ROBINSON’S CONJECTURE FOR CLASSICAL GROUPS
ZHICHENG FENG, CONGHUI LI, YANJUN LIU, GUNTER MALLE AND JIPING ZHANG

ABSTRACT. Robinson’s conjecture states that the height of any irreducible ordinary
character in a block of a finite group is bounded by the size of the central quotient of a
defect group. This conjecture had been reduced to quasi-simple groups by Murai. The
case of odd primes was settled completely in our predecessor paper. Here, we investigate
the 2-blocks of finite quasi-simple classical groups.

1. INTRODUCTION

The arithmetic nature of the irreducible character degrees of a finite group has been a
fruitful area of research since the very beginnings of the subject. Several deep conjectures
in character theory concern the p-parts occurring in character degrees, like for example
the McKay conjecture and the Dade conjecture. In 1996 Geoffrey Robinson [13] proposed
an extension of Richard Brauer’s famous height zero conjecture from 1955, bounding the
maximal power of a prime p dividing the degree of an irreducible character of a finite
group G in terms of invariants of its p-block:

Conjecture (Robinson). Let G' be a finite group, p a prime and x € Irr(G) lying in a
p-block of G with defect group D. Then

p*'™ > 1Z(D)| (RC)
with equality if and only if D is abelian.

Here, the p-defect of an irreducible character x € Irr(G) is the integer def(x) such that
|G|, = pf¥x(1),, where n, denotes the p-part of an integer n.

We recently succeeded in showing this conjecture for all primes p > 3, see [8], based on
Murai’s reduction of (RC) to blocks of quasi-simple groups (see [8, Thm. 2.3]). Here we
prove (RC) for the 2-blocks of finite quasi-simple classical groups in odd characteristic:

Theorem 1. The 2-blocks of covering groups of finite simple linear, unitary, symplectic
and orthogonal groups do not provide minimal counterexamples to Robinson’s conjecture.

Thus, by the results in [8], in order to complete the proof of Robinson’s conjecture in
full generality it only remains to deal with the so-called isolated 2-blocks of quasi-simple
groups of exceptional Lie type in odd characteristic.
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After some preparations on 2-blocks of the general linear and unitary groups we treat
the principal 2-blocks of the special linear and unitary groups in Section 3, and the
remaining finite quasi-simple classical groups in Section 4; the proof of Theorem 1 is then
achieved in Section 5.

Throughout the paper, we let v denote the exponential valuation associated to 2, nor-
malised so that v(2) = 1. For a finite group H we write v(H) for v(|H]).

2. THE GENERAL LINEAR AND UNITARY GROUPS

2.1. Some notation and background. Assume ¢ = p/ is a power of a prime p. Let F
be an algebraic closure of the finite field F,. As usual, G = GL,(F) denotes the group
of all invertible n x n matrices over F. Let v : G — G be the map sending A to (A~1)¢,
where ¢ denotes the transpose of matrices. If F), is the Frobenius map of F and F, = (F,)7,
then for n € {£1}, F = vz F, induces a Steinberg endomorphism of G with the finite
group of fixed points G = GL,(ng). Recall that GL,(—¢q) denotes the general unitary
group
GUu(q) ={ A€ GL.(¢*) | Fy(A)'A=1, },

where [, is the identity matrix of degree n. We will use the analogous notation SL,(nq)
for SL,,(¢) or SU,(¢). Denote F =T, for F, or F,2, depending on n = +£1.

Let Irr(F[X]) be the set of monic irreducible polynomials in F[X] different from X.
Denote

Fir={felFX)|f=7F1}
For={ ff|felFplX]), f#Ff}

where " is the permutation of Irr(F2[X]) of order 2 mapping f(X) = X™ 4+ a1 X™ 1 +
<ot ag to Fy(ag' X™f(X7Y)). Let

Fo Irr(F[X]) ifn=1;
B ./TlUfQ lfﬁ:—l

As introduced in [9, §1], the polynomials in F serve as the “elementary divisors” of
semisimple elements of GL,(nq): Given a semisimple element s of G = GL,(nq), let
11 rer Sf be the primary decomposition of s and 11 rer Ly the corresponding decomposition
of the Levi subgroup L := Cg(s). Then n = >, msdy, where my is the multiplicity
of f in the characteristic polynomial of s and d; denotes the degree of f € F. Notice
that Ly is isomorphic to GLy,, ((ng)*). Correspondingly, the Weyl group W of L can be
decomposed as [ | s Wy, where Wy is the Weyl group of Ly.

From now on, we assume p is an odd prime. Let a := v(¢*> — 1) — 1. We give some
elementary lemmas which will be needed in the sequel:

Lemma 2.1. Let d = 2%m where m s odd and o« > 0.
(a) If 4(q —n), then v((ng)* — 1) = a + a and v((ng)* +1) = 1.
(b) Suppose 4|(q +n). Then, if a > 1, v((ng)? — 1) = a +a and v((ng)? + 1) = 1;
while if « =0, v((ng)™ + 1) = a and v((ng)™ — 1) = 1.

Note that, if ¢ is the multiplicative order of some root of f € F, then c|((nq)% — 1).
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Lemma 2.2. Let f € F. Suppose that f has a root of order 2™, where m > 1. Then
dy = 2™ where
m—a ifm>a,
m =<1 if 4)(g+mn) and 1 <m < a,

0 otherwise.

Proof. By definition, we have V((nq)wl — 1) > m, so 2™ divides (nq)Qm/ — 1. However,
since d; is the minimal integer such that 2™|((nq)% — 1), we conclude that d ;|2

We now show that 2™ | d;. If 4|(g — 1), then v((ng)% — 1) = a + v(d;). Thus 2™'|d;
and the assertion follows. So, we assume 4|(¢ + 1). Then we fall into the following three
cases: m > a; 1 < m < a; m = 1. The proof is completed by a case by case checking. [

Lemma 2.3. Let a > 2 and n = 2" +- - +2% the 2-adic expansion of a positive integer n
with by < -+ < b;. Suppose n = ZiZO 5,2, where all s; are non-negative integers. Then:

(a) ;s >t
(b) a(X_;si —t) + Zizo is; 2> 25:1 bi;
(c) if n >4 and so # 0, then Y, s; —t > by.
In all three cases equality occurs if and only if n =", ;2" is the 2-adic expansion.
(d) Let ig = min{i | s; > 0} and k = min{a,i0}. Then a(d_,s; —t)+ > ;is; > k+1
unless n = Zl 5;2' is the 2-adic expansion and either n = 3 orn = 2" with h < a.

