
STEINBERG-LIKE CHARACTERS FOR FINITE SIMPLE GROUPS

GUNTER MALLE AND ALEXANDRE ZALESSKI

Abstract. Let G be a finite group and, for a prime p, let S be a Sylow p-subgroup of G. A
character χ of G is called Sylp-regular if the restriction of χ to S is the character of the regular
representation of S. If, in addition, χ vanishes at all elements of order divisible by p, χ is said
to be Steinberg-like. For every finite simple group G we determine all primes p for which G
admits a Steinberg-like character, except for alternating groups in characteristic 2. Moreover,
we determine all primes for which G has a projective FG-module of dimension |S|, where F is
an algebraically closed field of characteristic p.

1. Introduction

Let G be a finite group and, for a prime p, let S be a Sylow p-subgroup of G. A character
χ of G is called Sylp-vanishing if χ(u) = 0 for every 1 6= u ∈ S; and if, additionally, χ(1) = |S|
then we say that χ is Sylp-regular. If χ(g) = 0 whenever |g| is divisible by p then χ is called
p-vanishing ; and if, additionally, χ(1) = |S| then we say that χ is Steinberg-like. Steinberg-like
and Sylp-regular characters for Chevalley groups in defining characteristic p are studied in [17].
Specifically, for all simple groups of Lie type in characteristic p except Bn(q), n = 3, 4, 5, and
Dn(q), n = 4, 5, the Steinberg-like characters for the prime p have been determined in [17].

Our main motivation to study this kind of character is their connection with characters
of projective indecomposable modules. The study of projective indecomposable modules of
dimension |S| was initiated by Malle and Weigel [13]; they obtained a full classification of such
modules for arbitrary finite simple groups G assuming that the character of the module has the
trivial character 1G as a constituent. In [23], this restriction was removed for simple groups of
Lie type with defining characteristic p. Some parts of the proofs there were valid not only for
characters of projective modules, but also for Steinberg-like or even Sylp-regular characters.

In this paper we complete the classification of projective indecomposable modules of dimension
|S| for simple groups G. The first main result is a classification of Steinberg-like characters for
simple groups, with the sole exception of alternating groups for the prime p = 2:

Theorem 1.1. Let G be a finite non-abelian simple group, p a prime dividing |G| and let χ be
a Steinberg-like character of G with respect to p. Then one of the following holds:

(1) χ is irreducible, and the triple (G, p, χ(1)) is as in Proposition 3.1;
(2) Sylow p-subgroups of G are cyclic and (G, p, χ(1)) is as in Proposition 4.4;
(3) G is of Lie type in characteristic p (see [17]);
(4) p = 2 and G = PSL2(q) with q + 1 = 2k; or
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(5) p = 2 and G = An, n ≥ 8.

In fact, in many instances we even classify all Sylp-regular characters. Examples for case (5)

when n = 2k or 2k+1 are presented in Corollaries 6.8 and 6.10. We are not aware of any further
examples.

Our second main result determines reducible projective modules of simple groups of minimal
possible dimension |G|p.

Theorem 1.2. Let G be a finite non-abelian simple group, p a prime dividing |G| and S a Sylow
p-subgroup of G. Then G has a reducible projective FpG-module of dimension |S| if and only if
one of the following holds:

(1) G = PSL2(q), q > 4, |S| = q + 1;
(2) G = PSLn(q), n is an odd prime, n 6 |(q − 1), |S| = (qn − 1)/(q − 1);
(3) G = Ap, |S| = p ≥ 5;
(4) G = M11, |S| = 11; or
(5) G = M23, |S| = 23.

Note that irreducible projective FpG-modules of dimension |G|p are in bijection with irre-
ducible characters of defect 0 of that degree, listed in Proposition 3.1 for simple groups.

The paper is built up as follows. After some preliminaries we recall the classification of
irreducible Steinberg-like characters in Section 3 (Proposition 3.1). In Section 4 we classify
Sylp-regular characters in the case of cyclic Sylow p-subgroups (Proposition 4.4), in Section 5
we treat the sporadic groups (Theorem 5.1). The alternating groups are handled in Section 6
(Theorem 6.4 for p odd, and in Section 6.2 some partial results for p = 2, see Theorems 6.12
and 6.14). The exceptional groups of Lie type are considered in Section 7 (Theorem 7.1). The
rest of our paper deals with the classical groups of Lie type. We start off in Section 8 by ruling
out the remaining possibilities in defining characteristic from [17]. The case of large Sylow p-
subgroups for non-defining primes p is settled in Section 9. In Section 10 we discuss the small
cases when p > 2, while the proofs of our main theorems are achieved in Section 11 by treating
the case when p = 2.

2. Preliminaries

We start off by fixing some notation. Let Fq be the finite field of q elements and Fq an
algebraic closure of Fq. The cardinality of a set X is denoted by |X|. The greatest common
divisor of integers m,n is denoted by (m,n); if p is a prime then |n|p is the p-part of n, that is,
n = |n|pm, where (m, p) = 1. If (m,n) = m, we write m|n.

For a finite group G, Irr(G) is the set of its irreducible characters and Irr1(G) is the set of all
linear characters of G (that is, of degree 1). We denote by 1G the trivial character and by ρregG
the regular character of G. We write S ∈ Sylp(G) to mean that S is a Sylow p-subgroup of G.
A group of order coprime to p is called a p′-group. Further, Z(G), G′ denote the centre and the
derived subgroup of G, respectively.

If H is a subgroup of G then CG(H), NG(H) denote the centraliser and normaliser of H in
G, respectively. If χ is a character of G then we write χ|H for the restriction of χ to H. The
H-level of χ is the maximal integer l ≥ 0 such that χ|H − l · ρregH is a proper character of H. If a
prime p is fixed then the p-level lp(χ) of χ is the S-level of χ for S ∈ Sylp(G). (For quasi-simple
groups with cyclic Sylow p-subgroups irreducible characters of p-level l = 1, 2 are studied in
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[22, 18], respectively.) The inner product of characters λ, µ of G is denoted by (λ, µ), sometimes
by (λ, µ)G. The character of G induced from a character µ of H is denoted by µH .

Let P ≤ G be finite groups, N a normal subgroup of P and L = P/N . Let F be a field and M
an FG-module. Then MN := CM (N) becomes an FL-module, which is called the generalised
restriction of M to L and denoted by rGP/NM in [2, §70A, p. 667]. If β is the Brauer (or ordinary)

character of M then we also write rGP/Nβ for the Brauer (or ordinary) character of L afforded

by MN .
Let e = ep(q) (p > 2, (p, q) = 1) be the minimal integer i > 0 such that qi − 1 is divisible by

p. If p = 2 and q is odd then we set e2(q) = 1 if 4|(q − 1) and e2(q) = 2 if 4|(q + 1).

The next two lemmas follow from the definitions; here G is a finite group and S ∈ Sylp(G).

Lemma 2.1. Let χ be a Sylp-regular character of G. Then every linear character occurs in χ|S
with multiplicity 1. In particular, (χ|S , 1S) = 1. If S is abelian then χ|S is multiplicity free.

Proof. As χ|S = ρregS , this follows from the corresponding properties of ρregS . �

Lemma 2.2. Let G = G1 × G2 be a direct product, and let χ1, χ2 be irreducible characters of
G1, G2 respectively. Then the p-level of χ1 ⊗ χ2 is the product of the p-levels of χ1 and χ2.

Lemma 2.3. Let N be a p′-subgroup of G normalised by S. Let χ be a faithful Steinberg-like
character of G. Then N is abelian and CG(S) = Z(G)Z(S).

Proof. Let H = NS. Then χ|H is Steinberg-like. Since H is p-solvable, every p-vanishing
character is the character of a projective module [15, Lemma 10.16]. As χ(1) = |S|, the module
in question is indecomposable. Then χ|H is induced from an irreducible character α, say, of N
[15, Thm. 10.13]. As

αH(1) = α(1) · |H : N | = α(1) · |S| and χ(1) = |S|,
it follows that α(1) = 1. Let N ′ be the derived subgroup of N . Then N ′ is normal in H and
α(N ′) = 1. Therefore, αH |N ′ = |S| · 1N ′ , that is, N ′ lies in the kernel of αH . Since χ and hence
χ|H = αH is faithful, we have N ′ = 1. So N is abelian as claimed.

Note that CG(S) = A × Z(S), where A is a p′-group. Take N = A above, so H = A × S.
So now [N,S] = 1 and N is abelian. It follows that in any representation afforded by αH , N
consists of scalar matrices. As χ is faithful, we have [N,G] = 1, as required. �

Thus, if G is a simple group then CG(S) = Z(S) is a necessary condition for G to have a
Steinberg-like character.

Remark 2.4. A p′-subgroup N normalised by a Sylow p-subgroup of G is called a p-signaliser
in the theory of finite groups. Thus, Lemma 2.3 tells us that if G admits a faithful Steinberg-like
character then every p-signaliser is abelian, and CG(S) = Z(G)Z(S).

Lemma 2.5. Let G be a finite group, P a subgroup with (|G : P |, p) = 1, U a normal p-subgroup
of P and let L = P/U . Let T, S be Sylow p-subgroups of L,G, respectively. Let χ be a character
of G and λ = rGP/U (χ).

(a) If χ|S = m · ρregS then λ|T = m · ρregT . In other words, lp(χ) = lp(λ). In particular, if χ
is Sylp-regular then so is λ.

(b) If χ is a p-vanishing character of G then λ is a p-vanishing character of L.
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(c) Let K := Op
′
(L). If χ is a Steinberg-like or Sylp-regular character of G then so is the

character λ|K of K.

Proof. We can assume that S ≤ P and T = S/U .
(a) As χ|S = m · ρregS , it follows that λ|T coincides with m · ρregT , whence the claim.
(b) We have to show that λ vanishes at all p-singular elements of L. Let M be a CG-module
afforded by χ. Then CM (U) = { 1

|U |
∑

u∈U ux | x ∈ M}. Observe that if g ∈ P has projection

to L which is not a p′-element, then gu is not a p′-element for any u ∈ U . Thus, for any such
element g, it follows that λ(g) = 1

|U |
∑

u∈U χ(gu) = 0 by assumption, whence the claim.

(c) Obvious. �

Lemma 2.6. Let G = G1 ×G2 be a direct product. Suppose that lp(σ) ≥ k for every non-zero
Sylp-vanishing (resp., p-vanishing) character σ of G2. Then lp(χ) ≥ k for every Sylp-vanishing
(resp., p-vanishing) character χ of G.

Proof. Let S1 ∈ Sylp(G1). Set U = S1 and P = NG(U), so P = NG1(S1) × G2. Then L :=
P/U = L1 × G2, where L1 = NG1(S1)/S1. Let χ be a Sylp-vanishing (resp., p-vanishing)

character of G. Let λ = rGP/U (χ) be the generalised restriction of χ to L. By Lemma 2.5, λ is a

Sylp-vanishing (resp., p-vanishing) character of L and lp(χ) = lp(λ). Then lp(λ) = lp(λ|G2), as
L1 is a p′-group. By assumption, lp(λ|G2) ≥ k, whence the result. �

Lemma 2.7. Let G = G1 × G2, where |G2|p > 1 and let χ be a p-vanishing character of G.
Then χ =

∑
i ηiσi, where ηi ∈ Irr(G1) are all distinct, and σi are p-vanishing characters of G2.

