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Abstract. Geoffrey Robinson conjectured in 1996 that the p-part of character degrees
in a p-block of a finite group can be bounded in terms of the center of a defect group
of the block. We prove this conjecture for all primes p 6= 2 for all finite groups. Our
argument relies on a reduction by Murai to the case of quasi-simple groups which are
then studied using deep results on blocks of finite reductive groups.

1. Introduction

Which prime powers can occur as divisors of irreducible character degrees of finite
groups? This question has a long history with many important results and famous open
problems. In 1996 Geoffrey Robinson put forward a conjecture on the maximal power of
a prime that may divide a character degree. To formulate it, we need to introduce the
notion of defect of a character. Let G be a finite group and p be a prime. Then the p-defect
of an irreducible character χ ∈ Irr(G) is the integer def(χ) such that |G|p = pdef(χ)χ(1)p;
here np denotes the p-part of an integer n. The answer proposed by Robinson [28] is as
follows.:

Conjecture (Robinson). Let G be a finite group, p a prime and χ ∈ Irr(G) lying in a
p-block of G with defect group D. Then

pdef(χ) ≥ |Z(D)|, (RC)

with equality if and only if D is abelian.

The height of a character χ in a block with defect group D is defined to be the integer
ht(χ) such that χ(1)p|D| = pht(χ)|G|p. So the conjecture claims that

pht(χ) ≤ |D : Z(D)|
with equality if and only if D is abelian. For abelian defect groups D, this is the assertion
of the direction of Brauer’s famous height zero conjecture the proof of which has recently
been completed by Kessar and Malle [16]. Thus Robinson’s conjecture generalises this
direction of Brauer’s height zero conjecture. For G a p-group it reduces to the classical
assertion that χ(1) always divides |G : Z(G)|.

Already in 1941, Brauer [3] proved that pht(χ) ≤ |D|/p2 for blocks with non-abelian
defect group D, and in 1968 he showed [4] that pht(χ) ≤ |D|/ exp(Z(D)). In 1961, Fong [13]
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proved Robinson’s conjecture for the class of p-solvable groups, long before its formulation,
and in 1979, Watanabe [33] showed that in Fong’s result the inequality is always strict
when D is non-abelian.

Our main result is the following theorem.

Theorem 1. Robinson’s conjecture holds for all finite groups for all odd primes.

Our proof crucially relies on the reduction given by Murai [23, Thm. 4.6] of Robinson’s
conjecture to quasi-simple groups. We improve this reduction in Theorem 2.3 to show
that in fact any minimal counterexample has to occur for a block of a quasi-simple group.
We then appeal to the classification of finite simple groups and the deep results on the
block theory of these groups, as well as to the proven direction of Brauer’s height zero
conjecture, to verify that their blocks do not provide minimal counterexamples. While
we handle many quasi-simple groups for all primes, our restriction that p 6= 2 comes from
the fact that not enough seems yet to be known on quasi-isolated blocks of exceptional
groups of Lie type in bad characteristic. This case seems out of reach at present.

According to Robinson [28, Thm. 5.1] his conjecture would follow from a strengthened
form of Dade’s ordinary conjecture (see also Eaton [10]). In this sense our result can be
seen as further evidence towards Dade’s (yet unproven) conjecture.

Remark 1. It is always the case that the degree of an irreducible character divides the
index of any (maximal) abelian normal subgroup. The corresponding sharpening of (RC)
where Z(D) is replaced by a maximal abelian normal subgroup of D fails to hold, though.
The smallest counterexample is G = GL2(3) with p = 2.

The paper is built up as follows. In Section 2 we show that minimal counterexamples
occur for quasi-simple groups. We then deal with the sporadic and the exceptional cover-
ing groups in Section 3, and the alternating groups in Section 4. The groups of Lie type
for their defining prime are considered in Section 5. The non-defining good primes are
then dealt with in Section 6, while the case of odd bad primes is considered in Section 7.
In that final section we also give the proof of Theorem 1.

Acknowledgement: We thank the anonymous referees for some helpful remarks and for
alerting us to the early history of Robinson’s conjecture.

2. General results

Throughout this paper, we fix a prime p. Let ν be the exponential valuation associated
to p, normalised so that ν(p) = 1. For a finite group G and a subgroup H of G, we write
ν(G) and ν(G : H) for ν(|G|) and ν(|G : H|) respectively.

We start out by showing, based on the reduction of Murai [23] that a minimal counterex-
ample to Robinson’s Conjecture (RC) necessarily has to occur for a block of a quasi-simple
group. Let G be a finite group and B a p-block of G. We say that (G,B) is a minimal
counterexample to (RC) if (RC) fails for B but does hold for all p-blocks B1 of groups G1

with |G1/Z(G1)| < |G/Z(G)|. The following result [16, Thm 1.1] allows us to focus on
p-blocks of finite groups with non-abelian defect groups.
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Theorem 2.1 (Kessar–Malle). If B is a p-block of a finite group with abelian defect groups
then all ordinary irreducible characters in B have height zero. In particular, they satisfy
(RC).

Murai showed that if (RC) fails, then there is already a block of a quasi-simple group for
which the conjecture does not hold. In our proofs, we will show that blocks of quasi-simple
groups are not minimal counterexamples to (RC). Thus we need to make the connection
between Murai’s reduction and our results.

Lemma 2.2. Let G be a finite group. Assume that (RC) holds for all quasi-simple groups
L such that |L/Z(L)| ≤ |G/Z(G)|. Then no p-block of G is a minimal counterexample to
(RC).

Proof. Assume that some p-block of G is a minimal counterexample, so that G is non-
abelian. Let N be a subgroup of G such that Z(G) ≤ N and N/Z(G) is a maximal
normal subgroup of G/Z(G).

We claim that the condition of [23, Thm. 4.3] holds for N , i.e., that (RC) holds for
every p-block of every central extension of H/N for every subgroup H with N ≤ H ≤ G.
Let L1 be a central extension of H/N . If H < G, then |L1/Z(L1)| ≤ |H/N | < |G/Z(G)|,
hence the claim holds for L1 since G was chosen minimal. Thus we have that H = G,
and L1 is a central extension of the simple group G/N . If G/N is of prime order, then L1

is abelian, and (RC) is trivially true. If G/N is non-abelian simple, then L = [L1, L1] is
quasi-simple. Since |L/Z(L)| = |G/N | ≤ |G/Z(G)|, it follows by assumption that (RC)
holds for every p-block of L. Then (RC) holds for every p-block of L1 by the proof of [23,
Thm. 4.4], and the claim follows.

Now the result follows from the same argument as for [23, Thm. 4.6]. �

Theorem 2.3. Let p be a prime. If no p-block of a quasi-simple group is a minimal
counterexample to (RC), then (RC) is true for every p-block of any finite group.

Proof. If (RC) is true for all quasi-simple groups, then we are done by [23, Thm. 4.6].
Otherwise, assume that G is a quasi-simple group which is a counterexample to (RC)
with |G/Z(G)| minimal among quasi-simple groups. By assumption there exists a finite
group H such that (RC) does not hold for some p-block of H and |H/Z(H)| < |G/Z(G)|.
By Lemma 2.2, there is a quasi-simple group L such that |L/Z(L)| ≤ |H/Z(H)| and
(RC) does not hold for some p-block of L. However, we have |L/Z(L)| < |G/Z(G)|,
contradicting the choice of G. This completes the proof. �

Corollary 2.4. If no block of a quasi-simple group with cyclic center is a minimal coun-
terexample to (RC), then (RC) is true for all finite groups.