Proof. By considering v(n) we have i := min{i | s; > 0} < b;. Then (a) and (b) follow
by applying the inductive hypothesis to

t
n—20 = (s, —1)2° + ) 52 =20 4424y "ok
i>io =2

We prove (c). If by = 0, it is just (a). Thus we assume by # 0. Then n — 1 =
Lo 207 2% e 2% Since sg # 0, n— 1= (s0 — 1) + 3,49 52", and thus the
assertion follows from (a).

For (d), a) ,(si —t) + > ,is; > k follows from (b). Now note that since a > 2, by a
similar argument as in the first paragraph of the proof of [8, Lemma 6.5, if n = >, ;2"
is not the 2-adic expansion, then

a(Zsi—t)+Zis,-2a+Zisi>k+1

(2

as claimed. Now we assume that n = ). s;2" is the 2-adic expansion. If ¢ > 1, then
b >by+1>Fk+1 unless n = 3. O

2.2. Sylow 2-subgroups of GL,(nq). Assume 4|(¢—n). Then by Lemma 2.1, v(¢—n) =
a. Let RY be a Sylow 2-subgroup of GL;(ng). For b > 1 let R’ be the Sylow 2-subgroup
R% 1 X, of GLgs(ng) where X, denotes a Sylow 2-subgroup of the group of permutation
matrices of degree 2°, which is the iterated wreath product Cy ¢ ---2Cy of b copies of a
cyclic group Cy of order 2. In particular, v(R%) = a2’ + v(2!).

On the other hand, when 4|(q + ), we denote by R! the Sylow 2-subgroup of GLs(ngq)
as defined in [5], isomorphic to the semi-dihedral group of order 2¢72. For b > 2 we
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denote R® = R' { X, 1 < GLqy(1nq), where X, is as defined above. For convenience we
set R := {£1}, the Sylow 2-subgroup of GL;(nq).

We write the 2-adic expansion of n as n = 2% + ... + 2% with b; < --- < b,. We
recall some facts on 2-blocks and the structure of Sylow 2-subgroups of GL,(nq); for
this, recall that according to Lusztig the set of irreducible characters of a finite reductive
group G is partitioned into Lusztig series £(G, s) labelled by semisimple elements s of the
Langlands dual group G*, up to conjugation (see e.g. [7, §13]). The elements of £(G, 1)
are the unipotent characters of G. Lusztig’s Jordan decomposition states that £(G, s) is in
bijection with £(Cg+(s), 1) whenever s has connected centraliser in the ambient algebraic
group, in such a way that character degrees differ by a factor of |G* : Cg+(s)|,y. For s a
semisimple 2’-element one sets

&(G,s) = JE(G, st)

where the union runs over 2-elements ¢ € Cg-(s). This is known to be a union of 2-blocks
of GG. For s = 1 this contains the trivial character and hence the principal 2-block of G.
Theorem 2.4. Let G = GL,(nq) where q is odd, and € € {£+} such that ¢ = en (mod 4).

(a) The only unipotent 2-block of G is the principal block E(G,1).
(b) A Sylow 2-subgroup of G is given by

t
R=][R"
=1

Thus, R is abelian if and only if n = 1.
(c) The center of R is given by

t
Z(R) = [ R ® ..
=1

In particular, v(Z(R)) =tv(q —n).

Proof. Part (a) was shown by Broué [2], and (b) follows from [5]. From this (c) can easily
be derived. O]

2.3. Robinson’s conjecture for GL,(nq). Now we prove Robinson’s conjecture for the
principal 2-block of GL,,(nq).

Lemma 2.5. Let x be a unipotent character of GL,(nq). Then def(x) > nv(qg —n).

Proof. For G = GL,(q) all unipotent characters lie in the principal series. Thus their
degree polynomials are not divisible by ¢ — 1 (see [4, §13.7]) while the order polynomial
of G is divisible by (¢ —1)", so we obtain the stated bound. The claim for GU,,(q) follows
as the order polynomial as well as the degree polynomials of unipotent characters are
obtained by replacing ¢ by —¢ in those for GL,(q). O

Proposition 2.6. Let G = GL,(nq), n > 2, let B be the principal 2-block of G, and R a
Sylow 2-subgroup of G. Then def(x) > v(Z(R)) for any x € Irr(B).
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Proof. By Theorem 2.4(a) there is a semisimple 2-element s € G such that xy € (G, s).
For b > 0 define F, = {f € F | d; = 2°}. Let F(s) C F be the set of elementary divisors
of s and set Fy(s) := F(s) N Fp. Then by Lemma 2.2 we have F(s) = [[, Fi(s) and thus

n —= medf = Z Z mf2b.
feF b>0 feF

Let ¢ be the unipotent character of L := Cg(s) in Jordan correspondence with .
Let ] FeF(s) Ly, Ryers)1y be the respective decompositions of L, 1), corresponding to
the primary decomposition of s. By the degree formula for the Jordan decomposition of

characters we have
v(x(1)) = v(G: L)+ v(i(1))
and so, as v(L) = >~z V(Ly),
def(x) = def(¢)) = > def(vy).
fEF(s)

As before, write n = 2% + ... + 2% for the 2-adic expansion of n.
Let first 4|(¢ — 1), so v(¢ —n) = a. By Lemmas 2.1 and 2.5,

def(¢f) > mys(a +b) for f € Fi(s).
It follows by Lemma 2.3 that

(1) def(x >ame—i—Zmef>at+Zb > at

feF b feF
as n > 1. By Theorem 2.4(c) we know that v(Z(R)) = at, whence the claim in this case.
Now assume that 4|(¢ + 7). Here by Lemma 2.3(a),

def(x me+22mfa+b

f€Fo b>1 feF,
:me+22mf(a+b—1) Zt+Zme(a+b—1),
feF b>1 fEF, b>1 fEF,

with equality in the last line if and only if n = 7, >~ rer, M 2" is the 2-adic expansion
of n. Furthermore, as a > 2 the last sum is zero only when F,(s) = ) for b > 1. But in
this case n = 1, which was excluded, so we conclude by Theorem 2.4(c). O

We note the following for later use.