In addition, χ1 :=
∑

i lp(σi)ηi is a p-vanishing character of G1, and lp(χ1) = lp(χ).

Proof. Write χ =
∑

i ηiσi, where ηi ∈ Irr(G1) are all distinct, and the σi’s are some characters
of G2 (reducible, in general). Let g ∈ G1, and let x ∈ G2 be p-singular. Then 0 = χ(gx) =∑

i ηi(g)σi(x). As the characters ηi are linearly independent, it follows that σi(x) = 0 for every
i, that is, the σi’s are p-vanishing.

In addition, |G2|p
∑
lp(σi)ηi =

∑
i ηiσi(1) = χ|G1 . So

∑
i lp(σi)ηi is p-vanishing. Let lp(χ) =

m; then

χ(1) = m|G|p = m|G1|p|G2|p =
∑

ηi(1)σi(1) =
∑

ηi(1)lp(σi)|G|2,
whence m|G1|p =

∑
ηi(1)lp(σi), as required. �

Corollary 2.8. Let G = G1×G2 and χ be as in Lemma 2.7, and let Si be a Sylow p-subgroup of
Gi, i = 1, 2. Let η1, . . . , ηk be the irreducible constituents of χ|G1, and η = η1 + · · ·+ηk. Suppose
that lp(σ) ≥ m for every non-zero p-vanishing character σ of G2. Then lp(χ) ≥ m · η(1)/|S1|.

Proof. Let χ =
∑
ηiσi be as in Lemma 2.7. By assumption, σi|S2 = mi · ρregS2

, where mi ≥ m.

So m · ρregS2
is a subcharacter of σi|S2 . Therefore,

∑
i(ηi|S1 ·m · ρ

reg
S2

) = (
∑

i ηi)|S1 ·m · ρ
reg
S2

is a

subcharacter of χ|S1×S2 . Now χ(1) ≥ mη(1) |S2| = mη(1) |G|p/|S1|. As χ(1) is a multiple of
|G|p, we have χ(1) = lp(χ)|G|p, and the result follows. �

Proposition 2.9. Let G be a finite group and N C G a normal subgroup such that G/N is a
cyclic p-group. Let χ be a p-vanishing character of G. Then:

(a) χ = ψG for some character ψ of N;
(b) if h ∈ N is p-singular and the conjugacy classes of h in G and in N coincide then

ψ(h) = 0;
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(c) if ψ is G-invariant then ψ is p-vanishing.

Proof. (a) Let λ ∈ Irr(G) be a linear character that generates Irr(G/N). As all elements of G\N
are p-singular, χ vanishes on G \N . It follows that λ · χ = χ. Thus, if we write χ =

∑
j ajχj as

a non-negative linear combination of irreducible characters χj ∈ Irr(G), then aj is constant on
orbits under multiplication with λ. It clearly suffices to show the claim for a single orbit, say

χ =
∑pf

i=1 λ
iχ′ with χ′ ∈ Irr(G) and f minimal such that λp

f
χ′ = χ′.

Set M := ker(λp
f
). Then χ′|M is irreducible as so is χ′, so χ = (χ′|M )G. Now note that

λp
f

generates Irr(G/M), so λp
f
(m) 6= 1 for m /∈ (M \ N). Thus, as λp

f
χ′ = χ′, it follows

that χ′ vanishes on M \ N , and hence χ′|M = ψM is induced from some ψ ∈ Irr(N). Then
χ = (χ′|M )G = (ψM )G = ψG as claimed.

(b) For g ∈ G define the character ψg of N by ψg(x) = ψ(gxg−1) (x ∈ N). It is well know
that ψG|N is a sum of pk characters ψg for suitable g ∈ G. By assumption, ψg(h) = ψ(h), and
hence 0 = χ(h) = pkψ(h), whence (b).

(c) If ψ is G-invariant then ψg = ψ, and hence χ|N = pk · ψ. It follows that ψ is p-vanishing
whence the result. �

Remark 2.10. Let G,N, p, χ, ψ be as in Proposition 2.9. Then ψ is not necessarily p-vanishing.
Indeed, let C = 〈c〉 be the cyclic group of order 4, and let ε be a square root of −1. Define
µi ∈ Irr(C) (i = 1, 2, 3, 4) by µi(c) = εi. Then

∑
i µi = ρregC , the regular character of C. Let D

be the dihedral group of order 8 with normal subgroup C. Then (
∑

i µi)
D = ρregD . One observes

that µD1 = µD3 , and hence (2µ1 + µ2 + µ4)
D = ρregD . However, 2µ1 + µ2 + µ4 is not a 2-vanishing

character of C.

Corollary 2.11. Let G,N be as in Proposition 2.9, and let χ be a Steinberg-like character of
G. Suppose that every irreducible character of N of degree at most |N |p is G-invariant. Then
χ = ψG for some Steinberg-like character ψ of N . In particular, if N does not have Steinberg-like
characters then neither has G.

Proof. By Proposition 2.9(a), χ = ψG for some character ψ of N . Clearly,

ψ(1) = χ(1)/|G : N | = |G|p/|G : N | = |N |p,

so, by assumption, every irreducible constituent of ψ is G-invariant. Therefore, so is ψ, and the
claim follows from Proposition 2.9(c). �

Lemma 2.12. Let G be a finite group and N CG a normal subgroup of p-power index. Suppose
that lp(χ) ≥ m for some integer m > 0 and every p-vanishing character χ of G. Then lp(χ1) ≥ m
for every p-vanishing character χ1 of N .

Proof. Suppose the contrary. Let χ1 be a p-vanishing character of N such that lp(χ1) < m.
Then the induced character χG1 is p-vanishing and

lp(χ
G
1 ) = lp(χ1) < m.

This is a contradiction. �

The following fact is well known.
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Lemma 2.13. Let G be a finite group and N CG a normal subgroup of p-power index. Let F be
an algebraically closed field of characteristic p. Let Φ be a projective indecomposable FG-module.
Then Φ = ΨG, where Ψ is a projective indecomposable FN -module and lp(Ψ) = lp(Φ).

Proof. It is well-known that induction sends projective modules to projective modules. Further-
more, by Green’s indecomposability theorem [4, Thm. 3.8] induction from normal subgroups of
p-power index preserves indecomposability. So, if Ψ is an indecomposable direct summand of
Φ|N , then Ψ is projective, ΨG is projective indecomposable and so ΨG = Φ. The statement
lp(Ψ) = lp(Φ) also follows as |G : N | = |G : N |p by assumption. �

3. Irreducible Steinberg-like characters for simple groups

In this section we complete the list of irreducible characters of simple groups G of degree |G|p.
For this it suffices to extract the characters of degree |G|p from the list of irreducible characters
of prime-power degree obtained in [14, Thm. 1.1]. This list already appeared in [24, Prop. 2.8],
where the case with p = 3, G = 2F4(2)′ was inadvertently omitted.

Note that an irreducible character is Steinberg-like if and only if it is Sylp-regular.

Proposition 3.1. Let G be a non-abelian simple group. Suppose that G has an irreducible
Sylp-regular character χ. Then one of the following holds:

(1) G is a simple group of Lie type in characteristic p and χ is its Steinberg character;
(2) G = PSL2(q), q even, and p = χ(1) = q ± 1, or G = SL2(8), p = 3 and χ(1) = 9;
(3) G = PSL2(q), q odd, χ(1) = (q± 1)/2 is a p-power for p > 2, or p = 2 and χ(1) = q± 1

is a 2-power;
(4) G = PSLn(q), q > 2, n is an odd prime, (n, q− 1) = 1, such that χ(1) = (qn− 1)/(q− 1)

is a p-power;
(5) G = PSUn(q), n is an odd prime, (n, q + 1) = 1, such that χ(1) = (qn + 1)/(q + 1) is a

p-power;
(6) G = PSp2n(q), n > 1, q = rk with r an odd prime, kn is a 2-power such that χ(1) =

(qn + 1)/2 is a p-power;
(7) G = PSp2n(3), n > 2 is a prime such that χ(1) = (3n − 1)/2 is a p-power;
(8) G = Ap+1 and χ(1) = p;
(9) G = Sp6(2) and χ(1) = 7;

(10) G ∈ {M11,M12} and χ(1) = 11;
(11) G ∈ {M11,PSL3(3)} and χ(1) = 16;
(12) G ∈ {M24, Co2, Co3} and χ(1) = 23;
(13) G = 2F4(2)′ and χ(1) = 27;
(14) G = PSU3(3) ∼= G2(2)′ and χ(1) = 32; or
(15) G = G2(3) and χ(1) = 64.

The problem of determining the minimal degree of irreducible characters of p-defect 0 looks
much more complicated.

Remark 3.2. Let us point out the following cases not explicitly mentioned in Proposition 3.1.
SL3(2) ∼= PSL2(7), A6

∼= PSL2(9), PSU4(2) ∼= PSp4(3), A8
∼= SL4(2).
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4. Cyclic Sylow p-subgroups

In this section we determine the reducible Steinberg-like characters for simple groups with
cyclic Sylow p-subgroups.

Proposition 4.1. Let G be a finite group with a cyclic TI Sylow p-subgroup S, and assume that
NG(S)/S is abelian. Then lp(τ) = bτ(1)/|S|c for all τ ∈ Irr(G).

Proof. Let N := NG(S). By assumption, N/S is abelian of order prime to p, so it has |N : S|
irreducible p-Brauer characters of degree 1. Hence, each of the corresponding PIMs of N has
dimension |S|. Since the Brauer tree for any p-block of N is a star, all PIMs are uniserial [4,
Ch. VII, Cor. 2.22]. But then by [4, Ch. I, Thm. 16.14], any indecomposable FN -module, where
F is a sufficiently large field of characteristic p, is a quotient of a PIM, so has dimension strictly
smaller than |S| if it is not projective.

Now let τ ∈ Irr(G). If τ is of p-defect zero, τ |S is a multiple of ρregS , and the claim follows.
Else, τ lies in a block of full defect, and there exists an indecomposable FG-module X with
lift τ [4, Ch. I, Thm. 17.12]. Then X|FN = Y ⊕ P , where P is projective (and hence of
dimension divisible by |S|) and Y is the Green correspondent of X, an indecomposable, non-
projective FN -module [4, Ch. VII, Lem. 1.5]. Thus, dimY < |S| by what we said before, so
τ(1)/|S| ≤ lp(τ) < τ(1)/|S|+ 1, and the claim follows. �

Lemma 4.2. Let G be a non-abelian simple group. Let p be a prime such that a Sylow p-
subgroup of G is cyclic. Let µ denote the minimal degree of any non-linear irreducible character
of G. Then 2µ > |G|p, except in the case where G = PSL2(p), p ≡ 3 (mod 4) and µ = (p−1)/2.