Proof. By Theorem 2.3 we may assume that a minimal counterexample to (RC) is a p-
block B of a quasi-simple group G. Let D be a defect group of B. Let χ ∈ Irr(B) and
K := ker(χ) ∩ Z(G). Then N := Op(K) ≤ D and D̄ = D/N is a defect group of the
p-block B̄ of G/K dominated by B. Let χ̄ ∈ Irr(B̄) such that χ is the inflation of χ̄.
Now clearly def(χ) = |N |def(χ̄), while |Z(D)| ≤ |N | · |Z(D̄)|, so B̄ is a counterexample
as well. As χ is irreducible, Z(G/K) is cyclic by Schur’s lemma. The claim follows. �
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3. Sporadic groups

In this section we verify Robinson’s conjecture for p-blocks of covering groups of the
sporadic simple groups, as well as for those of exceptional covering groups of groups of
Lie type. We start by recording some general observations.

Lemma 3.1. Let B be a p-block with defect group D such that |Z(D)| = p. Then Robin-
son’s conjecture holds for B.

Proof. If B contains characters of defect at most 1, then by a well-known result of Brauer
(see [3]) the block has defect 1, and the defect group D is cyclic, hence abelian. �

Corollary 3.2. Robinson’s conjecture holds for all p-blocks with a non-abelian defect
group of order p3.

For convenience we will also use the following result [29, Thm. 13.6]:

Theorem 3.3 (Sambale). Robinson’s conjecture holds for all 2-blocks with defect group
of order 16.

Lemma 3.4. Let N be a normal subgroup of G of p′-order. Write G = G/N . Let B be
a p-block of G, and B a p-block of G dominating B. If B satisfies Robinson’s conjecture
then so does B.

Proof. This is a direct consequence of [24, Thm. 9.9 (c)]. In fact, the sets Irr(B) and Irr(B)
are identified under inflation, and the defect groups of B and B are isomorphic. �

Theorem 3.5. Let G be quasi-simple such that S = G/Z(G) is one of the 26 sporadic
simple groups or 2F4(2)′. Then for all p, Robinson’s conjecture holds for all p-blocks of G.

Proof. By Theorem 2.1, we need only consider p-blocks of G with non-abelian defect
groups. It turns out that there are at most two kinds of such p-blocks in each case.
The blocks of defect 3 are not counterexamples by Lemma 3.2, nor are those of defect 4
when p = 2 by Theorem 3.3. The remaining blocks are listed in Table 1, where B is a
p-block of G with defect d, m is the maximal height of the irreducible characters in B and
νZ = ν(P : Z(P )) for some defect group P of B. We denote by B0 the principal p-block

of G, and the notation B
(j)
0 means that there are j p-blocks of G with the same invariants

d,m and νZ as the p-block B0.
Here are some details of how to construct the table. The heights and defects of blocks of

G are obtained from the GAP character table library [31]. The structure of defect groups
of many non-principal 2-blocks of sporadic simple groups and their covering groups is
given by Landrock [17]. (See also the proof of [16, Prop. 8.1].)

In some cases, the center of a Sylow p-subgroup of G is available using GAP [31] or
is shown in [30]. For the remaining cases, we apply one of the following straightforward
observations:

(1) If Q ≤ P , then ν(P : Z(P )) ≥ ν(Q : Z(Q)).
(2) If QE P , then ν(P : Z(P )) ≥ ν(P/Q : Z(P/Q)) + ν(Q : Z(Q)).

Also, we analyse the structure of the centraliser of some element in G of order p given in
[30] and the references therein.



ROBINSON’S CONJECTURE ON HEIGHTS OF CHARACTERS 5

Table 1. Blocks of sporadic simple groups with non-abelian defect d ≥ 4 + δ2,p

Group p (B, d) (m, νZ) Group p (B, d) (m, νZ) Group p (B, d) (m, νZ)

M12 2 (B0, 6) (3, 5) Fi22 2 (B0, 17) (11, 16) 3.Suz 2 (B
(3)
0 , 13) (9, 12)

2.M12 2 (B0, 7) (3,≥ 5) 3 (B0, 9) (5, 8) 3 (B0, 8) (3,≥ 5)

M22 2 (B0, 7) (3, 6) 2.F i22 2 (B0, 18) (11,≥ 16) 6.Suz 2 (B
(3)
0 , 14) (9,≥ 12)

2.M22 2 (B0, 8) (3,≥ 6) 3 (B
(2)
0 , 9) (5, 8) 3 (B

(2)
0 , 8) (3,≥ 5)

4.M22 2 (B0, 9) (5,≥ 6) 3.F i22 2 (B
(3)
0 , 17) (11, 16) O′N 2 (B0, 9) (5, 8)

3.M22 2 (B
(3)
0 , 7) (3,≥ 6) 3 (B0, 10) (6,≥ 8) 3.O′N 2 (B

(3)
0 , 9) (5, 8)

6.M22 2 (B
(3)
0 , 8) (3,≥ 6) 6.F i22 2 (B

(3)
0 , 18) (11,≥ 16) 3 (B0, 5) (2, 4)

12.M22 2 (B
(3)
0 , 9) (5,≥ 6) 3 (B

(2)
0 , 10) (6,≥ 8) HN 2 (B0, 14) (8,≥ 9)

M23 2 (B0, 7) (3, 6) Fi23 2 (B0, 18) (11, 16) 3 (B1, 6) (3,≥ 4)

M24 2 (B0, 10) (6, 9) 3 (B0, 13) (8, 12) 5 (B0, 6) (3,≥ 4)

J2 2 (B0, 7) (4, 6) Fi′24 2 (B0, 21) (14,≥ 18) Ly 2 (B0, 8) (5, 7)
2.J2 2 (B0, 8) (4,≥ 6) 3 (B0, 16) (10, 15) (B1, 7) (4, 6)

J3 2 (B0, 7) (4, 6) 3.F i′24 2 (B
(3)
0 , 21) (14,≥ 18) 3 (B0, 7) (3,≥ 5)

3 (B0, 5) (1, 3) 3 (B0, 17) (10,≥ 15) 5 (B0, 6) (3, 5)

3.J3 2 (B
(3)
0 , 7) (4, 6) HS 2 (B0, 9) (5, 8) Th 2 (B0, 15) (9,≥ 13)

3 (B0, 6) (2,≥ 3) 2.HS 2 (B0, 10) (5,≥ 8) 3 (B0, 10) (5, 9)
J4 2 (B0, 21) (14,≥ 18) McL 2 (B0, 7) (4, 6) B 2 (B0, 41) (29,≥ 35)

Co3 2 (B0, 10) (6, 9) 3 (B0, 6) (3, 5) 3 (B0, 13) (8, 12)

3 (B0, 7) (4, 6) 3.McL 2 (B
(3)
0 , 7) (4, 6) 5 (B0, 6) (3, 5)

Co2 2 (B0, 18) (13, 17) 3 (B0, 7) (3,≥ 5) 2.B 2 (B0, 42) (29,≥ 35)

3 (B0, 6) (3, 5) He 2 (B0, 10) (6, 9) 3 (B
(2)
0 , 13) (8, 12)

Co1 2 (B0, 21) (16,≥ 19) Ru 2 (B0, 14) (7, 13) 5 (B
(2)
0 , 6) (3, 5)

3 (B0, 9) (6, 8) 2.Ru 2 (B0, 15) (7,≥ 13) M 2 (B0, 46) (32,≥ 35)

5 (B0, 4) (2, 3) Suz 2 (B0, 13) (9, 12) 3 (B0, 20) (13,≥ 15)

2.Co1 2 (B0, 22) (16,≥ 19) 3 (B0, 7) (3, 5) 5 (B0, 9) (5,≥ 6)

3 (B
(2)
0 , 9) (6, 8) 2.Suz 2 (B0, 14) (9,≥ 12) 7 (B0, 6) (3,≥ 4)

5 (B
(2)
0 , 4) (2, 3) 3 (B

(2)
0 , 7) (3, 5) 2F4(2)′ 2 (B0, 11) (6, 10)

If G = J4 and P is a Sylow 2-subgroup of G, then |P | = 221 and according to [30]
the centraliser CG(z) of a 2-central involution z in G has the structure EM , where E
is an extra-special group 21+12

− and the derived subgroup M ′ has index 2 in M and is
isomorphic to the 6-fold cover of M22. So νZ ≥ 12 + 6 = 18.