Remark 2.7. In the notation of Proposition 2.6 assume that 4|(q + 7). If def(x) —
v(Z(R)) =1 and n is even then the proof of Proposition 2.6 shows that n = 2.

3. THE GROUPS SL,(nq)

3.1. Robinson’s conjecture for SL,(nq), n odd. The case of SL,(nq) with n odd is
considerably easier than the even degree case.

Proposition 3.1. Let H = SL,(nq) with n > 3 odd and Z < Z(H). Then Robinson’s
conjecture holds for the unipotent 2-blocks of H/Z.
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Proof. Set G = GL,(nq). Since n is odd, H N O2(Z(G)) = 1, so G = H; x 02(Z(GQ))
with H; = O?(G). Obviously all irreducible characters of G restrict irreducibly to H;
and the Sylow 2-subgroups of GG are the direct products of Sylow 2-subgroups of H; with
02(Z(@)). Thus, if by is a 2-block of H; and B is the 2-block of G covering by, then
Robinson’s conjecture holds for b; if and only if it holds for B.

Furthermore, |H; : H| is odd and so for x € Irr(H;) all constituents of x|y have the
same defect as y. Thus, if b is a 2-block of H and b; is a 2-block of H; covering b then
Robinson’s conjecture holds for b if and only if it holds for b;.

Finally, |Z(H)| = ged(n, q — 1) is odd. Thus if b is a 2-block of H/Z, where Z < Z(H),
and b is the 2-block of H dominating b, then Robinson’s conjecture holds for b if and only
if it holds for b. The claim thus follows from Proposition 2.6. 0

3.2. Sylow 2-subgroups of SL,(nq) for n even. For n > 2 even, we first determine the
centers of Sylow 2-subgroups. Denote ¢ = v(¢—n) and, for b > 0, set ¢(b) := max{c—b, 0}.
Note that ¢ = a if 4/(¢ —n) and ¢ = 1 if 4|(q¢ + n).

For a subgroup H < GL,(F) we set

D(H) :={det(A) | Ac H} <TF*.
Lemma 3.2. Let b > 0. In the notation of Theorem 2.4 we have
ID(RY)| =2 and |D(Z(RL))| = 2°".
Proof. If 4(qg — 1) then R’ contains diag(¢,1,...,1) with ¢ € F* of order o(¢) =
ID(R%)| = 2°. Then |D(Z(R%))| = 2°® follows from D(Z(R%)) = {z* | x € D( g
For ¢ = — this follows from the fact that R! is conjugate to ( gnq) . 1) > for
¢ € F* of order o(¢) = 24T,

Lemma 3.3. Let G = GL,(nq) and H = SL,(nq) with n even. Suppose that R is a
Sylow 2-subgroup of G as in Theorem 2.4(b). Write Q = RN H. Then |D(R)| = 2°.
Furthermore,

ID(Z(R))| = 2°®  and v(R:QZ(R)) = ¢ — c(by) = min{c, b, }.
Proof. This follows easily from Lemma 3.2. U

SO

When 4|(¢ — 1), the Weyl group part of R may not be contained in SL,(nq). To
circumvent this problem, for b > 1 we will use that Ri = R?r ! Xy, = RL X4, and call
Xy_1 the Weyl part and (R}r)Zb_1 the base group of RY,. Observe that with this convention
the Weyl part of R’ is contained in SL,(ng).

Lemma 3.4. Let G = GL,(nq) and H = SL,(nq) with n even. Suppose that R is as in
Theorem 2.4(b). Let Ry; be the base group and Ry; = Xy, 1 the Weyl part of RV, Write
Ry=Rp1 X -+ x Ry and Ry = Ry X -+ X Ryy. Denote Q = RN H. Then

Q= (RoNH)x Ry and Z(Q)=Z(R)NH.

More specifically, if R = R}, then Q is isomorphic to the generalised quaternion group of
order 2° and so Z(Q) = {*1,}.
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Proof. The Weyl part Ry, is generated by direct products of tensor products of matrices
of the form <?2 %), whence Ry,; < H. Hence Ry < H, and so QQ = (Ry N H) X Ry .

By Lemma 3.2, D(R?) = D(R!). If t > 2, then the projections p; : Q — RY are
surjective for all i. Hence Z(Q) < Z(R), and so Z(Q) < Z(R) N H. Since the converse
inclusion is obvious, we get Z(Q)) = Z(R) N H in this case.

So now we may assume R = R'*l with b > 0. If b = 0, the assertion is obvious
since ) is isomorphic to the generalised quaternion group of order 24!, So we may
assume b > 0. Let (Ay,...,Ap)7 be an element of Z(Q) with (A;,...,A») € Ry and
7 € X;. Let B be any element of R! with det(B) = #+1, so that (B,...,B) € Q.
Now [(Ay,...,Aw)7,(B,...,B)] = 1. Hence (Ai,...,A») € Z(R). Moreover, since
[(Ay,...,Agp)71,m] = 1 for any 7 € X, and X, transitively permutes the A;, we have
Ay = ... = Ayp. It follows that 7 € Z(Q) and 7 = 1, and so Z(Q) = Z(R) N H,
completing the proof. O

3.3. Robinson’s conjecture for SL,(nq), n even. Now we prove Robinson’s conjecture
for unipotent 2-blocks of SL,(ng) with even n.

Proposition 3.5. Let H = SL,(nq) with n > 2 even, and let Q be a Sylow 2-subgroup of
H. Then for every 0 € E(H, 1) we have def(0) > v(Z(Q)).

Proof. Let s € H* be a 2-element such that § € £(H,s). Let G = GL,(nq) and let
X € &(G, 1) lie above 0. By Theorem 2.4(a), x lies in the principal 2-block of G, so 6
lies in the principal 2-block of H. Let R be a Sylow 2-subgroup of G as described in
Theorem 2.4(b) and with RN H = Q.

