr+1, 1, 1 on V , the only other possibility would be mr,mr, 1, 1
(note that all odd block sizes most occur an even number of times). But by [9, Thm 6.6]
the centraliser of such an element has reductive part of its centraliser containing an Sp2,
while the reductive part of the centraliser of v in SO(V ) is just a torus, a contradiction.

Now the X◦〈vr/2〉-composition factors of N⊥/N are the Ui and two trivial modules.
Thus, by self-duality, N⊥/N has a submodule M of codimension 1, and this is the sum
of submodules of dimension at most 2m + 1 (namely either the Ui or extensions of some
Ui by a trivial module). But vr/2 = ur has block sizes 2m + 1, 2m + 1, 2m (r − 2 times)
on N/N⊥, so at least one block of size 2m + 1 on M . By Theorem 3.9, this contradicts
the fact that M has no irreducible X◦〈vr/2〉-submodules of that dimension. �

5. Exceptional types

In this section we consider algebraic groups defined over k of characteristic p > 0. See
Remark 2.1.

We will make extensive use of the known data on unipotent elements in simple algebraic
groups of exceptional type, including element orders and power maps given in [6] and
structure of centralisers described in [9]. We follow the notation in [6] for the labelling
of unipotent classes. In particular, if the class of u is denoted by some Dynkin diagram,
then u is a regular element in a Levi subgroup of that Dynkin type.

In the course of our proof we will require precise knowledge on the existence and con-
jugacy classes of complements to Ru(CG(x)) in CG(x)◦, for certain unipotent elements x,
as in the next result.

Lemma 5.1. Let x ∈ G be unipotent and let Y ≤ CG(x) be connected reductive, where

(G, p, Y, [x]) ∈
{

(E7, 3, A
3
1, 4A1), (E8, 2, A2, E6(a1)), (E8, 2, A2, E6)

}
.

Then there exists a connected reductive group C ≤ CG(x) such that CG(x)◦ = Ru(CG(x)).C
and Y lies in a conjugate of C.

Proof. Throughout we write R := Ru(CG(x)). The existence of a complement to R in
CG(x)◦ follows from [9, 17.6]. We now turn to the proof of the remaining assertions.

Consider first G = E7, with p = 3, Y = A3
1, x a unipotent element of type 4A1 and

Y ≤ CG(x)◦ = RC, where C is a long root C3-subgroup of G (see [9, Tab. 22.1.2]). By
[7, Thm 5] there exist two classes of such C3-subgroups in G, coming from the two non-
conjugate A5 Levi factors ofG. By [7, Cor., p.2], there exists a unique class of complements
to R in RC. For both classes of C3-subgroups, each non-trivial C-composition factor of
R occurs as a composition factor of ∧j(W ), for some 1 ≤ j ≤ 3, where W is the natural
6-dimensional C-module. (See [7, Tab. 8.2].) There exists a unique class of A3

1-subgroups
of C3, and restricting each of the given irreducible C3-modules to such an A3

1-subgroup
we find that the composition factors of Y on R have highest weights among ωi, i = 1, 2, 3
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(the fundamental dominant weights of A3
1), ωi + ωj for 1 ≤ i < j ≤ 3, ω1 + ω2 + ω3 and

the zero weight. Using [4, II.2.14] we have H1(Y, Q̄) = 0 for all Y -composition factors Q̄
of R and hence by [20, Prop. 3.2.6], there exists a unique class of complements to R in
RY . Thus there exists g ∈ CG(x) with Y ≤ Cg as claimed.

In the other two cases, we have G = E8, with p = 2, Y = A2, and x is a unipotent
element of type either E6(a1) or E6, and CG(x)◦ = RC, where C = Ā2, respectively
Ḡ2, long root subgroups. The action of a long root A2 on R has composition factors
the natural, dual or trivial module, and so in case C = Ā2, we have a unique class of
complements to R in RY = RC, establishing the result.

In the case C = Ḡ2 we must argue slightly differently because here there is a 6-
dimensional C-composition factor V of R with H1(G2, V ) 6= 0. Now CG(x) lies in a
parabolic subgroup P = QL of G with R ≤ Q. Moreover, considering the labelled dia-
gram of the class of x (see [9, Tab. 22.1.1]) and applying [9, Thm 17.4], we see that we
may take P to be a D4-parabolic subgroup of G. There exists a composition series of Q
as an [L,L]-module, all of whose terms are 8-dimensional D4-modules and trivials. The
subgroup C is uniquely determined up to conjugacy in [L,L] and, by [8, Lemma 9.1.1],
each such irreducible upon restriction to C is the indecomposable tilting module U with
radU/ SocU the 6-dimensional irreducible C-module. By [4, Prop. §E.1], H1(C,U) = 0.
Hence, all complements to C in QC are conjugate and by considering the action of Y = A2

on Q, we have the same statement for Y . Arguing as in the previous cases now yields the
claim. �

Theorem 5.2. Let G be a simple algebraic group of exceptional type and X = X◦〈u〉 ≤ G
a reductive subgroup with u a regular unipotent element of G and [X◦, X◦] 6= 1. Then X
does not lie in a proper parabolic subgroup of G.