If G = Co1 and P is a Sylow 2-subgroup of G, then |P | = 221 and G has a 2-central
involution z such that O2(C) is an extra-special group 21+8

− and C/O2(C) is isomorphic
to O+

8 (2), where C = CG(z). Since the Sylow 2-subgroups of O+
8 (2) have center of order

2, it follows that νZ ≥ 8 + 11 = 19.
If G = Fi′24 then Sylow 2-subgroups of G have order 221 and G has a central involution z

such that O2(C) is an extra-special group 21+12
− and C/O2(C) has a subgroup isomorphic

to 3.U4(3).2, where C = CG(z). Since a Sylow 2-subgroup of U4(3) has center of order 2,
it follows that νZ ≥ 12 + 6 = 18.

The Sylow 3-subgroups of 3.O′N are extra-special groups of order 31+8 and exponent 3.
Suppose G = HN . If P is a Sylow 2-subgroup of G, then |P | = 214 and the centraliser

of a 2-central involution of G is the extension of 21+8
− by the wreath product of A5 by

C2. This implies that νZ ≥ 9. If P is a Sylow 3-subgroup of G, then |P | = 36 and
the centraliser of a 3-central element of order 3 in G is a 3-constrained extension of the
extra-special group of order 35 by SL2(5). Therefore, we have νZ ≥ 5 in this case. This
also holds if P is a Sylow 5-subgroup of G.
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If G = Ly then G has a Sylow 2-subgroup isomorphic to that of 2.A11, hence νZ = 7
for the principal 2-block of G. Note that G has another 2-block with non-abelian defect
groups which are actually isomorphic to the Sylow 2-subgroups of 2.A8. So νZ = 6 in this
case. For p = 3, G has an element of order 3 whose centraliser in G is a faithful split
extension of a special group of order 36 and exponent 3 by SL2(5), which implies νZ ≥ 5
for B0. Finally, if P is a Sylow 5-subgroup of G, then we consider the centraliser of an
element of order 3 in G which has a subgroup isomorphic to a faithful split extension of
a special group of order 55 and exponent 5 by a cyclic group of order 5. It then follows
that νZ = 5 for B0.

Suppose G = Th. A Sylow 2-subgroup of G has order 215 and the centraliser of any
involution of G is a 2-constrained extension of 21+8

− by A9, which implies νZ ≥ 13 in this
case. If P is a Sylow 3-subgroup of G, then by [30], we have |Z(P )| = 3, and so νZ = 9.

Suppose G = B, the Baby Monster. If P is a Sylow p-subgroup of G, then we investigate
the maximal subgroups 2.2E6(2).2, Fi23 and HN.2 of G from [9] or [34, Table 5.7] to get
the desired estimate of νZ for the cases p = 2, 3 or 5, respectively.

Finally, suppose G = M , the Monster. For p = 2 we use the maximal subgroup 2.B
of G to obtain νZ ≥ 35. For p = 3 we look at the maximal subgroup 3.F i24 of G to
obtain νZ ≥ 15. According to [15, Tab. 5.3z] a Sylow 5-subgroup of G has an extra-
special subgroup 51+6 of exponent 5, hence νZ ≥ 6, and a Sylow 7-subgroup of G has an
extra-special subgroup 71+4 of exponent 7, hence νZ ≥ 4. Now the table is established,
finishing the proof. �

Theorem 3.6. Let G be an exceptional covering group of a simple group of Lie type or
of the alternating groups A6 or A7. Then Robinson’s conjecture holds for all p-blocks of
G for all primes p.

Table 2. Non-generic Schur multipliers

S M(S) S M(S) S M(S)
L2(4) C2 U4(3) C12 × C3 G2(3) C3

L3(2) C2 U6(2) C6 × C2 G2(4) C2

L2(9) C6 Sp6(2) C2 F4(2) C2

L3(4) C12 × C4 O7(3) C6
2E6(2) C6 × C2

L4(2) C2 O+
8 (2) C2 × C2 A7 C6

U4(2) C2
2B2(8) C2 × C2

Proof. The Schur multipliers of the groups mentioned in the theorem can be found in [9]
and [22, Table 24.3]. For convenience, we list them in Table 2. The character tables of all
these groups can be found in GAP [31], as well as the defects of p-blocks and the heights
of irreducible characters of G.

As we only list exceptional coverings, we do not consider the simple groups them-
selves, nor 2.L2(4) = 2.A5, 2.L2(9) = 2.A6, 2.L3(2) = 2.L2(7), 3.L3(4), 2.L4(2) = 2.A8,
2.U4(2) = 2. S4(3), 4.U4(3), 3.U6(2), 2.O7(3) or 3.2E6(2). Also, by Corollary 2.4 we only
need to look at coverings with cyclic center. Observe that when the universal covering
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Table 3. Blocks of exceptional covering groups with non-abelian defect
d ≥ 4

Group p (B, d) (m, νZ) Group p (B, d) (m, νZ) Group p (B, d) (m, νZ)

2.L3(4) 2 (B0, 7) (2,≥ 4) 2.U6(2) 2 (B0, 16) (10,≥ 14) 2.2B2(8) 2 (B0, 7) (3,≥ 4)

41.L3(4) 2 (B0, 8) (4,≥ 5) 3 (B
(2)
0 , 6) (3, 5) 3.G2(3) 2 (B

(3)
0 , 6) (3, 5)

42.L3(4) 2 (B0, 8) (4,≥ 5) 6.U6(2) 2 (B
(3)
0 , 16) (10,≥ 14) 3 (B0, 7) (3,≥ 4)

6.L3(4) 2 (B
(3)
0 , 7) (2, 4) 3 (B

(2)
0 , 7) (3,≥ 5) 2.G2(4) 2 (B0, 13) (6,≥ 10)

121.L3(4), 2 (B
(3)
0 , 8) (4,≥ 5) 2.Sp6(2) 2 (B0, 10) (6,≥ 7) 2.F4(2) 2 (B0, 25) (12,≥ 22)

122.L3(4), 2 (B
(3)
0 , 8) (4,≥ 5) 3 (B

(2)
0 , 4) (2, 3) 3 (B

(2)
0 , 6) (3, 5)

3i.U4(3), 2 (B
(3)
0 , 7) (4, 6) 3.O7(3) 2 (B

(3)
0 , 9) (4, 7) 2.2E6(2) 2 (B0, 37) (25,≥ 35)

i = 1, 2 3 (B0, 7) (3,≥ 5) 3 (B0, 10) (6,≥ 8) 3 (B
(2)
0 , 9) (5, 8)

6i.U4(3), 2 (B
(3)
0 , 8) (4,≥ 6) 6.O7(3) 2 (B

(3)
0 , 10) (6,≥ 7) 6.2E6(2) 2 (B

(3)
0 , 37) (25,≥ 35)

i = 1, 2 3 (B
(2)
0 , 7) (3,≥ 5) 3 (B

(2)
0 , 10) (6,≥ 8) 3 (B

(2)
0 , 10) (6,≥ 8)

12i.U4(3), 2 (B
(3)
0 , 9) (5,≥ 6) 2.O+

8 (2) 2 (B0, 13) (9,≥ 11)

i = 1, 2 3 (B
(4)
0 , 7) (3,≥ 5) 3 (B

(2)
0 , 5) (2, 3)

group has non-cyclic center, then often all cyclic p-subgroups of the center of a given order
are conjugate under the outer automorphism group [9], and then just one such extension
has to be considered in each case.