Proof. The values of µ = µ(G) for every simple group G are either known explicitly or there
is a good lower bound. For the sporadic simple groups one can inspect [1], for the alternating
groups An we have µ(An) = n− 1 for n > 5, and µ(A5) = 3, for simple groups G of Lie type the
values µ(G) are listed in [20]. The lemma follows by comparison of these data with |G|p. �

Proposition 4.3. Let p be a prime and let G be a non-abelian simple group with a cyclic Sylow
p-subgroup S. Let χ be a Sylp-regular character of G. Then one of the following holds:

(1) χ is irreducible of degree |G|p;
(2) (χ, 1G) = 1, τ := χ− 1G is irreducible and (τ |S , 1S) = 0; or
(3) G = PSL2(p), p ≡ 3 (mod 4) and χ = 1G + τ1 + τ2, where τ1, τ2 are distinct irreducible

characters of degree (p− 1)/2.

Proof. Suppose that χ is reducible. The result for G = PSL2(p) easily follows by computation
with the character table of this group. Suppose G 6∼= PSL2(p). Let τ 6= 1G be an irreducible
constituent of χ. By Lemma 4.2, χ = τ + k · 1G, where k = |G|p − τ(1). Therefore, 1G is a
constituent of χ. By Lemma 2.1, k = 1 and (τ |S , 1S) = 0. �

Proposition 4.4. Let p be a prime and let G be a non-abelian simple group with a cyclic Sylow
p-subgroup S. Then G has a reducible Sylp-regular character χ if and only if one of the following
holds:

(1) G = PSL2(q), q > 4 even, |S| = q + 1;
(2) G = PSL2(p), |S| = p > 5;
(3) G = PSLn(q), n is an odd prime, n 6 |(q − 1), |S| = (qn − 1)/(q − 1);
(4) G = PSUn(q), n is an odd prime, n 6 |(q + 1), |S| = (qn + 1)/(q + 1);



8 GUNTER MALLE AND ALEXANDRE ZALESSKI

(5) G = Ap, |S| = p ≥ 5;
(6) G = M11, |S| = 11; or
(7) G = M23, |S| = 23.

Furthermore, in each case (1)–(7), CG(S) = S and χ is Steinberg-like. In addition, χ − 1G is
an irreducible character of G, unless possibly when (2) holds, when χ − 1G may be the sum of
two irreducible constituents of equal degree.

Proof. The additional statement follows from Proposition 4.3. If χ − 1G is reducible, we have
the case (3) of Proposition 4.3. So we may assume that τ = χ− 1G is irreducible and thus that
(τ |S , 1S) = 0. The irreducible characters of G of level 0 are determined in [22, Thm. 1.1], so τ
belongs to the list in [22, Thm. 1.1]. If we drop from that list the characters of degree other than
|S| − 1, the remaining cases are given in the statement of the proposition. (Note that the list in
[22, Thm. 1.1] includes quasi-simple groups so one first needs to delete the representations that
are non-trivial on the centre. For instance, if G = PSp2n(q) then |S| = (qn + 1)/2 is odd, and
hence τ(1) = χ(1)− 1 = |S| − 1 is even. However, every irreducible representation of Sp2n(q) of
even degree (qn − 1)/2 is faithful. In other words, G has no irreducible representation of even
degree (qn − 1)/2. In contrast, there do exist irreducible representations of G = PSLn(q) and
PSUn(q) for n odd of degree |S| − 1.)

To prove the converse, we have to show that in each case 1G + τ is Sylp-regular, that is,

χ|S = ρregS . Let Ψ be a representations of G afforded by τ . Let s ∈ S with S = 〈s〉. By [22,
Cor. 1.3(2)], the multiplicity of every eigenvalue of Ψ(s) is 1. As det Ψ(s) = 1, it follows that 1
is not an eigenvalue of Ψ(s). Therefore, χ|S = ρregS , as required.

Next, we show that CG(S) = S. In cases (6) and (7) this follows by inspection in [1]. The
cases (1), (2) and (5) are trivial. In cases (3) and (4) one can take the preimage T , say, of S in
G1 = SLn(q), SUn(q), respectively. Then T is irreducible on the natural module for G1. The
groups CG1(T ) are described by Huppert [8, Sätze 4,5]. It easily follows that T is self-centralising
in G1. Then CG(S) = S unless [g, T ] ⊆ Z(G1) for some g ∈ NG1(T )\T . By order consideration,
S is a Sylow p-subgroup of G, so g is not a p-element. Let t ∈ T . Then [g, ti] = [gi, t] = 1 for

i = |S|, so g|S| ∈ CG1(T ) = T by the above. This is a contradiction as S is a Sylow p-subgroup.
It follows that every element of G is either a p- or a p′-element. Therefore, χ is Steinberg-like

if and only if χ|S = ρregS . �

Lemma 4.5. Under the assumptions and in the notation of Proposition 4.4 we have the follow-
ing:

(a) χ is unique unless (2) or (6) holds;
(b) χ is the character of a projective module when (1), (3), (5) or (7) holds; and
(c) χ − 1G is a proper character, and if m is the minimal degree of a non-linear character

of G then either m = χ(1) − 1, or (1) holds and m = χ(1) − 2, or (2) holds and
m = (χ(1)± 1)/2.

Proof. (a) Let τ = χ− 1G. Then τ(1) = |S| − 1 and τ is irreducible unless (2) holds. We show
that an irreducible character of this degree is unique unless (2) or (6) holds. If G = M23, this
follows from the character table of this group, for Ap this is well known. For G = PSLn(q),
n > 2, and PSUn(q), n > 2, this is observed in [20, Table II].
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In case (2) the number of characters equals the number of irreducible characters of degree
p− 1, which is (p− 3)/4 if p ≡ 3 (mod 4), otherwise (p− 1)/4. If G = M11 then there are three
Steinberg-like characters, see [1].

(b) Recall that the principal projective indecomposable module is the only PIM whose char-
acter contains 1G as a constituent. All the characters χ in Proposition 4.4 contain 1G as a
constituent. Therefore, if χ is the character of a projective module Φ, say, then Φ is indecom-
posable and principal. So we compare the list of characters χ in Proposition 4.4 with the main
result of [13]. The comparison rules out the case (4) of Proposition 4.4. Furthermore, if G
admits at least two Steinberg-like characters then at most one of them can be the character of
a projective module. By (a) this leaves us with cases (1), (5) and (7). As in each of these cases
χ is unique, it must be the character of the principal projective indecomposable module listed
in [13].

(c) This follows by inspection in [20, Table II]. �

Remark 4.6. The group G = PSL2(p) has several Sylp-regular characters, all of them are
Steinberg-like, and only one of them is projective.

5. Sporadic groups

Theorem 5.1. Let G be a sporadic simple group. Then G does not have a reducible Sylp-regular
character unless one of the following holds:

(1) G = M12, p = 3, four characters with constituents of degrees 11 and 16 each, all
Steinberg-like;

(2) G = M24, p = 2, six characters, none of them Steinberg-like;
(3) G = M11, |S| = 11; or
(4) G = M23, |S| = 23.

Proof. For most groups and primes, by [1] there is a conjugacy class of non-trivial p-elements
taking strictly positive value at all irreducible characters of degree at most |G|p. In a few cases,
like in Co3 and Fi23 at p = 3, or Co1 and J4 at p = 2, one has to solve a little linear system
of equations for non-negative integral solutions. The only cases where such solutions exist are
listed in the statement. Note that the cases (3) and (4) occur also in Proposition 4.4. �

6. Alternating groups

In this section we consider Steinberg-like characters of alternating groups.

6.1. Alternating groups for p > 2. For odd primes we give a short proof using a recent result
of Giannelli and Law [5] which replaces our earlier more direct proof.

Lemma 6.1. Let G = Ap, p > 3, and χ ∈ Irr(G). Then lp(χ) = bχ(1)/pc. In addition,
lp(χ) 6= 1 for p > 7 (this fact has also been observed in [18]).

Proof. The first part is just Proposition 4.1. In addition, if p > 7 then G has no irreducible
character of degree d for p ≤ d < 2p. This implies the claim. �

Lemma 6.2. Let n = kp, where p > 5 and k < p. Let G = An and let χ be a p-vanishing
character. Then lp(χ) ≥ 2k−1, equivalently, χ(1) ≥ 2k−1|G|p.
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Proof. For k = 1 the lemma is trivial. Let k > 1. Let X1
∼= Ap, X2

∼= An−p be commuting
subgroups of G. Set X = X1X2. Then χ|X =

∑
ηiσi, where the σi’s are p-vanishing characters

of X2 and the ηi’s are distinct irreducible characters of X1 (Lemma 2.7). By induction, lp(σi) ≥
2k−2. If lp(ηi) ≥ 2 for some i then lp(χ) ≥ lp(ηiσi) ≥ 2k−1. By Lemma 6.1, if lp(ηi) < 2 and
p > 7 then lp(ηi) = 0, and hence either ηi = 1X1 or ηi is the unique irreducible character of
degree p− 1. (If p = 7 then we may have ηi(1) = 10, see [18].)

Suppose the lemma is false and p > 7. Then we can rearrange the above to get

χ|X = 1X1 · σ1 + η2 · σ2,

where η2(1) = p− 1 and σ1, σ2 are p-vanishing characters of X2. It follows that χ|X1 , as well as
τ |X1 for every irreducible constituent τ of χ, contains no irreducible constituent distinct from
1X1 , η2. It is well known and easily follows from the branching rule that this implies τ(1) = n−1
or 1. Recall that G has a single character of degree n − 1. Therefore, χ = a · 1G + b · τ , where
τ(1) = n− 1. Let x ∈ X1 be of order p. Then τ(x) = n− p− 1 > 0, which implies χ(x) > 0.

Suppose p = 7. Then ηi(1) ∈ {1, 6, 10}. There are two irreducible characters of X1 of
degree 10, let us denote them by η3, η

′
3. Therefore, assuming the lemma is false, we can write

χ|X = 1X · σ1 + η2σ2 + η3σ3 + η′3σ4. Let 1 6= x ∈ X1 be a p-element. Then η3(x) = ε+ ε4 + ε2

and η′3(x) = ε−1 + ε−4 + ε−2, where ε is some primitive 7th root of unity. Since χ(x) and η2(x)
are integers, so is η3(x)σ3(1) + η′3(x)σ4(1). This implies σ3(1) = σ4(1). Then

χ(1) = σ1(1) + (p− 1)σ2(1) + 20σ3(1) > 14σ3(1),

and the lemma follows unless σ3(1) = 0. If σ3(1) = 0 then

χ|X = 1X1 · σ1 + η2 · σ2,

and the above argument applies. �

Lemma 6.3. Let p ≥ 3 be odd and let λ be a hook partition of n ≥ 2p. Then the corresponding
character χλ of Sn takes a positive value on p-cycles.