Now we have

def(0) = v(H) — v(0(1)) = def(x) — v(¢ —n) + v(x(1)/6(1))
and
v(Z(Q)) =v(Z(R)) —v(R: Q) +v(R: QZ(R)) = v(Z(R)) — v(¢ —n) + min{c, b1 }

by Lemmas 3.3 and 3.4.
We first let 4|(q —n). Then def(x) — v(Z(R)) > >>'_, b; by (1), so

def(8) > v(Z(R)) — v(g —n) + Z bi + v(x(1)/6(1))

= v(Z(Q)) —min{c, by} + Zb +r(x(1)/0(1)) = v(Z(Q))

with equality only when ¢t = 1, ¢ > b; =: b, and so n = 2°. In that case there is exactly
one element f in F(s), and my(s) = 1, dy = 2° = n. Therefore, in order to complete the
proof, it suffices to show that v(x(1)/6(1)) > 0. To do this, we compute the number m of
irreducible constituents of x|y according to the method of Denoncin [6]. Let ¢ be a root
of f in F. Since G/H is cyclic and isomorphic to Z(G), it follows by [6, Prop. 3.5 that

m = |{z € Z(G) | zs is G-conjugate to s}|.
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Now
m = |{r € F* | z = diag(7,...,7) € Z(G), 7 is a root of f in F}|
= |{r € O4(F*) | 7C is a root of f in F}|.
Notice that the roots of f are ¢, ¢, ..., ("' Since n = 2°, we may write C(”q)% =&C

with £ = C(”q)2b_1_1 # 1. We claim ¢2 = 1. Indeed, ¢ has multiplicative order 29+
In addition, by Lemma 2.1 we have v((ng)* — 1) = v((ng)?" — 1) + 1. Hence ¢ has
multiplicative order 2. Thus v(m) > 0, and we have v(x(1)/6(1)) > 0 by Clifford theory.

Now we assume 4|(¢+n). If Z(R) £ H, then v(R : QZ(R)) = 0, hence the claim holds
by Proposition 2.6. So we may assume Z(R) < H. Then v(R : QZ(R)) = 1, and so the
claim holds if def(x) —v(Z(R)) > 2. By Remark 2.7, we have def(x) —v(Z(R)) = 1 only
when n = 2. But in this case |Z(Q)| = 2, and so Robinson’s conjecture holds by an old
result of Brauer (see [8, Lemma 3.1]). O

3.4. Robinson’s conjecture for central quotients of SL,(nq), n even. In this sec-
tion, we investigate unipotent 2-blocks of SL,,(nq)/Z for odd ¢, where Z < Z(SL,(nq)).
Throughout, n > 2 is even. As before, we first determine the centers of Sylow 2-subgroups
of central quotient groups of SL,(nq).

Lemma 3.6. Keep the notation in Lemma 3.4; in particular, n is even. For 1 # Z <
O5(Z(H)) write Q = Q/Z and Z(Q) = Zy/Z.
(a) If t > 2, then Zy = Z(Q).
(b) Assume R = R?.
(1) If b= 1, then Q/Z 1is isomorphic to the dihedral group of order 2°.
(2) If b> 1, then Zy = (Z(Q), Iy» @ diag(1, —1)).
Thus, if Q is not abelian, then Z(Q) = Z(Q)/Z unless either R = R with a > 2, or
R = R with b > 1, in which cases we have v(Z(Q)) = v(Z(Q)) — v(Z) + 1.

Proof. Recall that |D(RL)| = 2 and D(RY}) = D(R) by Lemma 3.2.

(a) Suppose t > 2. We first claim that Zy C Ry, where Ry is the base group of R as in
Lemma 3.4. Otherwise, let (A;, As,...)T be an element of Z,, where 1 # 7 € Ry, and A;
is an element of Ry; for each 7; here, R, is the base subgroup of Rle’i as in Lemma 3.4.
Since R has more than one component, arguing as in the last paragraph of the proof of
Lemma 3.4, we have that (A, Ao, ...) € Z(R). We may take a non-trivial orbit of (7),
say 11,492 = 7 '(i1),..., and a j outside this orbit (such j exists since ¢ > 2). In addition,
take (B1, B, ...) € Q, where B; = 1 for all i except that B;, and B, satisfy that the order
of B;, is greater than 2 and det(B;,)det(B;) = 1. Then direct calculation shows that
(A1, Ag, .. )T, (By, By, ...)] ¢ Z, which is a contradiction. Thus Z, C Ry, as claimed.

Now let A = (Ay,..., Ar) € Zy, where A; € Rp;. Then obviously, each component of
A is in the center of the corresponding component of @), and thus Z, = Z(Q).

(b) The statement for b = 1 is well-known. So assume that b > 2. Then a slight
modification of the argument in (a) shows that Zy C Ry, and then the claim follows as
there. 0J
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Proposition 3.7. Let H = SL,(nq) withn > 2 even and 1 # Z < Oy(Z(H)). If a Sylow
2-subgroup Q of H/Z is non-abelian, then for every ¢ in the principal 2-block of H/Z we
have def(¢) > v(Z(Q)).

Proof. Write 6 for the inflation of ¢ to H, then 6 lies in the principal 2-block of H. It is
easy to see that def(¢) = def(d) — v(Z). Let G = GL,(nq) and R a Sylow 2-subgroup of
G and Q = RN H, a Sylow 2-subgroup of H. Let x € £(G, s) with s € R be such that 6
is an irreducible constituent of x|z.

We first let 4/(q — 7). If t > 2, then by Lemma 3.6, v(Z(Q)) = v(Z(Q)) — v(Z).
Hence the result follows from Proposition 3.5. So now we may assume ¢ = 1, that is,
R = R%. Since @ is non-abelian, we have b > 0. Now Lemma 3.6 yields v(Z(Q)) =
v(2(Q)) —v(Z) + L.

By the proof of Proposition 3.5, def(6) > v(Z(Q)) + 1 unless n = 3=, »  m2" is the
2-adic expansion and b < a. Hence Fy(s) = {f}, m; = 1 and o(s) = 2***. Notice that
L = Cg(s) is in fact a Coxeter torus of GG, and s generates the Sylow 2-subgroup of L,
and hence of H*/[H*, H*]. But then all characters in £(H, s) are faithful on Oy(Z(H)).
However, this contradicts the obvious fact that Z < ker(#) = ker(x). This achieves the
proof when 4|(¢ — 7).