By Theorem 2.1 and Lemma 3.2 we may focus on p-blocks B of G with non-abelian
defect groups P of defect d ≥ 4. In particular, we have p = 2 or 3 and by Theorem 3.3
we may assume d ≥ 5 when p = 2. We list them in Table 3, where d,m, νZ , B0 and

B
(j)
0 have the same meaning as in Table 1. (Notice that in some cases we need to study

the centraliser of some p-element of G. Again, we do not try to get the exact number,
so sometimes the numbers in Table 3 are just lower bounds on νZ big enough for our
purpose.) �

4. Alternating groups

We next discuss alternating groups. For odd primes these have essentially been dealt
with by Bessenrodt and Olsson [1].

Theorem 4.1. Let H be quasi-simple such that H/Z(H) = An with n ≥ 5. Then for all
primes p, Robinson’s conjecture holds for all p-blocks of H.

Proof. By Theorem 3.6 we may assume that H = An or the 2-fold cover 2.An of An.
Bessenrodt and Olsson showed that Robinson’s conjecture holds for all p-blocks of 2.Sn,
for all primes p (see [1, Thm. 4.9]). Therefore, for p odd, the result follows by Lemma 3.4
and the Clifford theory with respect to p-blocks.

So now let p = 2. Let b be a 2-block of H. We first assume H = An. Let G be the
symmetric group Sn, B a 2-block of G covering b, and P a defect group of B. By the
proven Nakayama conjecture [25, Thm. 11.1], the 2-blocks of G are parameterised by the
2-cores of partitions of n. If B corresponds to a 2-core κ, then by [25, Prop. 11.3], P is

isomorphic to a Sylow 2-subgroup of S2w, where w := n−|κ|
2

is the so-called weight of B.
Let Q = P ∩ An, a defect group of b, isomorphic to a Sylow 2-subgroup of A2w.

If w ≤ 2 then Q is abelian, and if w = 3 then Q is non-abelian of order p3. For these
two cases, the result follows by Theorem 2.1 and by Corollary 3.2, respectively. So we
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may assume w > 3 in the following. Write w = 2a1 + · · · + 2at , where a1 > · · · > at > 0.
Then, if we denote by Xi = C2 o · · · o C2 the iterated wreath product of ai copies of the
group C2 of order 2, then by [25, Prop. 11.3], P is isomorphic to Xa1+1 × · · · × Xat+1.
Hence ν(P : Z(P )) = 2w − 2t. By [25, Prop. 11.9], the heights of characters in B are
bounded by w − t. So the heights of characters in b are also bounded by w − t, and thus
the result follows.

Now we assume H = 2.An and let G be a 2-fold cover 2.Sn of Sn. By [24, Thm. 9.10],
there is a bijection between the set of 2-blocks of G and those of Sn. If B corresponds
to a 2-block of Sn with weight w, then a defect group P is a Sylow 2-subgroup of 2.S2w,
hence a defect group Q of b is a Sylow 2-subgroup of 2.A2w. Note that we may assume
that w ≥ 2, and that the Sylow 2-subgroups of 2.A4 and 2.A6 are the quaternion groups
Q8, Q16 respectively. In addition, if w > 3 then by [32, Lemma 3.2], we have |Z(Q)| = 2.
Thus we always have |Z(Q)| = 2 for w ≥ 2. Now the result follows by Lemma 3.1. �

5. Groups of Lie type in their defining characteristic

In this section let G be a simple algebraic group of simply connected type over an
algebraically closed field of characteristic p and F : G → G a Steinberg endomorphism
such that G = GF is quasi-simple.

Theorem 5.1. Let B be a p-block of G = GF , where G is as above. Then B is not a
minimal counterexample to Robinson’s conjecture.

Proof. First note that we need not consider G of type A1 since Sylow p-subgroups of these
groups are abelian. Let q be the absolute value of the eigenvalues of F in its action on
the character group of an F -stable maximal torus of G. Let N be the number of positive
roots of the root system of G. First assume that G is not a Suzuki or Ree group. By the
results of Lusztig [18], for any χ ∈ Irr(G) there are integers aχ ≥ 0, nχ ≥ 1 and a product
of cyclotomic polynomials f ∈ Z[X] (in particular, f is not divisible by X) such that

χ(1) =
1

nχ
qaχf(q). (∗)

Let Aχ := aχ + deg(f) be the degree of the degree polynomial of χ. Then the Alvis–
Curtis–Kawanaka–Lusztig dual ψ := DG(χ) has the property that

ψ(1) = ± 1

nχ
qN−Aχf(q)

(see e.g. [18, (8.5.12)]). Now duality is an involution, so D2
G(χ) = DG(ψ) = χ, that is,

aχ = N − Aψ. Hence the precise power of p dividing χ(1) is qN−Aψ , with ψ = DG(χ).
We now claim that for all χ ∈ Irr(G) we have χ(1)p < qN−1 unless χ is the Steinberg

character of G (see e.g. [8, §6]). By what we said before, it is sufficient for this to see
that Aψ > 1 unless χ = DG(ψ) is the Steinberg character, that is, unless ψ = 1G. Clearly,
Aχ = 0 means ψ = 1G. The explicit formulas for Aψ given, for example, in [8, §13] show
that Aψ > 1 in all other cases.

Now the Steinberg character is of p-defect zero, so certainly does not provide a coun-
terexample. All other blocks have full defect, that is, any U ∈ Sylp(G) is a defect group

(see [7, Thm. 6.18]). Note that |U | = qN . Then |Z(U)| = q unless G is of type Bn(2f ),
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F4(2f ) or G2(3f ), while in the latter cases |Z(U)| = q2, see [15, Thm. 3.3.1]. Hence we
are done in the case when |Z(U)| = q as then

|G|p
χ(1)p

=
qN

χ(1)p
≥ qN

qN−Aψ
= qAψ > q = |Z(U)|.

In the cases when |Z(U)| = q2 it is again easy to check from the values of Aψ in [8, §13]
that here in fact χ(1)p < qN−2 unless χ is the Steinberg character, which again allows us
to conclude.

For the Suzuki and Ree groups, the above arguments do go through mutatis mutandis,
replacing, for example cyclotomic polynomials over Z by cyclotomic polynomials over
Z[
√
p]. Here we always have |Z(U)| = q2 (see [27, (5.6)], [26, Thm. 4.14]; note that in this

case q is not an integer), but again all aχ for χ not the Steinberg character are at most
N − 2. �

For primes p that are good for G, this result also follows from [14, Thm. 1].

6. Good primes

To conform with the usual notation in block theory of finite reductive groups, from
now on we change our notation and consider `-blocks, for a prime `, and let p denote the
characteristic of the underlying field of a linear algebraic group. Let us start out with the
following completely elementary observation, which can be thought of as an analogue of
(RC) for conjugacy class lengths:

Lemma 6.1. Let D be a non-abelian `-group. Then |CD(t)| > |Z(D)| for all t ∈ D.