Proof. Let X be as in the assertion and assume that X lies in a proper parabolic subgroup
of G. Then we have u /∈ X◦ by [22, Thm 1.2]. Also, by passing to [X◦, X◦]〈u〉 we may
assume that X◦ is semisimple. We will need to consider the image of X in Levi factors,
and for this throughout we write X̄ for the quotient of X by its largest normal unipotent
subgroup (which, being finite, is centralised by X◦). Note that X◦ maps isomorphically
to a subgroup of X̄ on which the image of 〈u〉 then acts faithfully.

By Remark 2.2, we may moreover assume that u has a single orbit on the set of simple
components of X◦, and, by Lemma 2.9 it does not act as an inner automorphism on X◦.
In particular, rnk(X◦) ≥ p. On the other hand, as X lies in a proper parabolic subgroup
of G, rnk(X◦) < rnk(G). This already rules out the case G = G2. Furthermore, regular
unipotent elements of F4 are also regular in E6 under the natural embedding, and proper
parabolic subgroups of F4 lie in such of E6, hence it suffices to prove our result for
G = E6, E7 or E8. The orders of regular unipotent elements in these groups for small
primes are given in Table 2.

Case 1: We first consider the case that v := up acts by an inner automorphism on X◦

and X◦ does not contain elements of order |v|, so in particular |v| > p.
Then by Lemma 3.5, X◦ is centralised by a unipotent element v′ of this order. We

discuss this situation by comparing the list of centralisers of unipotent elements [9, §22]
and the list of unipotent element orders [6, Tab. 5–9].



REGULAR UNIPOTENT ELEMENTS 25

Table 2. Orders of regular unipotent elements

p = 2 3 5 7
G2 8 9
F4 16 27
E6 16 27 25
E7 32 27 25 49
E8 32 81 125 49

Let first G = E6 and consider the case p = 2, where we have |v′| = |v| = 8 and
v′ centralises X◦. By [9, Tab. 22.1.3] and [6, Tab. 5] unipotent elements of order 8
centralising a group of semisimple rank at least 2 lie in class D4, with reductive part of
the centraliser of type A2. Since rnk(X◦) ≥ 2 we conclude that X◦ = A2. Now u2 acts
as an inner automorphism of X and so X centralises u8, which lies in the class 2A1, by
[6, Tab. D]. Moreover, using [9, Tab. 22.1.3], we see that the full connected centraliser of
u8 has a reductive complement C to R = Ru(CG(u8)), a B3-subgroup of G generated by
long root elements of G. Now X◦ ≤ RC and we consider the possible embedding of X◦

in C ∼= CG(u8)◦/R. By [10, Lemma 2.2], X must lie in a proper parabolic subgroup of C
and by rank considerations we find that X lies in an A2-parabolic subgroup of C. As C is
generated by long root subgroups of G, the Levi factor A2 is also generated by long root
subgroups of G. Now arguing as in Lemma 5.1, we find that X◦ is a long root A2-subgroup
of G, that is, a Levi factor of G. (The A2 Levi factor of C acts on R with composition
factors the natural, dual or trivial module for A2.) But now the centraliser of X◦ is an
A2A2 and so X normalizes an A3

2 subgroup of G. But there is no such example in [17,
Thm A]. For p = 3 we have |v′| = 9 and rnk(X◦) ≥ 3, and again by [9, Tab. 22.1.3] and
[6, Tab. 5] there is no possibility. For p = 5 we have |v′| = 5, contrary to our assumption.

For G = E7 and p = 2 we have |v′| = 16 but all centralisers of such elements have
semisimple rank at most 1 by [9, §22]. When p = 3 and so |v′| = 9, the unipotent
classes A3, (A3 + A1)(1), (A3 + A1)(2), D4 and D4(a1) need to be discussed. Here the
semisimple parts of the centralisers have type B3A1, B3, A3

1, C3, A3
1, respectively. As X◦

is contained in one of those, and u has a single orbit on its set of simple components, X◦

must be of type A3
1. Now X = A3

1〈u〉 contains u3 acting as an inner element on A3
1, and

so u9 centralises A3
1. But by [6, Tab. D], u9 lies in class 4A1, with semisimple part of its

centraliser a C3-subgroup generated by long root subgroups, by [9, §22]. By Lemma 5.1,
X◦ must be a long root A3

1. There are two classes of Levi subgroups A3
1 in E7. Using

Borel–de Siebenthal one sees that one is centralised by an A4
1, the other by a D4. Thus

in any case, X◦CG(X◦) contains a subgroup of E7 of maximal semisimple rank, so the
normaliser of X◦ and all of its overgroups are reductive. But by [17, Thm A] there are
no such subgroups containing a regular unipotent element. For p = 5 we have |v′| = 5,
contrary to our assumption.