Proof. It is well known that any hook character χλ is the mth exterior power, for some 0 ≤
m ≤ n − 1, of the irreducible reflection character ρn of Sn (the constituent of degree n − 1 of
the natural permutation character πn). Let Y = Y1 × Y2, with Y1 = Sp and Y2 = Sn−p, be a
Young subgroup of Sn and g = g′ × 1 ∈ Y a p-cycle. Clearly ρn|Y = ρp � 1Y2 + 1Y1 � (πn−p),
and Λi(ρp)(g

′) = (−1)i for i < p, Λi(ρp)(g
′) = 0 for i ≥ p. Thus

χλ(g) = Λm(ρn)(g) =

m∑
i=0

Λi(ρp)(g
′)Λm−i(πn−p)(1) =

min(p−1,m)∑
i=0

(−1)i
(
n− p
m− i

)
,

which clearly is positive for m ≤ (n−p)/2 since the binomial coefficients are (strictly) increasing
up to the middle. Now observe that it suffices to prove the claim for n = 2p, since the restriction
of a hook character from Sn to Sn−1 only contains hook characters. But for n = 2p we are done
since by symmetry we may assume that m ≤ p = (n− p)/2. �

Theorem 6.4. Let p be odd and G = An with n > max{6, p + 1}. Then G has no Sylp-
regular character. If n = p+ 1 > 4 then every Sylp-regular character of G is irreducible, unless
(n, p) = (6, 3).
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Proof. If p ≤ n < 2p the Sylow p-subgroups of G are cyclic and so the claim is in Proposition 4.4.
Now assume that n ≥ 2p and let S be a Sylow p-subgroup of Sn. First assume that n 6= pk for
some k ≥ 2 and that n > 10 when p = 3. Then by the main result of [5], the restriction of any
irreducible character of Sn to S contains the trivial character. A moments thought shows that
the same is true for the restriction of any irreducible character of An to S. So by Lemma 2.1
any Sylp-regular character of An is irreducible.

Now assume that n = pk for some k ≥ 2, and n > 10 when p = 3. Then again by [5, Thm. A]
the only irreducible characters of Sn whose restriction to S does not contain the trivial character
are the two characters of degree n− 1. So the only irreducible character of An whose restriction
to S does not contain the trivial character is ψ of degree n− 1. Hence a Sylp-regular character
χ of An has the form χ = aψ + ψ′, for some a ≥ 0 and some ψ′ ∈ Irr(An). Let g ∈ An be
a pk-cycle. Then ψ(g) = −1, and by the Murnaghan–Nakayama rule any irreducible character
of Sn takes value 0 or ±1 on g. In particular, if χ is reducible then we have that a = 1 and
ψ′(g) 6= 0. But then ψ′ is parametrised by a hook partition, of degree

(
n−1
m

)
for some m ≤ n.

But then χ takes positive values on p-cycles by Lemma 6.3, a contradiction.
Finally, the cases when p = 3 and 6 ≤ n ≤ 10 can easily be checked individually. For example,

all irreducible characters of A9 of degree at most 81 are non-negative on class 3C, and those
which vanish there are positive either on class 3B or 3A. So A9 has no Syl3-regular character.
As A10 has the same Sylow 2-subgroup, this also deals with n = 10. �

Corollary 6.5. Let G be a finite group and p > 2. Suppose that G has a subgroup P containing
a Sylow p-subgroup of G and such that P/Op(P ) ∼= An with n > max{6, p+ 1}. Then G has no
Steinberg-like character.

Proof. This follows from Lemma 2.5 and Theorem 6.4. �

6.2. Alternating groups for p = 2. The situation is more complicated in the case of p = 2
and we do not have complete results. This is in part due to the existence of an infinite family
of examples which we now construct.

Set Γ =
∑n

i=1 Γi, where Γi is the irreducible character of Sn corresponding to the partition
[i, 1n−i] for i > 1, and [1n] for i = 1. So the Young diagram γi of Γi is a hook with leg length
n− i, and

Γi(1) =
n!

n(n− i)!(i− 1)!
=

(
n− 1

i− 1

)
so Γ(1) =

∑n
i=1 Γi(1) = 2n−1.

Lemma 6.6. Let 0 < m < n, where m is even, and g = ch ∈ Sm × Sn−m ≤ Sn, where c is
an m-cycle and h fixes all letters moved by c. Let Γn−mk ∈ Irr(Sn−m) correspond to the hook

partition [k, 1n−m−k]. Then

Γi(g) =


−Γn−mi (h) if i ≤ m,
Γn−mi−m (h) if n−m < i,

Γn−mi−m (h)− Γn−mi (h) if m < i ≤ n−m.

Proof. One observes that the restriction of Γi to Sm × Sn−m is a sum of irreducible characters
στ , where σ, τ are irreducible characters of Sm, Sn−m, resp., and both σ, τ are hook characters
of the respective groups (see [9, Lemma 21.3]). Next we use [9, Lemma 21.1] which states that
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Γi(g) =
∑

j(−1)jχνj (h), where χνj ∈ Irr(Sn−m), νj is the Young diagram of χνj , and νj is

such that γi \ νj is a skew hook with leg length j. In our case γi is a hook, so the rim of
γi is γi itself. By definition, a skew hook is connected, so it is either a row or a column in
our case, and hence j = 0 or j = m − 1. (A column hook of length m has leg length m − 1,
which is odd as m is even.) If j = 0,m − 1 then ν = [i − m, 1n−i], [i, 1n−i−m], respectively.
This is a proper diagram if and only if i > m, resp., n − i ≥ m. So if n − i < m then
ν = [i−m, 1n−i], j = 0, and Γi(g) = χν(h) = Γn−mi−m (h); if i ≤ m then ν = [i, 1n−i−m], j = m−1,

and Γi(g) = −χν(h) = −Γn−mi (h); if m < i ≤ n −m then ν ∈ {[i −m, 1n−i], [i, 1n−i−m]} and

Γi(g) = Γn−mi−m (h)− Γn−mi (h), as claimed. �

Proposition 6.7. Suppose that n is even. Then:

(a) Γ is a 2-vanishing character of Sn.
(b) Γ is Steinberg-like if and only if n = 2k for some integer k > 0.

Proof. (a) Let g ∈ Sn be of even order. Suppose first that g is a cycle of length n. By [9, Lemma
21.1], Γi(g) = (−1)n−i, so Γ(g) = 0.

Suppose that g is not a cycle of length n. Then we can express g as the product ch of a cycle
c of even size m, say, and an element h fixing all letters moved by c. Then g ∈ Sm × Sn−m. By
Lemma 6.6, we have

Γ(g) =
n∑
i=1

Γi(g) =
n∑

i=m+1

Γn−mi−m (h)−
n−m∑
i=1

Γn−mi (h) =
n−m∑
k=1

Γn−mk (h)−
n−m∑
i=1

Γn−mi (h) = 0.

(b) If n = 2k then |Sn|2 = 2 · |Sn/2|22. As |S2|2 = 2, by induction we have

|Sn|2 = 2 · (22k−1−1)2 = 22
k−1 = 2n−1.

Write n = 2k + l where 0 < l < 2k. Then |Sn|2 = |S2k |2 · |Sl|2. By induction, |Sl|2 ≤ 2l−1, so

|Sn|2 = 22
k−1 · |Sl|2 ≤ 2(2

k−1)+(l−1) = 22
k+l−2 = 2n−2.

The statement follows as Γ(1) = 2n−1. �

Corollary 6.8. Let n be even, and Γ0 =
∑n/2

i=1 Γi|An. Then Γ0 is a 2-vanishing character of

An. If n = 2k then this character is Steinberg-like.

Proof. The characters Γi remain irreducible under restriction to An and Γi|An = Γn−i+1|An . It
follows that Γ|An = 2Γ0. Therefore, Γ0(g) = Γ(g)/2 = 0 by Proposition 6.7 for elements g of
even order. The last claim follows from Proposition 6.7(b). �

Suppose that n is odd. Set

Γe =

(n−1)/2∑
i=1

Γ2i = Γ2 + Γ4 + · · ·+ Γn−1, and

Γo =

(n+1)/2∑
i=1

Γ2i−1 = Γ1 + Γ3 + · · ·+ Γn.
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Observe that Γi|Sn−1 = Γn−1i + Γn−1i−1 provided 1 < i < n, and Γ1|Sn−1 = Γn−11 , Γn|Sn−1 = Γn−1n−1.
Therefore,

Γe|Sn−1 = Γn−11 + · · ·+ Γn−1n−1 = Γo|Sn−1 .

As Γ = Γe + Γo we have Γe(1) = Γo(1) = Γ(1)/2 = 2n−2.

Proposition 6.9. Suppose that n is odd. Then:

(a) Γe and Γo are 2-vanishing characters of Sn.
(b) Γe is Steinberg-like if and only if n = 2k + 1 for some integer k > 0.

Proof. (a) Let g ∈ Sn be of even order, and g = ch where c is a cycle of even size m. By
Lemma 6.6,

Γe(g) =

(n−1)/2∑
i=1

Γn−2i+1(g) =

(n−1−m)/2∑
i=1

Γn−mn−m−2i+1(h)−
(n−1)/2∑

i=(m+2)/2

Γn−mn−2i+1(h),

as γn−mn−m−2i+1 is a proper diagram only for i < (n−m)/2 and γn−mn−2i+1 is a proper diagram only for

i ≥ (m+2)/2. Set k = i−m/2. So the second sum can be written as
∑(n−1−m)/2

k=1 Γn−mn−m−2k+1(h),
whence Γe(g) = 0.

Similarly,

Γo(g) =

(n+1)/2∑
i=1

Γn−2i+2(g) =

(n−1−m)/2∑
i=1

Γn−mn−m−2i+2(h)−
(n−1)/2∑

i=(m+2)/2

Γn−mn−2i+2(h),

as γn−mn−m−2i+1 is a proper diagram only for i ≤ (n − m − 1)/2 and γn−mn−2i+2 is a proper dia-
gram only for i ≥ (m + 2)/2. Set k = i − m/2. Then the second sum can be written as∑(n−1−m)/2

k=1 Γn−mn−m−2k+2(h). So Γo(g) = 0 as well.

(b) If n = 2k + 1 then |Sn|2 = |Sn−1|2 = 2n−2 (see the proof of Proposition 6.7(b)). By the
above, Γe(1) = Γo(1) = 2n−2, so both Γe and Γo are Steinberg-like. If n − 1 is not a 2-power
then |Sn|2 = |Sn−1|2 < 2n−2 by Proposition 6.7(b). �

Let n be odd. Then Γi|An = Γn+1−i|An is irreducible for i 6= (n + 1)/2, whereas Γ(n+1)/2|An

is the sum of two irreducible constituents, denoted by Γ+
(n+1)/2 and Γ−(n+1)/2. If n = 4l + 1 then

set

Γea =

(n−1)/4∑
i=1

Γ2i|An = (Γ2 + Γ4 + · · ·+ Γ(n−1)/2)|An , and

Γo± = Γ±(n+1)/2 +

(n−1)/4∑
i=1

Γ2i−1|An = (Γ1 + Γ3 + · · ·+ Γ(n−3)/2)|An + Γ±(n+1)/2,

while for n = 4l + 3 we set

Γoa =

(n+1)/4∑
i=1

Γ2i−1|An = (Γ1 + Γ3 + · · ·+ Γ(n−1)/2)|An , and

Γe± = Γ±(n+1)/2 +

(n−3)/4∑
i=1

Γ2i|An = (Γ2 + Γ4 + · · ·+ Γ(n−3)/2)|An + Γ±(n+1)/2.
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Corollary 6.10. The following statements hold.

(a) Let n = 4l + 1. Then Γea, Γo+ and Γo+ are 2-vanishing characters of An. If n = 2k + 1
then they are Steinberg-like characters.