Proof. If t ∈ Z(D) the claim holds. Else 〈Z(D), t〉 centralises t and has order larger than
|Z(D)|. �

Roughly speaking Robinson’s conjecture for groups of Lie type in cross characteristic
should be a consequence of this observation. In order to explain this, let us look at the
principal `-block B0 of a finite reductive group G in characteristic different from `. Then
Irr(B) ⊆ E`(G, 1) = ttE(G, t), where t runs over the `-elements of the dual group G∗.
Moreover, by the Jordan decomposition of characters, there are bijections Jt : E(G, t)→
E(CG∗(t), 1) with χ(1) = |G∗ : CG∗(t)|p′Jt(χ)(1). In particular, this means that χ and
Jt(χ) have the same defect in their ambient groups. Fix a Sylow `-subgroup D of G∗,
then any `-element t ∈ G∗ has a conjugate in D, and obviously |G∗ : CG∗(t)|` ≤ |D :
CD(t)| ≤ |D : Z(D)| by Lemma 6.1 with strict inequality when D is non-abelian. Thus,
for example, when all elements of Jt(Irr(B)∩ E(G, t)) have degree prime to `, the desired
conclusion follows (assuming that G and G∗ have isomorphic Sylow `-subgroups, or at
least, that their centers are of the same order).

6.1. Unipotent blocks. We now make this heuristic precise. For a prime ` not dividing q
we denote by d`(q) the order of q modulo ` when ` is odd, respectively the order of q
modulo 4 when ` = 2. We employ freely the notions from d-Harish-Chandra theory, like
d-split Levi subgroups, d-cuspidal pairs and d-Harish-Chandra series, as laid out in [5],
as well as the language of Lusztig series explained for example in [7, §8]. The following
estimate will prove useful:
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Proposition 6.2. Let H be connected reductive with Frobenius map F with respect to an
Fq-rational structure. Let ` be a prime and d = d`(q). Let χ ∈ E(HF , 1) be a unipotent
character in the d-Harish-Chandra series of the d-cuspidal pair (L, λ) of H. Then

|HF |`
χ(1)`

≥ |Z(L)F` |.

Proof. This follows directly from the character formula for unipotent characters in d-
Harish-Chandra series, see [21, Thm. 4.2]. �

For a prime ` we consider the following property of a connected reductive group G with
Frobenius map F with respect to an Fq-rational structure; here, d = d`(q):

(‡) For any d-split Levi subgroup L ≤ G, an F -stable reductive subgroup H ≤ G is
the centraliser of an `-element in C◦G([L,L])F if and only if its dual H∗ ≤ G∗ is
the centraliser of an `-element in C◦G∗([L

∗,L∗])F .

Lemma 6.3. Let G be simple, ` a good prime for G not dividing q. Then (‡) holds for G
unless when G is of type An−1 and either F is untwisted and `|(n, q − 1), or F is twisted
and `|(n, q + 1).

Proof. There is an isogeny π : G→ Gad with F -stable kernel, which on the level of finite
groups restricts to a homomorphism GF → GF

ad. This induces a bijection between the
sets of F -stable Levi subgroups of G and of Gad, preserving the property of being d-split.
By our assumptions on `, centralisers of `-elements in G are Levi subgroups. Also, by
our assumptions Z(G) has order prime to `, so the order of the kernel of π and the
index |GF

ad : π(GF )| are prime to `. Thus, π induces a bijection between centralisers of
`-elements in GF and GF

ad as required for (‡).
If G is not of type Bn or Cn, then Gad and (G∗)ad are isomorphic, and our claim

follows. For G = Sp2n all d-split Levi subgroups have the form L = Sp2m

∏
i GLni with

e
∑
ni + m = n, where e = d/(d, 2) (see [5, p. 49]) and C◦G([L,L]) = Sp2(n−k) for some

k ≥ m. Thus the claim for Sp2n follows by induction, and hence also for its dual SO2n+1,
and then by the preceding argument for all groups isogenous to these. �

Theorem 6.4. Let G be simple, ` > 2 a good prime for G different from the defining
characteristic of G, ` 6= 3 if GF = 3D4(q), 6̀ |(n, q − 1) if G is of type An−1 and F is
untwisted, and 6̀ |(n, q + 1) if G is of type An−1 and F is twisted. Then the unipotent
`-blocks of GF satisfy (RC).

Proof. Under our assumptions on `, by [6, Thm.] the unipotent `-blocks of G are in
bijection with the GF -conjugacy classes of d-cuspidal unipotent pairs (L, λ) of G, where
d = d`(q). We write b(L, λ) for the corresponding unipotent `-block of GF .

Let B = b(L, λ) be an `-block, and assume that χ ∈ Irr(B). Then by [6, Thm. (iii)]
there is an `-element t ∈ G∗F such that χ ∈ E(GF , t), and χ is a constituent of RG

H(t̂χt)
where H ≤ G is dual to H∗ := CG∗(t) and χt ∈ E(HF , 1). Moreover, χt lies in the
d-Harish-Chandra series of a d-cuspidal pair (Lt, λt) of H such that [L,L] = [Lt,Lt].

By Lemma 6.3, G satisfies (‡), so there is an `-element t′ ∈ C◦G([L,L])F = C◦G([Lt,Lt])
F

with centraliser H. According to [6, Thm. (ii)] any Sylow `-subgroup D of C◦G([L,L])F

is a defect group of b(L, λ). Since Z◦(Lt) ≤ C◦H([Lt,Lt]) ≤ C◦G([Lt,Lt]) we may assume
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Z◦(Lt)
F
` ≤ D. Then

Z(D) ≤ CD(Z◦(Lt)
F
` ) ∩H = D ∩ CH(Z◦(Lt)

F
` )F = D ∩ LFt

≤ C◦G([Lt,Lt])
F ∩ LFt = C◦Lt([Lt,Lt])

F = Z◦(Lt)
F

using that CH(Z◦(Lt)
F
` ) = Lt since Lt is d-split in H (see [6, Prop. 3.3(ii)]). As D is an

`-group, this shows that Z(D) ≤ Z◦(Lt)
F
` . With Proposition 6.2 this yields

`def(χ) =
|GF |`
χ(1)`

=
|HF |`
χt(1)`

≥ |Z(Lt)
F
` | ≥ |Z(D)|.

Moreover this inequality is strict unless Z(D) = Z◦(Lt)
F
` . But in the latter case all

elements of D centralise Z◦(Lt)
F
` , so lie in CH(Z◦(Lt)

F
` ) = Lt, whence

D ≤ LFt ∩ C◦G([Lt,Lt])
F = C◦Lt([Lt,Lt])

F ≤ Z(Lt)

is abelian. �

6.2. Linear and unitary groups for odd primes. We now turn to groups of type An−1.
We may and will assume that `|n, as otherwise we are in the situation of Theorem 6.4.
As customary we let GLn(−q) denote GUn(q), and similarly for SLn(−q).

We will need the following inequalities between coefficients of `-adic expansions:

Lemma 6.5. Let ` > 2 be a prime and a ≥ 1 an integer. Let n be a positive integer with
`-adic expansion n =

∑
i ai`

i, where a0 = 0. Suppose n =
∑

j nj`
bj with nj > 0, bj ≥ 0.

Set si :=
∑

j|bj=i nj. Then

a
∑
i

(si − ai) +
∑
j

njbj > k + 1

where k = min{a, bj}, unless ai = si for all i and either n = `k, or n = 2` and k = 1.