Now assume that 4|(q+n). As before, if v(Z(Q)) = v(Z(Q)) — v(Z) then the assertion
follows from Proposition 3.5. So by Lemma 3.6 it remains to consider the case v(Z(Q)) =
v(Z(Q)) — v(Z) + 1, i.e., either R = R! with a > 2, or R = R® with b > 2. Here,
|Z(Q)| = 2 by Lemma 3.6 and so Robinson’s conjecture holds by [8, Lemma 3.1]. O

4. PRINCIPAL 2-BLOCKS OF QUASI-SIMPLE GROUPS OF CLASSICAL TYPE

Let G be a simple algebraic group of symplectic or orthogonal type over an algebraically
closed field of odd characteristic and F' a Frobenius endomorphism of G with respect to
an F,-rational structure, and denote G = G¥. So in particular ¢ is an odd prime power.
Throughout we will fix the prime ¢ = 2, with respect to which defects will be considered.
As for the linear and unitary groups, we will need three pieces of information: defects of
unipotent characters, centralisers of 2-elements and the centers of Sylow 2-subgroups.

4.1. Unipotent characters of classical groups. Here we determine lower bounds on
defects of unipotent characters of classical groups. Observe that by Lusztig’s results the
classification and degrees of unipotent characters are insensitive to the isogeny type (see
[4, §13.7]), so for our purposes we will not need to specify these here.

Lemma 4.1. Let x be a cuspidal unipotent character of a finite group G of classical type.
Let 2° be the precise power of 2 dividing g + 1. Then

)b+ D)n for types B,(q), Cy(q),
def(x) = {(b +1)n—1 for types D,(q),?D,(q).

Proof. We discuss the various types individually. If G = B, (q) or C,(q) then by [4, 13.7]
we have that n = s? + s for some s > 1 and according to the formula given in loc. cit.,

def(x):s+bi2i+i(2i—1):3+b(s2—|—8)—|—$2:(b—|—1)n.

i=1 =1
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If G = D,(q) or ?D,,(q) then we have that n = s? for some integer s (which is even in the
first case, odd in the second), and

s s—1
def(x) =s—1+bY (2i—1)+ Y 2i=s—1+bs’+s*—s=(b+1jn—1. O
i=1 i=1
Lemma 4.2. Let x be a unipotent character of a finite classical group G.
(a) If G is of type B,(q),Cy(q) with n > 1, or of type D,(q),*Dy(q) with n > 2 then
def(x) > n.
(b) If G is of type D,(¢*) or ?D,,(¢*) with n > 2 then def(x) > 2n — 1, with equality
only possibly when n is a square.

Proof. Assume that y lies in the Harish-Chandra series of the cuspidal unipotent character
A of a Levi subgroup L < G for an F-stable Levi subgroup L of an F-stable parabolic
subgroup of G. Let 2%, 2° be the precise power of 2 dividing ¢ — 1, ¢ + 1 respectively. By
Lusztig’s classification (see [4, §13.7]), then [L, L] is simple of the same classical type as
G, hence A is as considered in Lemma 4.1. Moreover x(1) divides the degree |G : L],y A(1)
of the Harish-Chandra induced character RY()\) (as can be seen for example from [4,
Thm. 10.11.5]). Using that L = [L,L]Z°(L) we conclude that 24¢f0) > 2def(V)| 7o(L)F,.
Now first assume that G is of type B,(q) or C,(q) and so L has type B,(q) or C,(q) for
some u > 1. Then |Z°(L)¥| = (¢ — 1)"7%, and so
def(x) > a(n —u) 4+ (b+ 1)u

by Lemma 4.1. This is linear in u and hence at least as big as the minimum of its values
at u = 0 and v = n. Hence it is larger than n unless u = 0 and @ = 1. In the latter
case x lies in the principal series. Our claim follows if x(1) is not divisible by (¢ + 1)".

If it is divisible by (¢ + 1)" then x is 2-cuspidal, and with Ennola duality we obtain
def(x) > (a+ 1)n > n from Lemma 4.1. If G has type D,(q) or D, (q), then L has type

Du(q) or ?Dy(q), giving

def(x) > a(n —u)+ (b+ 1)u—1,
and we conclude as before. For types D,,(¢*) or ?D,,(¢*) we similarly obtain def(x) > 3n—1
when u = 0 (as 8/(¢*—1)), and def(y) > (b+1)n—1 = 2n—1 when u = n is a square. [

4.2. Centralisers of semisimple elements in classical groups. We will make use
of the primary decomposition of semisimple elements in classical groups. We follow the
notation introduced in [10]. As in Section 2 let Irr(F,[X]) be the set of non-constant
monic irreducible polynomials in F,[X] different from X. For f € Irr(F,[X]) let f* be the
polynomial in Irr(F,[X]) whose roots (in F,) are the inverses of the roots of f. Denote

For={X-1,X+1},

Fro={feln(@X])) [ f¢Fo,f=f"},

Fo={fr 1 feln([X]), f# [}
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and F := Fy UF, UF_. For any integer b > 1 we also set F, := {f € F | d; = 2°}. Here,
and later on, dy denotes the degree of f € F. Define the reduced degree d; of f € F by

S5, — df if f S fo,

"7\ iffeF UF.
Since the polynomials in F} U F_ have even degree, d; is an integer. In addition, we
introduce a sign 5 for f € F, U F_ defined by

-1 i feFy,
= 1 iffeF..
Let V' be a finite-dimensional symplectic or orthogonal space over F, with ¢ odd and
I(V) = Sp(V) or GO(V) respectively. Given a semisimple element s € I(V'), there exist
unique orthogonal decompositions V' = fer Ve and s = I1 rer S, where the Vi are
non-degenerate subspaces of V', sy € I(V}), and s; has minimal polynomial f. The above
decomposition of s is often called the primary decomposition of s. Correspondingly, the
centraliser of s in I(V') has a decomposition Crv(s) = [[; Cy(s) with

I(Vy) if f e Fo,
GLn, (eg¢™) if fe FLUF_,
where my is the multiplicity of f in the characteristic polynomial of s (and of s).

Now let V' be an orthogonal space over F, and I°(V) = SO(V). Let s € I(V). Then
s € I°(V) if and only if mx(s) is even. For more details, see [10, §1]. The following is
elementary, see also Lemma 2.2:
Lemma 4.3. Let a :=v(¢> —1) — 1. If f € FL UF_ has a root (in F,) of order 2™ for
some positive integer m, then

5 — {1 ifm < a,

2= fm > a.

Cf(S) = C[(Vf)(Sf) = {

Moreover, f € F_ unless 4|(¢ + 1) and m < a.
4.3. Symplectic groups.