(b) Let n = 4l + 3 > 3. Then Γe+, Γe− and Γoa are 2-vanishing characters of An. None of
them is Steinberg-like.

Proof. Let g ∈ An be of even order.
(a) Let i 6= (n+ 1)/2. Then Γi remains irreducible under restriction to An. As Γi and Γn−i+1

coincide under restriction to An, it follows that Γe|An = 2Γea, and hence Γea is a 2-vanishing
character. As Γea(1) = 2n−3 = |An|2, this is Steinberg-like for n = 2k + 1.

Observe that

Γ+
(n+1)/2(g) = Γ−(n+1)/2(g), Γ+

(n+1)/2(g) + Γ−(n+1)/2(g) = Γ(n+1)/2(g).

It follows that Γo+(g) = Γo−(g) = Γo(g)/2, and thus Γo+(g) = Γo−(g) = 0 by Proposition 6.9.
Therefore, Γo+ and Γo+ are 2-vanishing characters of An. In addition, suppose that n = 2k + 1.
Then Γo+(1) = Γo−(1) = Γo(1)/2 = |An|2, so both Γo+ and Γo− are Steinberg-like.

(b) Let i 6= (n + 1)/2. Then as above it follows that Γo|An = 2Γoa, and hence Γoa is a
2-vanishing character. In addition, Γoa(1) = Γo(1)/2 = 2n−3. As here we never have n = 2k + 1,
Γoa is not Steinberg-like.

Consider Γe±. Observe that

Γ+
(n+1)/2(g) = Γ−(n+1)/2(g), Γ+

(n+1)/2(g) + Γ−(n+1)/2(g) = Γ(n+1)/2(g).

It follows that Γe+(g) = Γe−(g) = Γe(g)/2, and so Γe+(g) = Γe−(g) = 0 by Proposition 6.9.
Therefore, Γe+ and Γe− are 2-vanishing characters of An but not Steinberg-like. �

Lemma 6.11. Let 2 ≤ n ≤ 12. Then in addition to the character Γ when n = 2k, and the
characters Γe and Γo when n = 2k + 1, the only Steinberg-like characters of Sn are:

(a) if n = 4 the sum of all non-linear irreducible characters;
(b) if n = 6 the irreducible character of degree 16;
(c) if n = 8 the sum of the two irreducible characters of degree 64.

Proof. For n ≤ 6 this is easily checked from the known character tables. For n = 8 we use a
computer program to go through all possibilities. For S10 one checks that no character exists
with the right restriction to S8×S2, and similarly for S12 one considers the restriction to S8×S4.
Finally, the cases n ∈ {7, 9, 11} are treated by restricting to Sn−1. �

Theorem 6.12. Suppose that the only Steinberg-like character of S2k , k ≥ 4, for p = 2 is the
one constructed in Proposition 6.7. Then An does not have Steinberg-like characters for p = 2
for n ≥ 13 unless n or n− 1 is a 2-power. In the latter case, the only Steinberg-like characters
are those listed in Proposition 6.9.

Proof. Let ψ be a Steinberg-like character for p = 2 of An, with n ≥ 10. Then χ := ψSn

is Steinberg-like for Sn. We argue by induction on n that Sn does not have a Steinberg like
character, unless n or n− 1 is a power of 2.

Assume that n is not a power of 2 and write n = 2a1 + . . . + 2ar for distinct exponents
a1, . . . , ar > 0. By Lemma 6.11 we may assume n 6= 12, so one of the summands, say 2a1 is
different from 4 and 8. Then the Young subgroup Y = Y1 × Y2 := S2a1 × Sn−2a1 of Sn contains
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a Sylow 2-subgroup, so χ|Y is Steinberg-like. Then by Lemma 2.7 we have χ|Y =
∑

i ηiσi where
ηi ∈ Irr(Y1) are all distinct, the σi are 2-vanishing characters of Y2, and χ1 :=

∑
i lp(σi)ηi is a

2-vanishing character of Y1 with l2(χ1) = l2(χ) = 1. Thus by assumption χ1 is the character Γ
from Proposition 6.7. In particular, χ1 is multiplicity-free and so lp(σi) = 1 for all i. So the σi
are Steinberg-like as well. This is not possible, unless n− 2a1 is a 2-power as well.

In the latter case, by Lemma 6.11 we conclude that n ≥ 17. The above argument shows that
χ|Y = Γ(1) � Γ(2), with Γ(j) a Steinberg-like character of Yj . So in particular χ|Y and hence
also χ is multiplicity-free. By possibly interchanging a1, a2 we may assume that 2a1 > 8. Now
consider χ|Y1 = |Y2|2Γ(1), a sum of hooks. By the branching rule, any non-hook character of
Sm restricted to Sm−1 contains a non-hook character (except when m = 4 which is excluded
here). Thus, inductively, χ cannot contain any non-hook constituent. This in turn means that

all constituents of χ|Y2 are hooks and thus by induction that χ|Y2 = |Y1|2Γ(2). Now observe

that by the Littlewood–Richardson rule [9, Lemma 21.3], Γi|Y contains Γ
(1)
j �Γ

(2)
l if and only if

j + l ∈ {i, i + 1}. Thus, on the one hand, Γi|Y and Γi+1|Y have a common constituent, and so
at most every second hook character occurs in χ. On the other hand, every second hook must
indeed occur. Thus either χ = Γe or χ = Γo as defined above. If n = 2a1 + 1 then our claim
follows from Proposition 6.9, otherwise the degree of χ is larger than |Sn|2. �

6.3. Projective characters for p = 2.

Lemma 6.13. Let p = 2. Then An has a projective character of degree |An|2 if and only if Sn
has a projective character of degree |Sn|2.

Proof. This follows from Lemma 2.13. �

Theorem 6.14. Let p = 2 and G = An or Sn for n > 4. Then G has no reducible projective
character of degree |G|2.

Proof. One can inspect the decomposition matrix modulo 2 of G = An for n ≤ 9 to observe
that G has no projective character of degree |G|2. Analysing the character table of G = An for
9 < n ≤ 15 one observes that G has no Syl2-regular characters, and hence no PIM of dimension
|G|2.

One can inspect the decomposition matrix of G = A9 to observe that the minimal dimension
of a PIM is 320. Analysing the character table of G = An for 9 < n ≤ 15 one observes that G
has no Syl2-regular characters, and hence no PIM of dimension |G|2.

Let n = 16. Using the known character table of A16 one finds that there is a unique Syl2-
regular character, viz. the character Γ0; it is multiplicity-free with constituents of degrees
1, 15, 105, 455, 1365, 3003, 5005, 6435, and Steinberg-like. Recall that the principal PIM is the
only one that has 1G as a constituent. However, by [13], the principal PIM is not of degree |G|2.

Let n = 2k, where k > 4. Then G has a subgroup Y such that Y/N ∼= A16 for some normal
2-subgroup N and |Y |2 = |G|2. Indeed, let P1, . . . , P16 be a partition of {1, . . . , n} with all parts
of size n/16. If G = Sn then N is the direct product of 16 copies of a Sylow 2-subgroup of Sn/16.
If G = An then we take N ∩ An for the subgroup in question. Then Y is a semidirect product
of N with S16. The latter permutes P1, . . . , P16 in the natural way. One easily observes that
|G : Y | is odd.
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If Φ is a PIM of degree |G|2 = |Y |2 then so is Φ|Y . By [23, Lemma 3.8], the generalised
restriction rGY/N (Φ) of Φ is a PIM of dimension |Y/N |2. Such a PIM does not exist as we have

just seen.
Let n > 16 be not a 2-power, and write n = 2k + m, where m < 2k. Further, let X =

X1 × X2 ≤ Sn, where X1
∼= S2k and X2

∼= Sm. Then the index |Sn : X| is odd, so Φ|X is a
PIM of degree |X|2. Therefore, Φ|X is a direct product Φ1 × Φ2, where Φi is a PIM for Xi for
i = 1, 2. Obviously, dim Φi = |Xi|2. This is a contradiction, as X1 has no PIM of degree |X|1.
For G = An the result follows from Lemma 6.13. �

7. Exceptional groups of Lie type

Theorem 7.1. Let G be a simple group of Lie type which is not classical. Then G does not
have a Sylp-regular character in non-defining characteristic, except for the group G = 2F4(2)′

which has two reducible Syl3-regular characters and two irreducible Steinberg-like characters for
p = 3.

Proof. As in the proof of [13, Thm. 4.1] we compare the maximal order of a Sylow p-subgroup of
G, which is bounded above by the order of the normaliser of a maximal torus, with the smallest
irreducible character degrees (given for example in [20, Tab. I]). This shows that except for very
small q there cannot be any examples of Sylp-regular characters. A closer inspection of the

finitely many remaining cases shows that G = 2F4(2)′ has two reducible Syl3-regular characters
and two irreducible Steinberg-like character for p = 3, but no further cases arise. �

8. Groups of Lie type in their defining characteristic

It was shown in [17] that simple groups of Lie type of sufficiently large rank do not have
Steinberg-like characters with respect to the defining characteristic apart from the (irreducible)
Steinberg character. More precisely, the Steinberg-like characters were classified except for
groups of types Bn with 3 ≤ n ≤ 5 and Dn with n = 4, 5.

Here we deal with the remaining cases.

Proposition 8.1. Let G = Spin2n+1(q), n ∈ {3, 4, 5}, with q = pf odd. Then G has no reducible
Steinberg-like character with respect to p.

Proof. We freely use results and methods from [17]. First assume that n = 3. According to [17,
Prop. 6.2] it suffices to consider a group H (coming from an algebraic group with connected
centre) such that [H,H] = Spin7(q). Let χ be a reducible Steinberg-like character of H. Then
χ has a linear constituent by [17, Thm. 8.6]. Multiplying by the inverse of that character, we
may assume that the trivial character occurs in χ (exactly once). By [17, Lemma 2.1], then all
constituents of χ belong to the principal p-block, so we may in fact replace H by H/Z(H), that
is, we may assume that H is of adjoint type.

Let P ≤ H be a parabolic subgroup of H and U = Op(P ). By Lemma 2.5(c) the Harish-
Chandra restriction rHL (χ) is a Steinberg-like character of L = P/U . We will show that there is
no possibility for χ compatible with Harish-Chandra restriction to all Levi subgroups.

Clearly, rHL (χ) also contains the trivial character, so is again reducible. The reducible
Steinberg-like characters of all proper Levi subgroups of H are known by [17, Lemmas 7.4
and 7.8]. In particular we must have 7|(q+1) and for L of type A2 we have rHL (χ) = 1L+µ with
µ ∈ Irr(L) of degree q3 − 1. Thus µ lies in the Lusztig series of a regular semisimple element
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s ∈ L∗ (the dual group of L) with centraliser a maximal torus of order (q2 − 1)(q − 1). Thus
χ has to contain a constituent ψ1 lying in the Lusztig series of s. It is easily seen that the
centraliser of s in G∗ is either a maximal torus, or of type A1(q).(q

2 − 1). Correspondingly,

ψ1(1) ∈ {(q6 − 1)(q2 + 1)(q + 1), (q6 − 1)(q2 + 1), q(q6 − 1)(q2 + 1)}.