Proof. Note that n =
∑

j nj`
bj =

∑
i si`

i. Clearly we can get from the `-adic expansion of

n to the representation n =
∑

i si`
i by repeatedly replacing a summand `i by ` summands

`i−1, and each such step does increase the coefficient sum by ` − 1. Thus if (ai)i 6= (si)i
then

∑
i(si − ai) ≥ `− 1 ≥ 2 and hence

a
∑
i

(si − ai) +
∑
j

njbj ≥ 2a+
∑
j

njbj > k + 1

as claimed (since k = 0 if all bj = 0).
So now assume that ai = si for all i, that is, the nj with bj = i sum to ai. As a0 = 0

this means that bj > 0 for all j. Then∑
j

njbj > k + 1

unless there is exactly one non-zero bj = k, and nj ≤ 2, with bj = 1 when nj = 2. �

Lemma 6.6. Let ` > 2, ε ∈ {±1}, G̃ = GLn(εq) and G = SLn(εq), with (q − ε)` = `a.
Let D̃, D = D̃ ∩G be Sylow `-subgroups of G̃, G respectively.

(a) Then |Z(D̃)| = `a
∑
ai and |Z(D)| = |Z(D̃)|/`a−k where n =

∑
ai`

i is the `-adic
expansion of n and k = min{a, i | ai 6= 0}.
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(b) Let 1 6= Z ≤ O`(Z(G)) and assume that (n, `a) 6= (3, 3). Then |Z(D/Z)| ≤
`|Z(D)/Z| with strict inequality if n 6= `k.

Proof. We assume ε = 1, the case ε = −1 being entirely similar. A Sylow `-subgroup P
of GL`i(q) is an iterated wreath product C`a oC` o · · · oC` (with i factors C`). Let B = C`i

`a

denote its base group. There is a complement R to B in P consisting of permutation
matrices, hence lying in SL`i(q) as ` is odd. Then Z(P ) is contained inside B, as R acts
faithfully by permutations on the set of cyclic factors of B. It is clear that Z(P ) is just
the central diagonal subgroup Z0

∼= C`a of B. Then R still acts faithfully on the quotient
B/Z0. Direct computation shows that the elements of B whose image is central in P/Z0

are of the form (a, a, . . . , az, az, . . . , az2, az2, . . .) with blocks of length `i−1 and z of order
dividing `. Thus |Z(P/Z0)| = `.

Now for n arbitrary, D̃ is contained in a block diagonal subgroup
∏

i GL`i(q)
ai of G̃.

From the above description we see that Z(D̃) is the product of the central `-subgroups of
the factors and that Z(D) = Z(D̃) ∩G. Then the determinant condition gives (a).

Part (b) also follows from the above observations when n = `i. When the `-adic
expansion of n has at least two summands, again a direct computation shows that
Z(P/Z) = Z(P )/Z = Z0/Z for any Z ≤ Z0, as claimed. �

Lemma 6.7. Assume that 2 < `|(n, q − ε). Let χ be a unipotent character of GLm(εq).
Then def(χ) ≥ ma where `a = (q − ε)`.

Proof. The degree polynomial of χ is not divisible by x− ε, while x− ε divides the order
polynomial of GLm(εq) exactly m times. Thus `def(χ) ≥ (q − ε)m` = `ma. �

Theorem 6.8. Let G = SLn(εq), let ` > 2 and assume that `|(n, q − ε). Then for any
Z ≤ Z(G) the unipotent `-blocks of G/Z do not provide counterexamples to (RC).

Proof. First assume that ε = 1, so G = SLn(q). As `|(q − 1), the principal block B is
the unique unipotent `-block of G [7, Thm. 22.9]. Let B̃ denote the principal `-block
of GLn(q). Then the characters in Irr(B) are constituents of the restriction to G of the
characters in Irr(B̃). Let χ̃ ∈ Irr(B̃). Then there is an `-element t ∈ GLn(q) with

χ̃ ∈ E(G̃, t). The centraliser H := CGLn(t) of t has the rational form HF =
∏

j GLnj(q
`bj )

for suitable integers nj, bj with
∑

j nj`
bj = n. The unipotent characters of HF are just

the outer tensor products of the unipotent characters of the various factors. Using that

`a+bj is the precise power of ` dividing q`
bj − 1 we thus get with Lemma 6.7

def(χ̃) ≥
∑
j

nj(a+ bj) = a
∑
i

si +
∑
j

njbj,

where si is the sum over all nj with bj = i. By Lemma 6.6 the center of a Sylow `-

subgroup D̃ of GLn(q) has order `a
∑
ai , where n =

∑
i ai`

i is the `-adic expansion of n.
Thus we are in the situation of Lemma 6.5. First assume that we are not in one of the
exceptions mentioned there. Then `def(χ̃) > `k+1|Z(D̃)| with k = min{a, bj}. Let χ be a

constituent of χ̃|G and D = D̃ ∩ G a Sylow `-subgroup of G. Then `def(χ) > `|Z(D)| by
Lemma 6.6(a). Now let Z ≤ Z(G) be a central `-subgroup in the kernel of χ. Then for
a Sylow `-subgroup D̄ = D/Z of G/Z we have |Z(D̄)| ≤ `|Z(D)|/|Z| when n 6= `k by
Lemma 6.6(b), whence `def(χ) > |Z(D̄)| for G/Z as claimed.
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Now assume that n = 2` and k = 1. Then we still get `def(χ̃) > `k|Z(D̃)|. Since in this
case |Z(D̄)| = |Z(D)|/|Z| we may conclude as before. Finally, assume that n = `k, with
k ≤ a. Here HF = GL1(qn), and χ̃ decomposes into n = `k characters upon restriction
to G, so def(χ) = 2k. Furthermore, |Z(D̄)| = |Z(D)|/`k−1. If k > 1 this implies that
`def(χ̄) ≥ `k > |Z(D̄)|, for χ̄ ∈ Irr(G/Z) a character with inflation χ. When k = 1, χ is
faithful and so does not descend to any proper quotient of G. In the excluded case that
n = `a = 3 and Z 6= 1 the Sylow 3-subgroups of G/Z are abelian.

The proof for SUn(q) is completely analogous, with q− 1 replaced by q+ 1 throughout.
�

7. Exceptional groups

In this section we consider blocks of exceptional groups for non-defining primes. We
first get the Suzuki and Ree groups out of the way.

Proposition 7.1. Let G be quasi-simple such that S := G/Z(G) is one of the following
groups: 2B2(q2) with q2 = 22m+1 > 2, 2G2(q2) with q2 = 32m+1 > 3, or 2F4(q2) with
q2 = 22m+1 > 2. Then Robinson’s conjecture holds for all p-blocks of G.

Proof. If p is the defining characteristic of G, we conclude by Theorem 5.1.
If S = 2B2(q2) with q2 = 22m+1 > 2, then by Theorem 3.6 we may assume that

Z(G) = 1. Here, all Sylow subgroups for odd primes are cyclic. Similarly, if G = 2G2(q2)
with q2 = 32m+1 > 3, then Z(G) = 1 and again all Sylow p-subgroups for primes p 6= 3
are abelian.