Lemma 4.4. Let G = Sp,,,(q) with n > 2 and q odd, and let n = 2% + .. 4 2% be the
2-adic expansion. Then def(x) > t+2 for every character x in the principal 2-block of G.

Proof. As recalled earlier, the principal 2-block lies in & (G, 1). So let s € G* be a 2-
element such that x € £(G, s) and let ¢ € £(Cg+(s), 1) denote the Jordan correspondent of
X (see for example [3, Cor. 15.14]). Then by the degree formula for Jordan decomposition
we have

det(x) = v(|G) ~ v(x(1)) = v(|Ca (s)]) — v(@(1). N
Let ¢ be a unipotent character of Cg.(s) below 1, then by Clifford theory (1)/¢(1)
divides |Cg=(s) : Cgu(s)], so

def(x) = v(|Co ()]) = v(¥(1)) 2 v(|C&(5)]) — v((1)) = def(¥).
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Thus we need to discuss the defects of unipotent characters of C¢.(s). By our preliminary
observations, Cg.(s) is isogenous to (and hence has the same unipotent characters as) a
product of certain orthogonal, linear and unitary groups, which we will now investigate
in detail.

Here, we have that G* = SOs,11(q). Let V be the underlying space of G*, s = Hf Sf
the primary decomposition, and V' = € f V¢ the corresponding orthogonal decomposition
of V. Then O%* (S) = er]-‘ Cf with Cf = CIO(Vf)(Sf)‘

Observe that mg := mx4; is even. Since dy is even for f € FyL UF_, my :=mx_1 > 1
must be odd. Write F(s) := {f € F | my > 0}. By Lemma 4.3, dy must be a power
of 2 if my # 0.

Now 2n + 1 = my + mo + Zf mydy and thus

(2) n=— +7+Zme2 )

b>1 feF,

Then by Lemma 2.3(a),

mi —1 mo
(3) t < 5 + 7 + Z my
FEF\Fo

and equality holds if and only if (2) is the 2-adic expansion of n.
Write ¢ = K1)y, where v); is a unipotent character of C'y. Then by Lemma 4.2(a),

my— 1
(4) def(vx_1) > 12
with equality only when m; = 1, and also by Lemma 4.2(a), if my > 0, then
m
(5) def(Yx1) > =

with equality possibly only when my = 2. If f € [, Fp(s), then oy = 271 > 2 is a
power of 2 by Lemma 4.3 and Cy = Gme(q‘Sf). By Lemma 2.5,

(6) def(45) > v(g* = V)myg > (b+ 1)my > 3my > my + 2.
If f € Fi(s), then 4](¢ + 1), 0y = 1 and Cy = GL,,,(—¢), so by Lemma 2.5,
(7) def(¢y) > msv(qg+1) > 2my > my + 1.

By (3), (4), (5), (6) and (7), we can now compare def(x) with ¢ +2. If {J,., Fi(s) # 0,
then def(y) > ¢+ 2 by (6). So now assume that F,(s) = @ for b > 1. Then n =
molyme gy > rer(s) My and hence equality does not hold in (3). If n > 4, then n—t > 3,
and then def(x) > ¢ + 3 holds. On the other hand when n = 2,3, then n — ¢t = 1. If
Fi(s) # 0, then def(y) > ¢t+2 holds by (7). So we assume that Fi(s) = 0. If m; > 1, then
the result follows from (4). Hence we may assume further that m; = 1. Then n = %2,
and def(x) >t + 2 holds by (5). This completes the proof. O

Let W be a Sylow 2-subgroup of Sp,(q) = SLa(q). Clearly, v(Z(W)) = 1. For any
positive integer b, we let W, = W X}, where X, is a Sylow 2-subgroup of the symmetric
group of degree 2° (i.e., X is isomorphic to Cy?- - 1Cy with b factors). Then v(Z(W})) = 1.
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Now we let n = 2% + ... 4 2% with 0 < b; < --- < b, be the 2-adic expansion of n.
Then by [5, Thm. 1], a Sylow 2-subgroup R of G = Sp,,,(q) is isomorphic to Wy, x- - - x W,
and thus v(Z(R)) = t. The next result follows by a similar proof as for Lemma 3.6

Lemma 4.5. In the notation above, let S = G/Z(G), R € Syl,(G) and Q = R/Z(G) €
Syly(S). Let Zy < R such that Zy/Z(G) = Z(Q). Then Zy = Z(R) if t > 2; and
v(Zy) =v(Z(R))+1ift=1.

From Lemmas 4.4 and 4.5 we immediately deduce the following result:

Proposition 4.6. Let G = Sp,,(q) with n > 2 and q odd, and Z < Z(G). Then (RC)
holds for the principal 2-block of G/Z.

4.4. Odd-dimensional orthogonal groups.

Lemma 4.7. Let G = SO, 1(q) with n > 3 and q odd, and let n = 2% + .. 4 2% be the
2-adic expansion. Then def(x) > t+2 for every character x in the principal 2-block of G.

Proof. Let s € G* = Sp,,,(q) be a semisimple 2-element such that y € £(G,s). Let
¥ € E(Cg+(s),1) be a unipotent character in Jordan correspondence with x. As in the
proof of Lemma 4.4 we have def(y) > def(¢).

Let V' be the underlying space of G*, s = [[; sy, V = @, V, and Cg+(s) = erf(s) Cy
with Cy = Crv;)(sy). Keep the notation used in the proof of Lemma 4.4. Then m; and my
are both even. Also, n = S +52 437, 37 mp2" ! and sot < BT n 2 omy
By Lemma 4.2(a), def(z;) > ¢ for i = 1,2, with equality only when m; < 2. For
f € F(s)\ Fo, the formulas for def(¢;) are the same as in (6) and (7).

Now first assume that n > 4. If Fy(s) = 0 for b > 1, then n = %5t + 52 + 37 - my.
Hence def(x) > n >t + 3 as n > 4. So now assume |J,., Fp(s) # 0. Also, by (6), it
is easy to see that the claim holds unless ||J,.; F+(s)| = 1 and my = 1 for the unique
polynomial f in {J,.; Fi(s). If Fi(s) # 0, then by (7) we get the result. Hence Fy(s) =0
and then F(s) \ Fo = {f}. Again by (6), def(v)y) > my + 2, so n = 5 + %2 4 0; must
be the 2-adic expansion, and then m; +my < 2. Hence 6y > n —1 > 3 and then 65 > 4
since it is a power of 2. Thus by (6), def(v)y) > 4m; and so def(x) > ¢ + 3, completing
the proof in case n > 4.