But the first and the last are bigger than q9, so ψ1(1) = (q6− 1)(q2 + 1). Now if χ contains any
other constituent apart from 1G in the principal series, then its generalised restriction to L is
non-zero, contradicting rHL (χ) = 1L + µ.

Next, the Harish-Chandra restriction to a Levi subgroup L of type B2 has the form rHL (χ) =
1L + ν1 + ν2 + ν3 with ν1(1) = (q− 1)2(q2 + 1) and ν2(1) = ν3(1) = (q− 1)(q2 + 1). In particular
ν1 lies in the Lusztig series of a regular semisimple element t ∈ L∗ (of order 7 dividing q + 1)
with centraliser a maximal torus of order (q2 − 1)(q + 1). The centraliser of t in G∗ then either
is the same maximal torus, or of type A1(q).(q + 1)2. Correspondingly, χ has a constituent ψ2

in the Lusztig series of t of degree

d1 :=
(q6 − 1)(q2 + 1)(q − 1)

(q + 1)
, d2 :=

q(q6 − 1)(q2 + 1)(q − 1)

(q + 1)
or (q6 − 1)(q2 + 1)(q − 1).

The last one is larger than q9−1−ψ1(1), so ψ2(1) ∈ {d1, d2}. Furthermore, by [17, Lemma 3.1],
χ contains at least one regular constituent. This is either ψ2 of degree d2, or, if ψ2(1) = d1 then
one can check from the known list of character degrees of H (which can be found at [12]) that the
only regular character ψ3 of small enough degree has degree d3 := (q6−1)(q2+1)(q−1)2/(q+1).
Observe that d2 = d1 + d3. So the sum of remaining character degrees is

d := q9 − 1− ψ1(1)− d2 = q(q3 − 1)(q4 − 3q3 + 3q2 − 3q + 1).

Now note that χ cannot have further unipotent constituents since they would lead to unipotent
constituents of rHL (χ) (asH has no cuspidal unipotent characters). It turns out that all remaining
candidates except for one of degree λ(1) = (q3−1)(q2+1)(q−1) have degree divisible by q2−q+1.
Now we have λ(1) ≡ 2 (mod q2− q+ 1), while d ≡ −2 (mod q2− q+ 1). It follows that λ would
have to occur at least q2 − q times in χ. As (q2 − q)λ(1) > d, this is not possible. This
contradiction concludes the proof for the case n = 3.

The cases of Spin9(q) and Spin11(q) now follow from the previous one by application of the
inductive argument in the proof of [17, Thm. 10.1]. �

Proposition 8.2. Let G = Spin+
2n(q), n ∈ {4, 5} and q = pf . Then G has no reducible

Steinberg-like character with respect to p.

Proof. First consider the case n = 4. As in the previous proof, by [17, Prop. 6.2 and Lemma 2.1]
we may work with H of adjoint type. Let χ be a reducible Steinberg-like character of H. Then
χ contains 1H by [17, Thm. 8.6] and hence so does its Harish-Chandra restriction rHL (χ) to a
Levi subgroup of type A3. Then by [17, Lemma 9.1] we have q ≡ −1 (mod 3) and

rHL (χ) = 1L + µ1 + µ2 + µ3

with µ1 a cuspidal character labelled by a regular element s ∈ L∗ in a torus of order q4 − 1, of
order dividing (q2 + 1)(q + 1) in L∗/Z(L∗). But then s is also regular in H∗, that is, χ has a
constituent ψ of degree (q6 − 1)(q4 − 1)(q2 − 1). This holds for all three conjugacy classes of
Levi subgroups of type A3. Comparison of degrees shows that this is not possible. The case of
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Spin10(q) again follows from the previous one by application of the argument in the proof of [17,
Thm. 10.1]. �

9. Classical groups of large rank

As an application of results obtained in Section 6 we show here that classical groups of large
rank have no Steinberg like character for p > 2, provided p is not the defining characteristic of
G. Throughout p is an odd prime not dividing q and we set e := ep(q), the order of q modulo p.
We first illustrate our method on the groups GLn(q).

Lemma 9.1. Let G = GLn(q), p > 2, and let S be a Sylow p-subgroup of G.

(a) Write n = me + m′, where 0 ≤ m′ < e. Then there exist subgroups U ≤ S ≤ N ≤ G,
where U is an abelian normal p-subgroup of N and N/U ∼= Am.

(b) If m > max{6, p+ 1} or m′ > 0 then G has no Steinberg-like character.

Proof. (a) See [21]. (b) If m′ > 0 then G contains a subgroup X such that X ∼= GLm′(q) and
CG(X) contains a Sylow p-subgroup of G. As X is a p′-group, the result follows from Lemma 2.3.
Let m′ = 0. Suppose the contrary, and let χ be a Steinberg-like character of G. By Lemma 2.5,
Am must have a Steinberg-like character. However, this is false by Theorem 6.4. �

For other classical groups the argument is similar, but involves more technical details. Let
d = ep(−q) be the order of −q modulo p, equivalently, d = 2e if e is odd, d = e/2 if e ≡ 2
(mod 4), and d = e if 4|e. So d = 1 if and only if e = 2, equivalently, p|(q + 1). Note that
e = 2ep(q

2) if e is even.

Lemma 9.2. [21] Let G = GUn(q) and p > 2. Then the Sylow p-subgroups of G are isomorphic
to those of H, where H ∼= GLbn/2c(q) if e is odd, H ∼= GLbn/2c(q

2) if 4|e and H ∼= GLn(q2) if
e ≡ 2 (mod 4).

Lemma 9.3. Let G = GUn(q), p > 2, and let S be a Sylow p-subgroup of G. Suppose that e ≡ 2
(mod 4), equivalently, d is odd.

(a) Write n = md + m′, where 0 ≤ m′ < d. Then there exist subgroups U ≤ S ≤ N ≤ G,
where U is an abelian normal p-subgroup of N and N/U ∼= Am.

(b) If m > max{6, p+ 1} or m′ > 0 then G has no Steinberg-like character.

Proof. (a) Suppose first that e = 2. Let V be the natural Fq2H-module. Then V is a direct
sum ⊕ni=1Vi, where Vi’s are non-degenerate subspaces of dimension 1. Let X be the stabiliser
of this decomposition, that is, X = {x ∈ G | xVi = Vj for some j = j(x) ∈ {1, . . . , n}}. Then
X ∼= X1 · Sn (a semidirect product), where X1

∼= (GU1(q) × · · · × GU1(q)) (n factors). Let U
be the Sylow p-subgroup of X1. Then U is normal in X and abelian. It is well known that X
contains a Sylow p-subgroup of G. Therefore, N = UAn satisfies the statement.

Let e > 2. As d is odd, there is an embedding GUm(qd) → GUmd(q) (see [8, Hilfssatz 1]).
Note that ep(q

d) = 2 and |GUm(qd)|p = |GUmd(q)|p. As GUmd(q) is isomorphic to a subgroup
of G, the result follows.

(b) is similar to the proof of Lemma 9.1(b). �

Lemma 9.4. Let p > 2, 2n = me, where e = ep(q) is even, and X = GUm(qe/2).

(a) If m is even (resp., odd) then X is isomorphic to a subgroup of GO+
2n(q) (resp., GO−2n(q)).
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(b) X is isomorphic to a subgroup of Sp2n(q), of GO2n+1(q), of GO+
2n+e(q) as well as of

GO−2n+e(q).

In addition, X contains a Sylow p-subgroup of the respective group.

Proof. (a) follows from [3, Lemma 6.6] as well as (b) for Sp2n(q). The second case in (b) follows
from (a) as the groups GO2n+1(q), GO+

2n+e(q) and GO−2n+e(q) contain subgroups isomorphic to

GO+
2n(q) and GO−2n(q).

The additional statement can be read off from the orders of the groups in question. (The
cases with Sp2n(q), GO−2n(q) and GO2n+1(q) are considered in [6, Lemmas 3.14 and 3.16], that
of GO+

2n(q) is similar.) �

Lemma 9.5. Let p > 2. Let H be one of the following groups:

(1) H = GUn(q) with n = md+m′, where m′ < d;
(2) H ∈ {Sp2n(q),GO2n+1(q),GO+

2n(q),GO−2(n+1)(q)} with n = me+m′, where e is odd and

m′ < e;
(3) H ∈ {Sp2n(q),GO2n+1(q)} with 2n = me+m′ where e is even and m′ < e;
(4) H = GO±2n(q) with 2n = me+m′ where e is even, m′ < e, and either m′ > 0, or m′ = 0

and then either H = GO+
2n(q), m is even, or H = GO−2n(q), m is odd;

(5) let e be even, 2n = (m + 1)e and H = GO+
2n(q), m + 1 is odd, or H = GO−2n(q) and

m+ 1 is even.

Let S be a Sylow p-subgroup of H. Then there exist subgroups U ≤ S ≤ P ≤ H, where U is an
abelian normal p-subgroup of P and P/U ∼= Am.

Proof. (1) The case e ≡ 2 (mod 4) is handled in Lemma 9.3. In the remaining cases the result
follows from Lemmas 9.1 and 9.2, as GL[n/2](q

2) is isomorphic to a subgroup of G.
(2) By Lemma 9.2, |H|p = |GLn(q)|p. So the result follows from Lemma 9.1.
(3) This follows from Lemmas 9.4 and 9.1. (Note that H = GO2n+1(q) contains subgroups

isomorphic to GO+
2n+1(q) and GO−2n(q) and one of them contains a Sylow p-subgroup of H.)

(4) Similar to (3). Note that if m′ > 0 then H contains subgroups isomorphic to GO+
me(q)

and GO−me(q), and one of them contains a Sylow p-subgroup of H.
(5) In this case a subgroup X of H isomorphic to GO+

2n−e(q) and GO−2n−e(q), respectively,
contains a Sylow p-subgroup of H. (|H : X|p = 1 is easily checked.) So the result follows from
(4). �

Our result for alternating groups (Corollary 6.5) implies the following:

Proposition 9.6. Let p > 2 and e = ep(q). Let m = max{7, p + 2}. Let G be one of the
following groups:

(1) PSLn(q) and n ≥ em;
(2) PSUn(q) and n ≥ dm, where d = ep(−q);
(3) Ω2n+1(q), q odd, or PSp2n(q), n > 1, and n ≥ em if e is odd, otherwise 2n ≥ em;
(4) PΩ+

2n(q), and n ≥ em if e is odd, otherwise 2n ≥ em;
(5) PΩ−2n(q), and n− 1 ≥ em if e is odd, otherwise 2n ≥ em.