Finally, assume G = E8. For p = 2 we have |v′| = 16. Only the 17 unipotent classes

E6(a1), D6, E6, E6(a1) + A1, E7(a3), E8(b6), D7(a1), D7(a1)(2), E6 + A1,

E7(a2), E8(a6), D7, E8(b5), E7(a1), E8(a5), E8(b4), E8(a4)
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of G contain elements of order 16. Of these, only the first three cases have a semisimple
part of the centraliser of rank at least 2, of type A2, B2 and G2 respectively. So X◦ = A2

or A2
1, with u acting by the graph automorphism. In the second case, u4 centralises X◦

and lies in class D7(a2), but the latter has centraliser of rank 1. So in fact X◦ = A2. By
[9, Tab. 22.1.1], the remaining possible subgroups A2, G2 of CG(v′) are generated by long
root subgroups, and by Lemma 5.1, X◦ is contained in one of them. Now all subgroups of
type A2 of these are again generated by long root subgroups, hence so is X◦. Thus, the
centraliser of X◦ is of type E6, and so u acts on an E6A2, whose normaliser is a maximal
subgroup of E8. But since this does not appear in [17, Thm A], its normaliser does not
contain regular unipotent elements.

If p = 3 then |v′| = 27, but no unipotent element of order bigger than 9 has a centraliser
of semisimple rank at least 3. If p = 5 then |v′| = 25, but none of the seven unipotent
classes having centraliser of semisimple rank at least 5 contains elements of order 25.
Finally, for p = 7 we have |v′| = 7, which is not allowed here.

Case 2: We next consider the case that v := up acts by an inner automorphism on X◦,
and that X◦ does contain an element of order |v|.

When G = E6 and p = 2, then X◦ is a semisimple subgroup with an element of or-
der 8 having a non-trivial graph automorphism transitively permuting the simple factors.
Therefore, X◦ is one of A4, A5, D4, D5, G

2
2. By assumption X lies in a proper parabolic

subgroup of G with Levi factor L, and thus L contains one of the above groups, with the
image of u inducing a non-trivial graph automorphism of order 2. By rank considerations,
only X◦ = A4, D4 and G2

2 might occur. The minimal dimension of a representation of
X̄ = A4.2 on which A4 acts non-trivially is 10, so this cannot occur inside A5. This
representation embeds A4.2 into GO10, but not into SO10 by the block structures given in
Lemma 2.12. Also, the smallest faithful representation of G2

2 has dimension 12, too large
for any proper Levi subgroup. So in fact we must have X◦ = D4 inside a D5-parabolic.
Using [20, 3.2.6] one can check that this embedding is into a Levi factor, and so X◦ = D4

is a Levi subgroup of G. By [9, Tab. 22.1.3], no non-trivial unipotent element of G has a
D4 in its centraliser, so CG(X◦) is a torus, and then in fact it must be the centre T2 of a
Levi subgroup of type D4. As u acts on CG(X◦), Proposition 7.8 below implies that u4

must centralise T2. But u4 lies in the class 2A2 + A1 and has centraliser of rank 1 by [9,
Tab. 22.1.3], a contradiction.

For G = E6 and p = 3 with |v| = 9, we have that X◦ contains elements of order 9
and has an outer automorphism of order 3, so X̄ = D4.3. But the smallest faithful
representation of X has dimension 24, which is too large for containment in any proper
parabolic subgroup of G. For p = 5 where |v| = 5 the only option is that X◦ = A5

1. But
again by Borel–de Siebenthal no proper parabolic subgroup has a Levi factor containing
a group X with X̄ = A5

1.5.
For G = E7 with p = 2 the semisimple group X◦ has an element of order 16 and a

non-trivial graph automorphism, whence X◦ ∈ {D6, E6}. But clearly no Levi factor of a
proper parabolic subgroup of E7 can contain X with X̄ = D6.2 or E6.2. For p = 3 with
|v| = 9 the only possibilities with a graph automorphism of order 3 are X̄ = D4.3, B3

2 .3
and G3

2.3. All could only lie in a proper parabolic subgroup of type E6. But E6 has no
maximal rank subgroups B3

2 or G3
2 by Borel–de Siebenthal. When X̄ = D4.3, [7, Thm 5]

shows that X◦ is a Levi factor of G. Again by Borel–de Siebenthal there is a subgroup
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A3
1 centralising X◦ = D4, so NG(D4) ≥ D4A