Now assume that n = 3. By Lemma 4.2(a), for i € {1,2}, if m; > 0 then

(8) def(1) > .
Similar to the proof of Lemma 4.4, if |J Fy(s) # 0, then by (6) we have def(x) > ¢ + 2.
b>1

So we may assume that F(s) = () for b > 1, and then n = 3 = % 4- 52 + > per, My Note
that here n —t = 1. By (8), we may assume that m; = my = 0, and then F(s) = Fi(s).
Thus def(y) > t + 2 follows from (7) and we are done. O

To discuss the Sylow 2-subgroups, let W be a Sylow 2-subgroup of GO3(q) with ¢ =
nl (mod 4), where n € {£}. Then W is isomorphic to the dihedral group of order
2071 where a = v(¢* — 1) — 1, and so v(Z(W)) = 1. For any positive integer b, we let
Wy, = W Xy, where X}, is defined as in Section 2.2. Then v(Z(W,)) = 1.

Now let n = 2%+ ..4+2% be the 2-adic expansion of n and let ¢ : GOJ (q) — SOs,11(q),
A — diag(A,det(A)), be an embedding of GOJ, (¢) into SOy, 1(g) with ¢" = n1 (mod 4).
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Then by [5, Thm. 2], the image of W, x --- x W,, under ¢ is a Sylow 2-subgroup of
Sozn+1(Q)-

Now, we consider the simple group Qs,.1(¢) = [SO2,41(¢), SO2,11(q)]. Let R = W, X
-+« x Wy, be a Sylow 2-subgroup of SOs,,11(¢) as above and Q = RN y,11(q). We give an
explicit description of Q. Let 6 : GO(q) — F*/F*? be the spinor norm on GOJ(q). Let
W be the Sylow 2-subgroup of GOJ(q) as before, then Wy = ker 0|y is isomorphic to the
dihedral group of order 2. In particular, Z(W) C W,. Denote by B =W x --- x W the
base subgroup of R, then R = Bx A with A = X, x---xX,,. Then Q = Byx A, where By
is the subgroup of B consisting of all elements (w1, .. ., w,) satisfying 0(w;) - - - 0(w,) = 1;
see for example [14, §4].

Proposition 4.8. Let S = Qa,41(q) with n > 3 and q odd. Then (RC) holds for the
principal 2-blocks of all covering groups of S.

Proof. For Qs,11(q) we let R, Q be as above. Then Z(Q) = Z(R) by our description of
Q. Then by Lemma 4.7, (RC) holds for the principal 2-block of S.

For 2.5 = Spin,,(¢), the assertion follows directly from [8, Lemma 3.1] by the fact
that the center of a Sylow 2-subgroup of Spin,, ;(¢) has order 2 by [11, Lemma 4.4]. O

4.5. Even-dimensional orthogonal groups. The simply connected group of type D,
is the spin group Spin;(q), and its dual group is the projective conformal special orthog-
onal group PCSO3, (q), the quotient of the conformal special orthogonal group CSO3.,(¢)
modulo its central torus. We thus need some control on centralisers of 2-elements in
conformal special orthogonal groups. Recall that ¢ is an odd prime power.

Lemma 4.9. Let s € G* := CSO3,,(q) be a 2-element. Then C%.(s) is a product of groups
Dy, () (two factors) or Dy, (€;q%) (one factor) with groups of type GUy, (q) and GLy, (¢*")
for suitable k;, d; > 0 and ¢; € {£1}, where GUy,(q) only occurs when 4|(q+ 1).

Proof. Let s € G* = CSOgy,. As CSOy, = SO, -Z(CSO,,) we can write s = s;z with
elements s; € SOy, and z € Z(CSOs,) a scalar matrix. Clearly, Cg-(s) = Cg=(s1).
Note that s; and z need not be F-stable, but as SOy, NZ(CSO,,) = {£1} and both
groups are F-stable, we have F(s;) = =s1, and s; is F2stable. So Cg-(s)"” has the
structure described above, corresponding to an orthogonal decomposition of IE‘?IQ into the
sj-eigenspaces. Now F' permutes these eigenspaces according to whether F'(s;) = s or
F(s1) = —s;. Thus, the two orthogonal factors of Cc;*(S)F2 are either fixed or permuted
and we obtain a collection of type A-factors, as claimed. See also [12, Lemma 2.5] for a
more precise statement. [

Lemma 4.10. Let G = Sping, (¢) with n > 4 and q odd, and let n = 2% + - 4 2% be
the 2-adic expansion with by < ... < b;. Then def(x) > max{t + 2,t + by + 1} for every
character x in the principal 2-block of G.

Proof. Let G = Sping, (q) with n > 4. Assume that y € £(G,s) for some semisimple
2-element s € G* = PCSO3,(q). Let 1 € £(CE.(s),1) be a unipotent character in Jordan
correspondence with x. Then as in the proof of Lemma 4.4 we have def(y) > def(v).
Let § € G* := CSOZ,(¢) be a preimage of s under the natural map. Then the struc-
ture of C%,(5) is described in Lemma 4.9, and thus also the structure of Cg.(s). Write
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my/2,ms/2 for the ranks of the two D-factors, or mg/2 if there is just one over F,2, and
my for the ranks of the various GL- and GU-factors with f € F\ Fy. Then

(9) n—m0+—+—+22mf2bl

b>1 f€.7:b
t < mot TR+ e m g, My def () = myp(b+1) for every f € Fy, and def(¢) > mo—1
for the unipotent character ¢y from a possible D-factor over F,.. Thus we have

def(¢) > (m0—1)+——|——+zz b+Dmp=t—1+> Y bmy

b>1 fEF, b>1 fEF,
(where the summand (mg — 1) is only present when mgy > 0). By the same argument as
in Lemma 4.7, we obtain def(x) > ¢ + 2 (noting that n > 4), and even def(x) > ¢t + 3
when mgy = 0.
For the second bound, by (6) and (7) in the proof of Lemma 4.4 it suffices to show that

m m
(m0—1)+71+72+22mf(b+1)Zt+b1+1.
b>1 feF,

If mp = my = mg = 0, then by Lemma 2.3(b),

SN mpb+1) = (t+b+1)

b>1 feF,

=20 > mp=t)+ > > (b—Dmp+t— (b +1)

b>1 feF, b>1 feF,
t
> bi+t— (b +1)>0.