Then G has no Steinberg-like character. This remains true for any group H such that G is
normal in H/Z(H) and (H/Z(H))/G is abelian.
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Proof. Suppose first that H is as in Lemma 9.5. Let S ∈ Sylp(H). Then there are subgroups
U ≤ S ≤ P ≤ H, where U is normal in P and N/U ∼= Am with m ≥ m = max{7, p+ 2}. So Am
is perfect. Let H1 be the derived subgroup of H. Set P1 = P ∩H1, S1 = S ∩H1, U1 = U ∩H1.
Then we have S1 ∈ Sylp(H1), U1 ≤ S1 ≤ P1 ≤ H1 and P1/U1

∼= Am, as Am is perfect. A similar
statement is true for the quotient of H1 by a central subgroup. Then the result follows from
Theorem 6.4 using Lemma 2.5. �

10. Minimal characters and Sylow p-subgroups, p > 2

In this section we show that if p > 2 and G is a simple classical group not satisfying the
assumptions in Proposition 9.6, p is not the defining characteristic of G and a Sylow p-subgroup
S of G is not cyclic, then G has no Sylp-regular character and hence no Steinberg-like character.
Observe that S is cyclic if and only if m = 1, and abelian if and only if m < p, where m is as in
Lemma 9.5. The case where S is cyclic has been dealt with in Section 4.

For a group G, let µ0(G) = 1 < µ1(G) < µ2(G) < · · · denote the sequence of integers such
that for i > 0, G has an irreducible character of degree µi(G) and no irreducible character
ρ with µi−1(G) < ρ(1) < µi(G). For universal covering groups of finite classical groups the
values µ1(G), µ2(G), µ3(G) were determined in [20]. In our analysis below these three values
play a significant role, but mainly for classical centreless groups G such as PGLn(q), PGUn(q),
PSp2n(q), PΩ±2n(q) and Ω2n+1(q). For these groups, mainly for 2e ≤ n ≤ pe with p > 2, we
observe that |G|p < µ3(G) and sometimes |G|p < µ1(G). In the latter case it is immediate to
conclude that G has no Sylp-regular character, in the other cases we observe that there exists
an element g ∈ G of order p such that ρ(g) > 0 for each irreducible character ρ of degree at
most µ2(G). For n > pe we use a different method.

Recall that e = ep(q) denotes the minimal integer i > 0 such that qi − 1 is divisible by p.

10.1. The groups GLn(q), n ≥ 2e. Set dn = (qn − 1)/(q − 1). Let G = SLn(q). The min-
imal degrees of projective irreducible representations of PSLn(q) are given in [20, Table IV].
Table 1 is obtained from this by omitting the representations that are not realisable as ordinary
representations of SLn(q).

n, q µ1(G) µ2(G) µ3(G)
n = 3, q > 2 d3 − 1 d3 (q2 − 1)(q − 1)/(3, q − 1)
n = 4, q > 3 d4 − 1 d4 (q3 − 1)(q − 1)/(2, q − 1)
n = 4, q = 3 26 39 52
n > 4, q > 2, (n, q) 6= (6, 3) dn − 1 dn dn(qn−1 − q2)/(q2 − 1)
n > 4, q = 2, n 6= 6 dn − 1 dn(2n−1 − 4)/3 dndn−1/3
n = 6, q = 2 62 217 588
n = 6, q = 3 363 364 6318

Table 1. Minimal degrees of irreducible characters of SLn(q)

Lemma 10.1. Let p > 2, e > 1, and G = GLen(q). Suppose that 1 < n ≤ p, and if q = 2 suppose
that either n < p or p < 2e − 1. Then |G|p < µ1(G) and G has no Sylp-regular character.



STEINBERG-LIKE CHARACTERS FOR FINITE SIMPLE GROUPS 21

Proof. If n < p then we have |G|p ≤ (qe − 1)n/(q − 1)n (as p is coprime to q − 1), and µ1(G) =
(qen − q)/(q − 1). So the statement is obvious in this case.

Let n = p. If q > 2 then |G|p ≤ p(qe−1)p
(q−1)p , while µ1(G) = qep−q

q−1 . (As p > 2, the exceptions in

Table 1 can be ignored, except for e = 3 and (n, q) = (6, 2) or (6, 3); these two cases are trivial.)
We have p(qe − 1)p < (q − 1)p−1(qep − q) as p < (q − 1)p−1 for q > 2 and (qe − 1)p < qep − q.

If q = 2 and p < 2e − 1 then we have p ≤ (2e − 1)/3 and |S| ≤ p(2e − 1)p/3p is less than
2ep − 2 = µ1(G) as p < 3p. �

Remark 10.2. Lemma 10.1 does not extend to the case q = 2 with n = p = 2e − 1 as then

|G|p = p(2e − 1)p = pp+1 > (p+ 1)p − 2 = 2ep − 2 = µ1(G).

So the case e > 1 leaves us with q = 2, which we deal with next.

Lemma 10.3. Let e > 1 and G = GLep(2). Then |G|p < µ2(G) and G has no Sylp-regular
character.

Proof. We have |G|p ≤ p(2e − 1)p. By Table 1 we have

µ1(G) = 2ep − 2 and µ2(G) =
(2ep − 1)(2ep−1 − 4)

3
> |G|p,

or ep = 3, 4, 6. As p is odd and e > 1, we have ep 6= 3, 4, so in the exceptional cases e = 2, p = 3
where |G|p = 81 < µ2(G) = 217.

Let π be the permutation character of G associated with the action of G on the non-zero
vectors of the natural F2G-module. Then π = τ + 1G, where τ is a character of G of degree
τ(1) = 2ep−2. There is a unique irreducible character of G of degree 2ep−2 (see [20, Table IV]),
and hence it coincides with τ . Let χ be a Sylp-regular character of G. As χ(1) = |G|p, it follows
that the irreducible constituents of χ are either 1G or τ . As χ(g) = 0 for every p-element g ∈ G,
we get a contradiction as soon as we show that τ(g) > 0 for some p-element g ∈ G. This is
equivalent to showing that π(g) > 1. This can be easily verified. �

Lemma 10.4. Suppose that p > 2, p|(q− 1) and let SLn(q) ≤ G ≤ GLn(q) for 2 < n < p. Then
G has no Sylp-regular character.

Proof. Let G1 = G/Z(G). Then |G1|p ≤ |q − 1|n−1p and µ1(G1) = (qn − q)/(q − 1) > qn−1

as above. So |G1|p < µ1(G1), and G1 has no Sylp-regular character. Then neither has G by
Lemma 2.5. �

10.2. The groups GUn(q), n > 2. In this section we consider the case where p > 2 and a
Sylow p-subgroup of GUn(q) is abelian or abelian-by-cyclic. This implies n < dp2, where d is
the order of −q modulo p, equivalently, d = 2e if e is odd, d = e/2 if e ≡ 2 (mod 4), and d = e
if 4|e. So d = 1 if and only if e = 2, equivalently, p|(q + 1). Note that e = 2ep(q

2) if e is even.

Lemma 10.5. Let p be odd, and let S be a Sylow p-subgroup of G = GUn(q). Then S is abelian
and not cyclic if and only if 2d ≤ n < dp.

Proof. If X = GLn(q) then Sylow p-subgroups of X are abelian if and only if n < ep. Let S be
a Sylow p-subgroup of G. We use Lemma 9.2. If e ≡ 2 (mod 4) then |G|p = |GLn(q2)|p, so S
is abelian if and only if n < ep(q

2)p = ep/2 = dp. If e is odd then |G|p = |GLbn/2c(q)|p, so S is

abelian if and only if bn/2c < ep, equivalently, n < 2ep = dp. If 4|e then |G|p = |GLbn/2c(q
2)|p,
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so S is abelian if and only if bn/2c < ep(q
2)p, equivalently, n < ep = dp. Similarly, S is cyclic if

and only if n < 2d. So the lemma follows. �

Lemma 10.6. Let p > 2, d > 1 and SUdp(q) ≤ G ≤ GUdp(q). Then |G|p < µ1(G) and G has
no Sylp-regular character. This remains true if SUn(q) ≤ G ≤ GUn(q) with 2d ≤ n < dp.

Proof. Note that d > 1 means that p does not divide q+ 1, so |G|p = |SUd(q)|p. So it suffices to
prove the lemma for G = SUdp(q). First assume that d is odd, so e ≡ 2 (mod 4) and d = e/2.
Then we have

|G|p ≤
p(qe/2 + 1)p

(q + 1)p
=
p(qd + 1)p

(q + 1)p
and µ1(G) =

(qdp − q)
(q + 1)

.

In this case |G|p < µ1(G). Similarly, if e is odd then d = 2e,

|G|p ≤
p(qd − 1)p

(q + 1)p
and µ1(G) =

(qdp − 1)

(q + 1)
,

so again |G|p < µ1(G).
Finally assume that 4|e. Then d = e,

|G|p ≤
p(qe − 1)p

(q2 − 1)p
and µ1(G) =

(qep − 1)

(q + 1)
.

So |G|p < µ1(G) again. This implies that G has no Sylp-regular character.
The proof of the additional statement is similar. �

Thus, we are left with primes such that p|(q + 1). We first consider the case where n < p.

Lemma 10.7. Let p|(q+1), 2 < n < p, and SUn(q) ≤ G ≤ GUn(q). Then G has no Sylp-regular
character.

Proof. Let

G1 = {g ∈ G | det g is an element of GU1(q) of p′-order}.
Then |G : G1| = |Zp|, where Zp is the Sylow p-subgroup of Z(G). It follows that G = G1 × Zp
as Zp ∩G1 = 1. By Lemma 2.6, the result for G follows if we show that G1 has no Sylp-regular
character. In turn, this follows from the same result for G′ = SUn(q) as |G1 : G′| is coprime to
p. So we deal with G′.

Suppose the contrary, and let χ be a Sylp-regular character of G′.

First, let n = 3. Then χ(1) = |G′|p = (q + 1)2p for p > 3. By [20, Table V], µ1(G
′) = q2 − q.

Let q > 4. Then

χ(1) = |G′|p = (q + 1)2p < 2(q2 − q) = 2µ1(G
′).

So χ has a single non-trivial irreducible constituent ρ, and ρ(1) ≤ χ(1). Again by [20, Table V],
q2 − q ≤ ρ(1) ≤ q2 − q + 1. As χ is Sylp-regular, (χ, 1G′) ≤ 1 (Lemma 2.1). Therefore,

χ(1) ≤ ρ(1) + 1 ≤ q2 − q + 2, which is false. The case with q = 4 can be read off from the
character table of G′.

Let n > 3 and let V be the natural Fq2G′-module. Let b1, . . . , bn be an orthogonal basis in
V and let W = 〈b1, b2, b3〉. Then W is a non-degenerate subspace of V of dimension 3. Set
X = {h ∈ G′ | hW = W and hbi ∈ 〈bi〉 for i = 4, . . . , n} and U := Op(X). Then U ⊆ Z(X) and
every element of U acts diagonally on W . Let X ′ be the derived subgroup of X ′ and P = X ′U .
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Then X ′ ∼= SU3(q) and P/U ∼= SU3(q) (as p > 3). By the above, SU3(q) has no Sylp-regular
character. As P contains a Sylow p-subgroup of G′, the result follows from Lemma 2.5. �

Lemma 10.8. Let SU3(8) ≤ G ≤ GU3(8). Then G has no Syl3-regular character.