3
1 is reductive. But by [17, Thm A], there is

no positive-dimensional maximal reductive subgroup of G containing a regular unipotent
element. For p = 5 again the only possibility is X◦ = A5

1. The only proper parabolic
subgroups whose Levi factor might contain X with X̄ = A5

1.5 are those of type D6. The
list in [17, Thm B] shows that there is no maximal reductive subgroup of D6 containing
a regular unipotent element of D6 and such an A5

1.
For G = E8 and p = 2 we have |v| = 16. The only semisimple groups of rank at most 7

with a unipotent element of order 16 and an even order graph automorphism are D6, D7

and E6. Now for X◦ = D6 or D7 the element v of order 16 acts as an inner element x of
order 8. Thus X◦ is centralised by the element vx−1 of order 16, which is not possible.
Assume X◦ = E6 and u induces a graph automorphism on E6. There is only one class of
subgroups E6 in E8 by [7, Thm 5] and hence X◦ is a Levi factor of G. Again, u normalises
the centraliser of such an E6, hence a subgroup E6A2, and as above this is not possible by
[17, Thm A]. If p = 3 then |v| = 27, and there is no possible case. When p = 5 or p = 7,
then X◦ must have at least p simple components, whence X◦ = Ap1. Now for p = 5, the
group A5

1 does not contain elements of order 25, so we have p = 7 and X◦ = A7
1. The

only proper parabolic subgroup of E8 with a Levi factor containing X with X̄ = A7
1.7 is

of type E7. By [11, Thm 4 and Tab. 17 and 18], such an A7
1 lies in a Levi factor E7. Now

the centraliser of that A7
1 contains the A1 centralising the E7-Levi subgroup. So again the

normaliser of X◦ in E8 has maximal semisimple rank, and [17, Thm A] shows that this
cannot contain regular unipotent elements.

Case 3: Finally, consider the case that up is not inner. Then either X◦ has at least
p2 components, or there are p components and on each of them up induces a graph
automorphism of order p. Either possibility forces rnk(X◦) ≥ p2, so p = 2. Furthermore,
v := u4 must act by an inner automorphism on X◦. When G = E6 then the possibilities
are X◦ = A4

1 or A2
2. In the first case, by Lemma 3.5 there exists an element of order 4

centralising an A4
1, which is not possible by [9, §22]. In the case X◦ = A2

2 and u acts as
an outer automorphism of order 4. The only Levi factor possibly containing a subgroup
X with X̄ = A2

2.4 is of type D5, but A2
2.4 contains elements of order 16 while D5 does

not have such elements. When G = E7 then |v| = 8; none of the groups A4
1, A2

2 and A2
3

contains elements of that order, so by Lemma 3.5 there is an element of G of order 8
centralising such a subgroup, which is not the case by [6] and [9]. Finally, when G = E8

then again |v| = 8, and the candidates for X◦ are A4
1, A2

2 and A2
3. Assume X̄ = A4

1.4, then
u4 acts by an inner automorphism so u8 centralises X◦. But u8 lies in class D4(a1) + A2

(there is a misprint in [6, Tab. D]), and its centraliser does not contain an A4
1. Similarly, if

X̄ = A2
2.4 then u16, in class 4A1, centralises X◦, which is not possible. The same argument

rules out X̄ = A2
3.4. This completes our case distinction and thus the proof. �

Theorem 1 now follows by combining Theorems 3.9, 4.7 and 5.2.

6. Regular unipotent elements in almost simple groups

We now extend our main result to the case of regular unipotent elements in cosets of
simple groups in almost simple groups.

Example 6.1. The regular unipotent elements in a coset xG◦ 6= G◦ of an almost simple
group G of “exceptional type” can be realized as follows:
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(a) The group D4.3 occurs as a subgroup of F4 in a natural way (see e.g. [15, Ex. 13.9]).
Now according to [6, Tab. 4] the only unipotent class of F4 for p = 3 containing elements
of order 27 is the class of regular unipotent elements. Also, the regular unipotent elements
in an outer coset of the disconnected group D4.3 have order 27 (see [13, Tab. 8]). Thus,
they are regular unipotent elements of F4.

(b) Similarly, the disconnected group E6.2 occurs inside the normaliser of a Levi sub-
group of type E6 inside E7. Again by [6, Tab. 7] the only unipotent class of E7 for p = 2
containing elements of order 32 is the class of regular unipotent elements, and since reg-
ular unipotent elements in the outer coset of E6.2 have order 32 (see [14, Tab. 10]), they
must be regular unipotent elements of E7.