Finally, suppose G = 2F4(q2) with q2 = 22m+1 > 2. For p = 3, the 3-blocks of G have
been determined in [19]. In particular, we only need to consider the principal 3-block B0.
By [20, Prop. 1.2(1)], we have |Z(P )| = 3, hence (RC) holds for 3-blocks of G by Lemma
3.1. Thus (RC) holds for all p-blocks of G = 2F4(q2) for all primes p. �

7.1. Unipotent blocks. Let G be a simple algebraic group with a Frobenius endomor-
phism F : G → G such that G := GF is a finite quasi-simple exceptional group of Lie
type. We investigate `-blocks of GF for primes ` > 2 different from the defining char-
acteristic of G, and we assume, moreover, that ` is a bad prime for G, or ` = 3 for
G = 3D4(q).

We first discuss unipotent blocks. Again, we only need to consider those of non-abelian
defect. For the principal block, one needs to determine |Z(P )| for P ∈ Syl`(G). For all
groups except for type E6 and ` = 3, and for type E7 and ` = 2, Sylow `-subgroups of G
and G∗ are isomorphic as G ∼= G∗.

Proposition 7.2. Let G be quasi-simple of exceptional Lie type. The structure of cen-
tralisers of `-central semisimple `-elements t ∈ G, where ` > 2 is a bad prime for G, and
the size of Z(P ) for P ∈ Syl`(G) are as given in Table 4.

Proof. The centralisers of semisimple elements in G can be classified with the algorithm of
Borel–de Siebenthal. It turns out that the only centralisers CG(t) of `-elements t /∈ Z(G)
of `′-index in G are as listed in Table 4. (In fact, these can also be found on the website
of Frank Lübeck.)
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Table 4. Centers of Sylow `-subgroups P ∈ Syl`(G)

G ` CG(t) |Z(P )|
G2(q) 3 A2(εq) 3
3D4(q) 3 A2(εq)(q2 + εq + 1) 3
F4(q) 3 A2(εq)2 3
E6(δq) 3 E6(δq) (ε = δ) 3

3 A2(q2).A2(εq) (ε = −δ) 3
E6(δq)/Z 3 A2(δq)3 (ε = δ) 3
E7(q) 3 E6(εq).(q − ε) (q − ε)3

E8(q) 3 E6(εq).A2(εq) 3
5 A4(ηq)2 (q2 ≡ 1 (5)) 5
5 2A4(q2) (q2 ≡ 4 (5)) 5

Here ε, δ, η ∈ {±1} with q ≡ ε (mod 3) and q ≡ η (mod 5).

Now if P ∈ Syl`(G) and t ∈ Z(P ) then CG(t) has `′-index in G. Thus t occurs in the
table, and P ≤ CG(t). Then |Z(P )| can be read off from the structure of CG(t). �

Lemma 7.3. Let G be quasi-simple of exceptional Lie type. If G has a non-principal
unipotent `-block of non-abelian defect for a bad prime ` > 2, then ` = 3 and the block
and its defect groups are as given in Table 5.

Table 5. Non-principal unipotent 3-blocks of non-abelian defect

G (L, λ) D |Z(D)|
E6(εq) (D4, ζε) C2

(q−ε)3 .3 3

E7(q) (D4, ζε) C3
(q−ε)3 .3 (q − ε)3

E8(q) (D4, ζε) C4
(q−ε)3 .3

2 3

Here ε ∈ {±1} with q ≡ ε (mod 3).

Proof. The non-principal unipotent `-blocks of exceptional groups were determined by
Enguehard [11]. In Table 5 we label these blocks by the smallest Harish-Chandra vertex
(L, λ) above which (some of) their unipotent characters lie, in the notation of loc. cit. The
defect groups are described in [11]. From this, the information on the center can readily
be derived. For example, for G = E8(q) and ` = 3, [11, p. 364] states that a defect group
D is isomorphic to a Sylow 3-subgroup of F4(q), whence |Z(D)| = 3 by Table 4. �

Proposition 7.4. The unipotent `-blocks of quasi-simple groups of exceptional Lie type
for bad primes ` 6= 2 do not provide counterexamples to Robinson’s conjecture.

Proof. Let G be quasi-simple of exceptional Lie type, ` > 2 be a bad prime for G and B
a unipotent `-block.
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If B is the principal `-block of G, then by Lemma 3.1 we may assume that Z(P ) is of
order at least `2, where P is a Sylow `-subgroup of G. Thus, by Table 4 we may assume
that G is in fact simple, and of type E7 with ` = 3.

Assume first that q ≡ 1 (mod 3). Here, according to Enguehard’s description in [11,
Thm. B], a character χ ∈ E(G, t) lies in the principal 3-block if t is a 3-element and
moreover the Jordan correspondent of χ in E(CG∗(t), 1) lies in a Harish-Chandra series
with Harish-Chandra vertex either a torus or a Levi subgroup of type E6. First assume
that χ has Harish-Chandra vertex E6. Then H = CG∗(t) has a Levi subgroup of type
E6 and thus is of type E6 or E7. Then the formula for Jordan decomposition shows that
Φ1Φ3

3Φ9 divides |G|/χ(1) and so |G|3/χ(1)3 ≥ 34(q− 1)3. If χ has trivial Harish-Chandra
vertex then by the same argument we are done when H has Fq-rank at least 2. Note that
H has Fq-rank at least 1 as by Table 4 every 3-element centralises a split torus of rank 1.
Now if H has Fq-rank equal to 1, then all of its unipotent characters have degree prime
to 3, and it is easy to see that |G : χ(1)|3 ≥ 3(q − 1)3 > |Z(P )|.

Let us now consider the non-principal unipotent blocks listed in Table 5. Here only
G = E7(q) with ` = 3 is relevant, with B the block whose characters have Harish-
Chandra vertex D4. As before, by [11, Thm. B] the characters in B lie in E(G, t) for
3-elements t whose centraliser H = CG∗(t) either has a split Levi subgroup of type D4, or
HF = Φ1Φ3.

3D4(q) (see [11, Prop. 17]). In either case |G|/χ(1) is divisible by 3(q − 1)3,
sufficient for our claim.

The same line of argument applies when q ≡ −1 (mod 3). �

7.2. Isolated 5-blocks in E8(q). We now consider certain 5-blocks. Recall that an
element t ∈ G∗F is called quasi-isolated if CG∗(t) is not contained in any proper F -stable
Levi subgroup of G∗. It is isolated if C◦G∗(t) is not contained in a proper F -stable Levi
subgroup.

Proposition 7.5. Let B be an isolated 5-block of G = E8(q). Then B is not a minimal
counterexample to (RC).

No. CG∗(s)
F L WGF (L, λ) |Z(D)|

1 D8(q) Φ8
1 D8 (q − 1)4

5

3 E7(q)A1(q) Φ8
1 E7 × A1 (q − 1)4

5

7 D5(q)A3(q) Φ8
1 D5 × A3 (q − 1)4

5

10 A7(q)A1(q) Φ8
1 A7 × A1 (q − 1)4

5

13 A8(q) Φ8
1 A8 (q − 1)4

5

16 E6(q)A2(q) Φ8
1 E6 × A2 (q − 1)4

5

25 A5(q)A2(q)A1(q) Φ8
1 A5 × A2 × A1 (q − 1)4

5

Table 6. Isolated 5-blocks in E8(q), q ≡ 1 (mod 5)

Proof. Let d = d5(q) be the order of q modulo 5. The isolated non-unipotent 5-blocks of
G were determined in [16, Prop. 6.10]. The ones of non-abelian defect are listed in Table 6
for d = 1. For d = 2 one obtains their Ennola duals, while there are none when d = 4.
Let s ∈ G be an isolated 5′-element. One of the results in [16] is that the intersections
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of the 5-blocks with E(G, s) are exactly the d-Harish-Chandra series. Unfortunately, the
subdivision of the whole of E5(G, s) into 5-blocks was not determined in [16]. We claim
that the analogue of [6, Thm. (iii)] and [11, Thm. B] continues to hold. That is, for any
5-element t ∈ CG(s) the intersections of the 5-blocks in E5(G, s) with the Lusztig series
E(G, st) coincide with the d-Harish-Chandra series.