If my +mgy > 0 (and so my = 0), then by Lemma 2.3(c),

%Jrzsz(lwl)2t+b1+zszb2t+b1-

b>1 feFy b>1 feF

Equality only holds when (9) is the 2-adic expansion of n. Hence m; + my = 2 and
Fi(s) =0, and then [J,5, Fi(s) # 0 since n > 4. Thus 37,5, > e, myb > 0. So equality
does not hold.

Finally, if mg > 0 (and hence m; = my = 0) then the 2-adic expansion of n — 1 =
mo— 1+ 3, ms2°~! has t + by — 1 terms so by Lemma 2.3(a) we are done unless
ijf bmy < 2. But note that mo — 1 is odd, so unless m, = 2 its 2-adic expansion has at
least 2 terms. Thus either mg = 2 or n = my. Both cases are easily dealt with. O

Note that n > 4 implies that either t + 2 > 4 or t + by +1 > 4, so def(x) >t + 3 in
Lemma 4.10 when ¢ = 1.

We next discuss Sylow 2-subgroups. Let W, be as in the previous subsection. First,
assume ¢" = —n1 (mod 4). Then we have that SOJ, (¢) = S x Cy with S = Q3 (q) simple,
and Spin], (¢) = 2.5 is the only proper covering group of S.

Lemma 4.11. Let R be a Sylow 2-subgroup of QI (q), with "

= —nl (mod 4) and let
n—1=2%4... 42 be the 2-adic expansion. Then v(Z(R)) =r.
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Proof. By [14, Thm. 7], a Sylow 2-subgroup of Q1 (¢) is isomorphic to a Sylow 2-subgroup
of GOg;_Q(q) with ¢"~1 = 1’1 (mod 4), i.e., to Wy, X - - - x W,,. The assertion follows. [

Proposition 4.12. Let S = QJ (q) withn > 4 and ¢* = —nl (mod 4). Then (RC) holds
for the principal 2-blocks of all covering groups of S.

Proof. If ¢" = —n1 (mod 4), then by Lemma 4.11 we have v(Z(R)) =r =t+b; — 1 in the
notation of Lemmas 4.10 and 4.11. If x is a character of G = 2.5 = SpinJ, (¢) with Z(G)
in its kernel, then considering it as a character of S we have def(x) > ¢t + b; which shows
the claim. If R denotes a Sylow 2-subgroup of G, then clearly V(Z(R)) <r+4+1=t+b.
Again, the claim follows with Lemma 4.10. 0J

We now turn to the more difficult case ¢" = n1 (mod 4). Here we have that SO7 (q) =
2.5.2 with S = PQJ (q) simple, and SpinJ, (¢) = 22.5 if n is even, and Sping, (q) = 4.5 if n
is odd. First note that a Sylow 2-subgroup R of GOJ, (q) is isomorphic to Wy, x - -+ x W,
where n = 2% + ... + 2% Let Q = RN SOJ (q). Then v(Z(Q)) = t.

Lemma 4.13. Let H = Q] (q) with ¢" = nl (mod 4) and keep all the notation above.
(a) Let Qo= RN H. Then v(Z(Qy)) = t.
(b) Let Qy = Qo/Z(H), a Sylow 2-subgroup of P (q), and Z(Q,) = Zo/Z(H). Then
Zy = Z(Qo) if t > 1; while if t =1, v(Zy) = v(Z(Qo)) +1 =2 and | Z(Q,)| = 2.

Proof. (a) Let 6 be the spinor norm on GO3(q). Write R = B x A, where B is the base
subgroup, a direct product of copies of W and A = Xj, X --- x X3,. Then an element
(wi, ..., wy)a with w; € W and a € A is in Qq if and only if det(w,) - - - det(w,) = 1 and
O(wy) -+ - 0(w,) = 1. Thus v(Z(Qy)) = t follows easily. Part (b) follows by a similar proof
as for Lemma 3.6. O

Proposition 4.14. Let S = PQJ (q) withn > 4 and ¢" = nl (mod 4). Then (RC) holds
for the principal 2-blocks of all covering groups of S.

Proof. First assume that n is even. Then by [8, Cor. 2.4] we just need to consider the three
groups S, 2.5 = QJ (q) and 2'.S = HSpin3 ,(q). (The two half-spin groups are isomorphic
under the graph automorphism of order 2.) In the notation of Lemma 4.13 the centers of
Sylow 2-subgroups R of these groups satisfy v(Z(R)) < t,t,t + 1 respectively, while by
Lemma 4.10 the defects of characters belonging to the principal 2-block of G that descend
to these groups are at least t + 1,¢ + 2, ¢ + 2 respectively. So (RC) holds in all cases.
Now assume that n is odd. Then the groups to consider are S, 2.5 = Q3 (¢) and 4.S.
Here again the centers of Sylow 2-subgroups R satisfy v(Z(R)) < t,t,t + 1, while the
defects are bounded below by t + 1,¢ + 2,¢ + 3 respectively. 0

5. PROOF OF THE MAIN RESULT

Proof of Theorem 1. Let B be a 2-block of a quasi-simple covering group G of a finite
simple classical group S. If S is defined in characteristic 2, our claim is in [8, Thm. 5.1].
So S is a classical group in odd characteristic. By [8, Thm. 3.6] we may assume that
(G is not an exceptional covering group. Then G is one of the groups considered in the
previous sections. According to [3, Thm. 21.14], then G has only one unipotent 2-block,
the principal 2-block & (G, 1). This is not a counterexample to (RC) by Propositions 3.1,
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3.5, 3.7, 4.6, 4.8, 4.12 and 4.14. If B is not unipotent, then Irr(B) C &(G, s) for some
semisimple 2’-element 1 # s € G*. If G is of symplectic or orthogonal type, then cen-
tralisers of non-trivial 2’-elements in G* are proper Levi subgroups. If G is special linear
or unitary, then at least the connected components of these centralisers are proper Levi
subgroups. In either case, by the reduction theorem of Bonnafé-Rouquier [1] then B is
Morita equivalent to a 2-block of a strictly smaller group and thus cannot be a minimal
counterexample to (RC) either. O
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