We then obtain the following consequence of Theorem 1:

Corollary 6.2. Let G be almost simple of type Al.2, Dl.2 or E6.2 with p = 2, or of type
D4.3 with p = 3, and X = X◦〈u〉 ≤ G be a reductive subgroup with u a regular unipotent
element of uG◦ and [X◦, X◦] 6= 1. Then X does not lie in any proper subgroup P of G
such that P ◦ is a parabolic subgroup of G◦.

Proof. In each case, we embed G in a simple algebraic group H; namely, A2l.2 and Dl.2
embed into H := SL(V ) via their natural representation, G = A2l−1.2 embeds into H :=
D2l (see remarks before Lemma 2.12), and D4.3, E6.2, embed into H = F4, E7 respectively
under the embeddings given in Example 6.1. Applying Lemma 2.12 and Example 6.1,
we have that the embedding sends regular unipotent elements in an outer coset of G◦ to
regular unipotent elements of H. Now, if X lies in a proper subgroup P of G with P ◦

a parabolic subgroup of G◦ with Q = Ru(P
◦), then X ≤ NH(Q), and by the Borel–Tits

theorem, the latter lies in a proper parabolic subgroup of H. Thus, in all cases our claim
for the almost simple group G follows from Theorem 1 for the simple group H. �

Note that the type of subgroups P allowed for in the preceding statement are those
given by the most general possible definition of “parabolic subgroups of an almost simple
group”.

7. Regular unipotent elements in normalisers of tori

Here, we show that if one removes the hypothesis that [X◦, X◦] 6= 1 in Theorem 1, the
conclusion is no longer valid. More generally, for a simple group G we investigate the
structure of torus normalisers in G that contain a regular unipotent element and lie in
some proper parabolic subgroup of G.

7.1. Torus normalisers in SL(V ).

Proposition 7.1. Let X = T 〈u〉 ≤ SL(V ) where T is a torus and u is unipotent with
a single Jordan block. Then all weight spaces of T on V have the same dimension d.
Moreover X is contained in a proper parabolic subgroup of SL(V ) if and only if d > 1.

Proof. Since u normalises T , the weight spaces of T on V are permuted by u. Moreover
this action must be transitive as otherwise u would have at least two Jordan blocks on V .
Thus, they all have the same dimension, and if they are 1-dimensional, V is an irreducible
X-module and so X does not lie in any proper parabolic subgroup of G.
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Now assume the common dimension of the weight spaces is d > 1 and set m =
dim(V )/d. Since u has p-power order, the number of weight spaces, m, is a p-power.
It follows by Lemma 2.3 that um acts with a single Jordan block (of size d) on each
weight space. In particular, T centralises um 6= 1 and thus X ≤ CG(um) lies in a proper
parabolic subgroup of G by the Borel–Tits theorem ([15, Rem. 17.16]). �

Groups as in the previous result do in fact exist:

Proposition 7.2. Let n = pad be an integer, where a > 0. There exists a (pa − 1)-
dimensional torus T ≤ SL(V ), where dimV = n, with d-dimensional weight spaces on V ,
normalised by a unipotent element u ∈ SL(V ) with a single Jordan block. Moreover, T 〈u〉
lies in a proper parabolic subgroup of SL(V ) if and only if d > 1.

Proof. Decompose V = V1⊕· · ·⊕Vm into a direct sum of m := pa subspaces of dimension d.
Let x ∈ SL(V ) be the permutation matrix for a permutation sending an ordered basis of
Vi to an ordered basis of Vi+1 for i = 1, . . . ,m, where Vm+1 := V1. Then x has order m. For
i = 1, . . . ,m let Ti ≤ GL(Vi) be the torus of scalar matrices and u1 ∈ SL(V1) a unipotent
element with a single Jordan block. Set X ′ := 〈T1, u1, x〉 ≤ GL(V ). As x permutes the Ti
transitively and xm = 1 we have that X ′ is the wreath product of T1×〈u1〉 with 〈x〉, and

we can write elements of X ′ as (x1, . . . , xm;xj) for xi ∈ (T1〈u1〉)x
i−1

and some j. Then
the element u := (u1, 1, . . . , 1;x) has mth power um = (u1, . . . , u1; 1) which has m Jordan
blocks of size d on V . But then u must have a single Jordan block on V by Lemma 2.3.
Now with T := T1 · · ·Tm∩SL(V ) the subgroup T 〈u〉 is as in Proposition 7.1 and thus the
claim follows. �

7.2. Torus normalisers in Sp(V ) and GO(V ). We next discuss those classical groups
in which regular unipotent elements have a single Jordan block on the natural module,
that is, the types Bl, Cl and Dl.2 (see Lemma 2.12).