Let H = CG∗(s) as in Table 6. Then 5 is a good prime for H and does not divide
|Z(H)F |, so the centralisers of all 5-elements in HF are Levi subgroups of H and hence
of G∗, and in fact d-split Levi subgroups of H. According to the argument given on
p. 368 of [11] to show our claim it suffices to verify the validity of the analogues of
Propositions 20 and 22 in loc. cit. in our situation. For Proposition 20 this holds by
part (a) of the argument given there. Indeed, by inspection the centraliser of any 5-
element in H is either d-split, or classical of rank at most 3 and with just one unipotent
5-block. Proposition 22 continues to hold here by part (c) of its proof, as we had just
seen above that the centralisers of 5-elements t ∈ HF are Levi subgroups. This proves
the claim.

Thus, the 5-blocks listed in Table 6 only contain characters χ ∈ E(G, st) that lie in
the principal d-series, and their defect groups are Sylow 5-subgroups of HF . We can then
argue exactly as in the proof of Theorem 6.4 to prove our assertion. �

7.3. Quasi-isolated 3-blocks.

Theorem 7.6. Let B be a quasi-isolated 3-block of a quasi-simple exceptional group of
Lie type. Then B is not a minimal counterexample to (RC).

Proof. Let G be a quasi-simple exceptional group of Lie type and d = d3(q). The isolated
non-unipotent 3-blocks of G were determined in [16]. For most of those blocks we can
apply exactly the same argument as in the proof of Proposition 7.5. Let s ∈ G∗F be a
quasi-isolated 3′-element and H = CG∗(s). If H has only classical factors, then 3 is a
good prime for H and we may conclude by noticing that the analogues of Propositions 20
and 22 in [11] are satisfied. The only cases for which this approach fails are when H has
a factor of type E6 (in G of type E7), or of type E7 (in G of type E8).

G No. CG∗(s)
F LF λ WGF (L, λ)

E7 8 Φ1.E6(q).2 Φ7
1 1 E6.2

9 Φ3
1.D4 D4[1] A2.2

Φ1.E6 E6[θ±1] 2
10 Φ2.

2E6(q).2 Φ4
1.(A

3
1)′ 1 F4

E7
2E6[θ±1], 2E6[1] 1

11 Φ1.D6 φ321 A1

E8 3 E7(q)A1(q) Φ8
1 1 E7 × A1

4 Φ4
1.D4 D4[1] C3 × A1

Φ2
1.E6 E6[θ±1] A1 × A1

5 Φ1.E7 E7[±ξ] A1

Table 7. Harish-Chandra series in some quasi-isolated 3-blocks, q ≡ 1 (mod 3)
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Let us consider these cases, listed from [16, Tab. 4 and 6] in Table 7 for d = 1 (for
d = 2 again we have the Ennola dual situations). Blocks 8 and 9 for E7(q) have defect
groups with centers of the same size (q− 1)3, so for our question we do not need to know
the precise block distribution. Block 10 has defect groups with center of order 3, while
defect groups for block 11 are abelian, so (RC) holds for these blocks independent of the
block distribution.

Finally assume that G = E8(q) and s ∈ G∗F is an isolated involution with H = CG∗(s)
of rational type E7(q)A1(q). Here block 5 has abelian defect groups, and the size of the
centers of the defect groups of blocks 3 and 4 is not smaller than for block 5, so we need to
be more careful. Now note with Proposition 6.2 that the only characters in E3(G, s) with
potentially too small defect are those lying in the Harish-Chandra series of a cuspidal
character of type E7[±ξ]. Such characters occur in E(G, st) only for 3-elements t ∈ HF

with CG∗(st) of rational type E7(q).Φ1. But this is a proper 1-split Levi subgroup of H,
and thus Proposition 20 of [11] continues to hold by (b) of its proof, and Proposition 22
by (c) of its proof. Hence all characters in E3(G, s) lying in Harish-Chandra series above
E7[±ξ] fall into block 5, and we may conclude as in the previous cases. �

We are now ready to prove our main result.

Proof of Theorem 1. According to Theorem 2.3 we have to show that no p-block of a
quasi-simple group G is a minimal counterexample to Robinson’s conjecture. We invoke
the classification of finite simple groups. If G is a covering group of a sporadic simple
group or of 2F4(2)′, the claim holds by Theorem 3.5. For G a covering group of an
alternating group An, n ≥ 5, we showed the assertion in Theorem 4.1. Thus, G is such
that S = G/Z(G) is simple of Lie type. If G is an exceptional covering group, then we
are done by Theorem 3.6.

It remains to consider the case when G is a non-exceptional covering of a simple group
of Lie type S = G/Z(G), and G 6= 2F4(2)′. The Suzuki and Ree groups have been handled
in Proposition 7.1. Thus, without loss we may assume that G = GF for G a simple
algebraic group of simply connected type with a Frobenius endomorphism F . If p is the
defining characteristic of G, then the claim is in Theorem 5.1. So now assume that ` is
not the defining characteristic, and B is an `-block of G. By Corollary 2.4 we may assume
that G has cyclic center. Then by the reduction theorem of Bonnafé, Dat and Rouquier
[2, Thm. 7.7] we may assume that B is in fact an isolated block of G, as otherwise it is
Morita equivalent to an `-block of a strictly smaller group with the same defect group
and thus cannot be a minimal counterexample. Observe that the Bonnafé–Dat–Rouquier
Morita equivalence is compatible with Lusztig series and thus with central characters.
Hence it carries over to blocks of central quotients of G.

By the result of Enguehard [12, Thm. 1.4], if B is isolated but not unipotent, and `
is good for G, not equal to 3 when G = 3D4(q), then there exists a height-preserving
bijection between Irr(B) and the characters in an `-block with isomorphic defect group of
a strictly smaller group, if the Mackey formula does hold for G. The only simple groups
for which the Mackey formula is not known to hold are 2E6(2), E7(2) and E8(2), but for
these, all Sylow `-subgroups for good primes ` are abelian. We are hence left to consider
unipotent blocks, as well as isolated blocks for primes ` > 2 which are bad for G.
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If ` is good for G, then the unipotent blocks are treated in Theorem 6.4, respectively in
Theorem 6.8 for groups of type A. The only groups for which 5 is a bad prime are those of
type E8, and their isolated 5-blocks have been handled in Propositions 7.4 and 7.5. Finally,
the isolated 3-blocks of exceptional groups do not provide minimal counterexamples to
(RC) by Theorem 7.6. �
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(1993), 7–92.
[6] M. Cabanes, M. Enguehard, On unipotent blocks and their ordinary characters. Invent. Math.

117 (1994), 149–164.
[7] M. Cabanes, M. Enguehard, Representation Theory of Finite Reductive Groups. Cambridge

University Press, Cambridge, 2004.
[8] R. Carter, Finite Groups of Lie type: Conjugacy Classes and Complex Characters. Wiley, Chich-

ester, 1985.
[9] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite

Groups. Oxford University Press, London, 1984.
[10] C. W. Eaton, The equivalence of some conjectures of Dade and Robinson. J. Algebra 271 (2004),

638–651.
[11] M. Enguehard, Sur les l-blocs unipotents des groupes réductifs finis quand l est mauvais. J.
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