For this, note that weight spaces for non-zero weights of a torus T in Sp(V ) and SO(V )
are totally isotropic and totally singular, respectively, and weight spaces for weights χ, η
with χ 6= −η, are orthogonal to each other. To see this for SO(V ), let Q be the quadratic
form and β the associated bilinear form on V . Let χ 6= 0 be a weight of T with weight
space Vχ. Then for v ∈ Vχ, we have Q(v) = Q(tv) = Q(χ(t)v) = χ(t)2Q(v), for all t ∈ T .
Since there exists t ∈ T with χ(t2) 6= 1 we find Q(v) = 0. So non-zero weight spaces are
indeed totally singular. Further, for χ and η two weights of T and v ∈ Vχ, w ∈ Vη, we
have β(v, w) = β(tv, tw) = χ(t)η(t)β(v, w) for all t ∈ T , and if β(v, w) 6= 0 then χ = −η.
The argument for Sp(V ) is completely analogous.

Lemma 7.3. Let G = Bl or Cl with l ≥ 1 and X = T 〈u〉 ≤ G where T 6= 1 is a torus
and u is regular unipotent in G. Then p = 2.

Proof. Assume p 6= 2. Write V for the natural module of G and let V =
⊕r

i=1 Vi be
its T -weight space decomposition. Note that we have r ≥ 2 since Z(G)◦ = 1. Now u
permutes the Vi and hence their corresponding weights. As u acts as a single Jordan block
on V by Lemma 2.12, this action must be transitive, so r is a power of p. Since r ≥ 2
there is at least one non-zero weight χ. As we are in Sp(V ) or SO(V ), then −χ is also a
weight, so both χ and −χ lie in one u-orbit, contradicting that p 6= 2. �
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In the case p = 2, by the exceptional isogeny between Bl and Cl we need not consider
type Bl.

Proposition 7.4. Let p = 2, G = Sp(V ) or GO(V ) and X = T 〈u〉 ≤ G with T 6=
1 a torus and u having a single Jordan block on V . If V = V1 ⊕ · · · ⊕ Vr is the T -
weight space decomposition then the Vi are totally isotropic or totally singular, respectively,
and permuted transitively by u. Moreover, up to renumbering, there is an orthogonal
decomposition V = (V1 ⊕ Vr/2+1) ⊥ . . . ⊥ (Vr/2 ⊕ Vr).

Proof. As u has a single Jordan block, it permutes the Vi transitively and so r is a 2-
power. All Vi are totally isotropic or totally singular, respectively, by the remarks before
Lemma 7.3, and orthogonal to all other weight spaces that do not have opposite weight.
Further, if χ is a weight of T then so is −χ, and thus for a suitable numbering, Vi and
Vi+r/2 have opposite weights, for i = 1, . . . , r/2. Thus we obtain the claimed orthogonal
decomposition. �

Example 7.5. The situation nailed down in Proposition 7.4 does give rise to examples
within proper parabolic subgroups. To see this, let p = 2, G = GO(V ) with dimV = 2l,
where l = 2fm with m > 1 odd. By Lemma 2.12, for any odd m the stabiliser GLm .2 in
GO2m of a maximal totally singular subspace contains a unipotent element v with a single
Jordan block. This normalises T1 := Z(GLm), and v2 6= 1 centralises T1. Now embed

T1〈v〉 × · · · × T1〈v〉 ≤ H := GO2m× . . .×GO2m ≤ GO2l = GO(V )

(2f factors). The normaliser of H in GO2l contains an element x cyclically permuting the

factors. Set u := (v, 1, . . . , 1)x. By construction u2f = (v, . . . , v) has 2f Jordan blocks of

size 2m, so by Lemma 2.3, u has a single Jordan block on V , it normalises T := T 2f

1 , and

u2f+1 6= 1 centralises T . Thus, T 〈u〉 lies in a proper parabolic subgroup of GO(V ), as in
Proposition 7.4. Since Dl.2 ≤ Cl, this also provides examples in Cl.

7.3. Torus normalisers in SO(V ). Here we consider tori in Dl normalised by a regular
unipotent element.

Proposition 7.6. Let X = T 〈u〉 ≤ SO(V ) with dimV = 2l ≥ 8, T 6= 1 a torus and u
regular unipotent in SO(V ). Then p = 2 and if V = V1 ⊕ · · · ⊕ Vr is the T -weight space
decomposition then up to renumbering the Vi, we have one of:

(1) r = 2, l is even, u interchanges V1 and V2, and u2 acts with Jordan blocks of sizes
l − 1, 1 on both V1 and V2;

(2) u permutes V1, . . . , Vr−1 transitively (so r = 2s + 1 for some s ≥ 1) and Vr is the
0-weight space, with dimVr = 2; or

(3) 〈u〉 acts transitively on {V1, . . . , Vr−2} and on {Vr−1, Vr}, so r = 2s+2 for some s ≥ 0,
and Vr−1 and Vr are 1-dimensional weight spaces for opposed weights.

Proof. Let V =
⊕r

i=1 Vi be the decomposition of V into non-zero T -weight spaces. Note
that we have r ≥ 2 since Z(SO(V ))◦ = 1. From the block structure of u it follows that 〈u〉
has at most two orbits on the set of Vi. In addition, the sum of the weight spaces in one
of the orbits is of dimension at most 2. Since we are in SO(V ), if χ is a weight of T on V ,
then so is −χ. Now first assume that p is odd. Then χ and −χ can only lie in the same
u-orbit if χ = 0. So u has two orbits on the set of weight spaces, one of length r − 1 and



REGULAR UNIPOTENT ELEMENTS 31

the other of length 1. There is a non-zero weight χ in one of the orbits; the weight space
of −χ then lies in the other orbit. This forces dimV = 2, contrary to our assumption.

Thus we have p = 2. First assume u permutes the Vi transitively. Then ur stabilises
each Vi, and has same block sizes n1, . . . , ns on each of them. Since r is a 2-power, the
blocks of u on V then have sizes rn1, . . . , rns, whence r ≤ 2 and so r = 2. Since V1 and
V2 are both totally singular, X is contained in the stabiliser of a decomposition of V into
a sum of two maximal totally singular subspaces. If l is odd, then this stabiliser in SO(V )
fixes each Vi (see [5, Lemma 2.5.8]). Thus l is even, u interchanges V1 and V2 and u2 has
Jordan blocks as claimed in (1).

Next assume that u permutes V1, . . . , Vr−1 transitively. Then without loss of generality
dimVr = 2. If Vr is not the 0-weight space, then the opposite weight space must be one of
the other Vi, so r = 2, and dimV = 4, contradicting our assumption. So we arrive at (2).

Finally, assume that u permutes V1, . . . , Vr−2 transitively. Then dimVr−1 = dimVr = 1
and the corresponding weights are opposed and interchanged by u, which is (3) �

Example 7.7. We show that the cases in Proposition 7.6 do give rise to examples within
proper parabolic subgroups. So let p = 2.

(1) Let l be even, T be the 1-dimensional central torus of GLl inside the stabiliser GLl .2
in SO2l of a pair V1, V2 of maximal totally singular subspaces. Thus T acts by scalars on
both V1, V2. Then T is normalised by the outer elements of GLl .2 interchanging V1, V2.
Now by Lemma 2.12, a regular unipotent element u in the outer coset of GLl .2 has Jordan
blocks of sizes 2l − 2, 2, hence is regular unipotent in SO2l. Then X := T 〈u〉 lies in the
centraliser of the non-trivial unipotent element u2 ∈ GLl (non-trivial as soon as l−1 ≥ 2),
thus inside a proper parabolic subgroup. This is an example of (1) in Proposition 7.6.

(2) LetH = GO2l−2 GO2 ∩ SO(V ) be the stabiliser of an orthogonal decomposition of V ,
where dimV = 2l with l = 2s+1. Then by [17, Thm B(ii)(a)] there is a subgroup T 〈u〉 ≤
H, with T a maximal torus and u a regular unipotent element of SO(V ). We number the
weights χ1, . . . , χ2l of T on V such that u acts as the permutation (1, 2, . . . , 2l−2)(2l−1, 2l)
on these. For T1 = kerχ2l−1 ∩ kerχ2l, the group T1〈u〉 is an example for case (2). On the
other hand by taking the direct product of GO2 with a subgroup of GO2l−2 as constructed
in Example 7.5, and intersecting with SO(V ) we find an example for (3), and as in part (1)
we see that both lie inside proper parabolic subgroups.

(3) The example for SO6 = SL4 in Proposition 7.2 falls into case (3); this can be seen
from the weight spaces on the two modules, as the natural module for SO6 is the wedge
square of the natural module for A3.

We are not aware of examples of torus normalisers in disconnected groups Al.2 contain-
ing outer regular unipotent elements and lying in a proper parabolic subgroup.

7.4. Torus normalisers in simple exceptional groups. Finally, we investigate the
case of exceptional groups.

Proposition 7.8. Let T be a torus and u ∈ Aut(T ) of prime-power order pa. Then
dimT ≥ pa−1(p− 1).

Proof. We have Aut(T ) ∼= GLn(Z) with n = dimT . If u ∈ GLn(Z) has order pa then
it must have an eigenvalue ζ that is a primitive path root of unity. But then all Galois
conjugates of ζ are also eigenvalues of u, and there are ϕ(pa) = pa−1(p− 1) of these. �
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Remark 7.9. Let T be a torus in a connected reductive group G and u ∈ G a unipotent
element acting non-trivially on T . Then p divides the order of the Weyl group of G.
Indeed, by assumption u ∈ NG(T )/CG(T ) is non-trivial. As L = CG(T ) is a Levi subgroup
of G and NG(T ) ≤ NG(L), the claim follows with [15, Cor. 12.11].

Proposition 7.10. Let G be simple of exceptional type and X = T 〈u〉 < G with T a
non-trivial torus and u a regular unipotent element of G. Then one of the following holds:

(1) G = E6, p = 3, dimT = 2; or
(2) G = E7, p = 2, dimT = 1.

Proof. The regular unipotent element u induces a non-trivial automorphism ū of T , so by
the previous remark, p divides the order of the Weyl group of G.

Combining the p-power map on unipotent classes [6, Tab. D and E] and the structure
of centralisers [9, §22] we have compiled in Table 3 a list of the dimensions of maximal

tori in the centralisers CG(up
i
) for i ≥ 1 and up

i 6= 1.

Table 3. Ranks of centralisers CG(up
i
), i ≥ 1

p = 2 3 5 7
G2 0, 1 0
F4 0, 0, 2 0, 3
E6 0, 1, 4 2, 5 2
E7 1, 2, 4, 6 0, 3 1 2
E8 0, 1, 2, 4 0, 3, 7 0, 7 1

Now first consider G = G2. Then dimT ≤ 2, so ū has order at most 4 when p = 2, re-
spectively 3 when p = 3, by Proposition 7.8. Hence u4, respectively u3, must centralise T ,
which by Table 3 implies dimT = 1 and p = 2. But in that case, ū has order at most 2,
so u2 centralises T and we reach a contradiction to Table 3.

When G = F4, then dimT ≤ 4 and by Proposition 7.8, ū has order at most 8. Again
by Table 3 this gives that ū has order 8 and dimT ≤ 3, contradicting the bound in
Proposition 7.8.

For G = E6 with dimT ≤ 6 we have |ū| ≤ 8, 9, 5 when p = 2, 3, 5 respectively. For
p = 2, using Proposition 7.8 and Table 3 we find that dimT = 4 and ū of order 8 is
the only possibility. Here u8 lies in class 2A1 by [6, Tab. D], and its centraliser has
rank 4. Let L be an A2

1-Levi subgroup of G containing u8; it has connected centre Z(L)◦

of dimension 4, so this must be the torus T in CG(u8). Now u normalises T , so it also
normalises L = CG(T ), and thus [L,L] = A2

1. If u acts by an inner automorphism on
A2

1, then by Lemma 3.5 there is an element of order 16 centralising A2
1, but the only

elements of G of that order are regular, a contradiction. Therefore, it acts by a graph
automorphism on the A2

1 and u2 is inner and hence some element of order 8 centralises
A2

1. Again by [9] and [6] there is no element of order 8 in G with such a centraliser. So
this does not occur. Next, for the case p = 3 using Proposition 7.8 and Table 3 as above,
only dimT = 2 with ū of order 3 remains. So v := u3, in class D4(a1) by [6, Tab. D],
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centralises T , and we reach case (1) of the statement. The case p = 5 is not possible by
Table 3.

For G = E7 with Proposition 7.8 and Table 3 and arguing as above we are left with
the case that p = 2 and either dimT = 4 and ū has order 8, or dimT = 2 and |ū| = 4, or
dimT = 1 and |ū| = 2. The last case occurs in the conclusion, so we need to exclude the
former two. If dimT = 2 and |ū| = 4, then u4 centralises T and lies in class A4 +A1. Let
L be a Levi subgroup of this type containing u4. It has centre Z(L)◦ of dimension 2, so
this is in fact T . Now u normalises T and hence also [L,L] = A4A1. Now u2, of order 16,
acts as an inner element on this, and by Lemma 3.5 and using [6] and [9] we arrive at a
contradiction. The case where dimT = 4 is similar.

Finally for G = E8, the same line of argument as for the other groups shows that no
new configurations occur. �

Example 7.11. Both cases in Proposition 7.10 do actually lead to examples.
(a) Let G = E6 with p = 3. By [17, Thm A], there is a maximal subgroup H = D4T2.S3

of G containing a regular unipotent element u, with T2 E H a 2-dimensional torus. As
u3 6= 1 centralises T2, the subgroup T2〈u〉 of H then lies in a proper parabolic subgroup
and so yields an example for the situation in Proposition 7.10(a).

(b) Let G = E7 with p = 2. According to [17, Thm A] there is a maximal subgroup
H = E6T1.2 in G containing a regular unipotent element u, with T1 EH a 1-dimensional
torus. Then T1〈u〉 ≤ H yields an example for the situation in Proposition 7.10(b).
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