Proof. By Lemma 2.5, it suffices to prove that PSU3(8) and PGU3(8) have no Syl3-regular
character. Suppose the contrary, and let χ be a Syl3-regular character of any of these groups.
As |PGU3(8)|3 = 243, we have χ(1) ≤ 243. Let ρ be an irreducible constituent of χ. Then
ρ(1) ≤ 243. By [1], ρ(1) ∈ {1, 56, 57, 133}, and the characters of degree 1,56,133 are positive at
the class 9A, whereas those of degree 57 vanish at this class. It follows that ρ(1) = 57, but then
ρ is positive at the class 3C. This is a contradiction. �

Lemma 10.9. Let H = SUp(q), where p > 2, p|(q + 1), or H = SLp(q), where p > 2, p|(q − 1),
and h = diag(1, ε, ε2, . . . , εp−1) ∈ H with ε ∈ F×

q2
a primitive p-th root of unity. Let χ be an

irreducible character of H whose kernel has order prime to p. Then χ(h) = 0.

Proof. The element h is written in an orthogonal basis of the underlying vector space in the
unitary case. Then h ∈ E, where E ≤ H is an extraspecial group of order p3 such that
Z(E) = Z(H). The restriction of χ to E is a direct sum of irreducible representations of E
non-trivial on Z(E). It is well known and can be easily checked that the character of every such
representation vanishes at h. So the claim follows. �

Let H = GUn(q) or GLn(q) with n > 2. Weil representations of these groups were studied
by Howe [7] and other authors, and have many applications, mainly because their irreducible
constituents (which we call irreducible Weil representations) essentially exhaust the irreducible
representations of degree µ1(H) and µ2(H). More details are given below for n = p, p odd. Let
M be the underlying space of the Weil representation of H. Then M = ⊕ζ∈Irr(Z(H))Mζ , where
Mζ = {m ∈M | zm = ζ(z)m for z ∈ Z(H)}. In general, H is irreducible on Mζ , except for the
case where H = GLp(q) and ζ = 1Z(H). In this case Mζ is a sum of a one-dimensional and an
irreducible H-invariant subspace.

So the irreducible Weil representations ρ of H of dimension greater than 1 are parameterised
by their restriction to Z(H), and each of them remains irreducible under restriction to H ′ =
SUn(q) or SLn(q). By [20], every irreducible representation of H ′ of degree µ1(H) and µ2(H)
is an irreducible Weil representation. Moreover, every irreducible representation of H of degree
µ1(H) and µ2(H) is obtained from an irreducible Weil representation by tensoring with a one-
dimensional representation.

Lemma 10.10. Let p > 2, and H = GUp(q), where p|(q + 1), (p, q) 6= (3, 2), or GLp(q), where
p|(q − 1). Let ζ ∈ Irr(Z(H)). Let ρ = ρζ be the character of an irreducible constituent of the
Weil representation ω of H labelled by ζ (where ρ(1) > 1). Let h be as in Lemma 10.9. Then
ρ(h) ∈ {0, p, p− 1}, except for the case with G = GLp(q) and ζ = 1Z(H), where ρ(h) = p− 2. In
addition, ρ(h) 6= 0 if and only if ρ(z) = 1 for an element z ∈ Z(H) of order p.

Proof. We only consider the case H = GUp(q), as the case H = GLp(q) is similar.
Let Z = Z(H), ζ ∈ Irr(Z) and let ρ = ρζ be the irreducible constituent of ω labelled by ζ.

This means that ρ(z) = ρ(1)ζ(z).
Let X = 〈Z, h〉. Let εi be the character of 〈h〉 such that εi(h) = νi, where ν is a fixed pth

root of unity, i = 1, . . . , p. Then the multiplicity of the eigenvalue νi of ρ(h) equals (ω|X , ζ · εi).
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Recall that ω(x) = −(−q)d, where d is the multiplicity of the eigenvalue 1 of x as a matrix in
GUp(q). Therefore, ω(1) = qn, and if x = zhk and zp 6= 1 then ω(x) = −1; if zp = 1, h 6= 1 then
ω(x) = q (also for z = 1).

We compute |X| · (ω|X , ζ · εi) =
∑

x∈X ω(x)ζ(z)εi(h), where x = zh. Note that ω(x) is an
integer, so ω is self-dual. Let Zp be the subgroup of order p in Z, and Xp = 〈Zp, h〉. Then∑

x∈X
ω(x)ζ(z)εi(h) =

∑
x∈Xp

ω(x)ζ(z)εi(h) +
∑
x/∈Xp

ω(x)ζ(z)εi(h).

We first show that the second sum equals 0 if i < p. Note that x = zh /∈ Xp is equivalent to
z /∈ Zp. Therefore, d = d(x) = 0 for x /∈ Xp, and ω(x) = −1. For z fixed we have a partial sum
ζ(z)

∑
h εi(h), and

∑
h εi(h) = 0, as claimed.

If i = p and ζ 6= 1Z then∑
x/∈Xp

ω(x)ζ(z)εi(h) = −p
∑
z /∈Zp

ζ(z) = −p(
∑
z∈Z

ζ(z)−
∑
z∈Zp

ζ(z)) = p2

as ζ(z) = 1 for z ∈ Zp. If i = p and ζ = 1Z then∑
x/∈Xp

ω(x)ζ(z)εi(h) = −(|X| − |Xp|) = −p(q + 1) + p2.

Next, we compute
∑

x∈Xp
ω(x)ζ(z)εi(h). Observe that ζ(z) = 1 for z ∈ Zp so this sum

simplifies to
∑

zh∈Xp
ω(zh)εi(h). Note that d(zh) = 1 if h 6= 1 and any z ∈ Zp. So if h 6= 1 then

ω(zh) = q. If h = 1 then d(zh) = d(z) = 0 for z 6= 1 so ω(z) = −1. And ω(1) = qp.
Therefore, we have∑

zh∈Xp

ω(zh)εi(h) =
∑

z∈Zp,h6=1

ω(zh)εi(h) +
∑

z∈Zp,z 6=1

ω(z) + qp

=
∑

z∈Zp,h6=1

q · εi(h) +
∑

z∈Zp,z 6=1

(−1) + qp = pq
∑
h6=1

εi(h)− (p− 1) + qp.

(i) Let i 6= p. Then
∑

h6=1 εi(h) = −1, and the last sum equals −pq−p+1+qp = qp+1−p(q+1).

(ii) Let i = p. Then
∑

h6=1 εi(h) = p− 1, and the last sum equals pq(p− 1)− (p− 1) + qp =

qp + 1 + p2q − pq − p.
Therefore, |X| · (ω|X , ζ ·εi) = qp+1−p(q+1) if i 6= p, qp+1+(p−1)p(q+1) if i = p, ζ 6= 1Z ,

and qp + 1 + (p− 2)p(q + 1) if i = p, ζ = 1Z .
In particular, the multiplicities of eigenvalue νi for i 6= p of h on the module Mζ for fixed ζ

are the same. As
∑

i 6=p ν
i = −1, the trace of h on Mζ for ζ 6= 1Z with ζ(Zp) = 1 equals

(1/|X|)(qp + 1 + (p− 1)p(q + 1)− (qp + 1− p(q + 1))) = p

as |X| = p(q + 1). Similarly, if ζ = 1Z then the trace in question equals p− 1. In other words,
if ωζ is the character of Mζ and ζ(Zp) = 1 then ωζ(h) = p for ζ 6= 1Z and p− 1 otherwise. �

Lemma 10.11. Let H = GUp(q), where p|(q + 1), p > 2, (p, q) 6= (3, 2) or GLp(q), where
p|(q− 1). Then H has no Sylp-regular character. The same is true for H ′ = SUp(q) and SLp(q)
and for all groups X with H ′ ≤ X ≤ H.
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Proof. Set G = H/Op(Z(H)). By Lemma 2.5, it suffices to prove the lemma for G in place of
H.

Suppose the contrary, and let χ be a Sylp-regular character of G, and let λ be an irre-
ducible constituent of χ. We first observe that λ(1) < µ3(G), and hence by [20], λ(1) ∈
{1, µ1(G), µ2(G)}.

Indeed, note that |G|p = p|q+ 1|p−1p in the unitary case, respectively |G|p = p|q− 1|p−1p in the
linear case. By [20, Table IV],

µ3(G) ≥ µ3(H ′) ≥
(qp + 1)(qp−1 − q2)

(q + 1)(q2 − 1)
,

respectively,
(qp − 1)(qp−1 − q2)

(q − 1)(q2 − 1)
if p > 3.

This value is greater than |G|p. Let p = 3. Then

µ3(G) ≥ µ3(H ′) ≥
(q2 − q + 1)(q − 1)

3
,

respectively, (q2− 1)(q− 1)/3 for q > 4. Again, |G|3 < µ3(G), unless G = PGU3(8) or PGL3(4).
The former case is settled in Lemma 10.8.

Let G = PGL3(4). Then |G|3 = 27. In this case µ1(G) = 20, µ2(G) = 35 and µ3(G) = 45. So
λ(1) ≤ |G|p implies λ(1) ≤ 20. The character of degree 20 is positive at class 3A, a contradiction.

So |G|p ≤ µ2(G). As mentioned prior to Lemma 10.10, λ is either one-dimensional or can be
seen as a character of H obtained from an irreducible Weil character by tensoring with a linear
character of H. Let h ∈ H as in Lemma 10.10. Then h ∈ H ′, so tensoring can be ignored,
and we can assume that λ is an irreducible Weil character of H. Then, by Lemma 10.10,
λ(h) ∈ {0, p, p − 1} in the unitary case and λ(h) ∈ {0, p, p − 2} in the linear case. If λ(1) = 1
then λ(h) = 1. So λ(h) ≥ 0. As χ is p-vanishing and |h| = p, we have χ(h) = 0. So λ(h) = 0 for
every irreducible constituent of χ. This is false as λ is trivial on Op(Z(H)) by the definition of G,
and hence λ(h) 6= 0 by Lemma 10.10. This is a contradiction. As irreducible Weil representations
of H remain irreducible upon restriction to H ′, this argument works for intermediate groups X
too. �

Lemma 10.12. Let p > 2 and let G be a group such that SLn(q) ≤ G ≤ GLn(q) with 2e < n ≤
ep, or SUn(q) ≤ G ≤ GUn(q) with 2d < n ≤ dp and (n, q) 6= (3, 2). Then G and G/Op(G) have
no Sylp-regular character.

Proof. For the unitary case with d > 1 the result for G is stated in Lemma 10.6. The case with
d = 1 and n < p is dealt with in Lemma 10.7, and the remaining case d = 1 and n = p is
examined in Lemma 10.11.

Let H = GLn(q). The result for e > 1, q > 2 follows from Lemma 10.1, and that for
e > 1, q = 2 is proved in Lemma 10.3. The result for e = 1, n = p is stated in Lemma 10.11.
The case with e = 1, n < p is examined in Lemma 10.4.

The statement on G/Op(G) follows from Lemma 2.5. �

Lemma 10.13. For p > 2 let H = GLn(q), H ′ = SLn(q) with ep < n < ep2, or H = GUn(q),
H ′ = SUn(q) with dp < n < dp2. Let G be a group such that H ′ ≤ G ≤ H. Then G has no
Sylp-regular character, unless p = 3 and H = GU4(2).
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Proof. Suppose the contrary, and let χ be a Sylp-regular character of G.
Suppose first that e > 1, d > 1. Note that G has a subgroup X, say, isomorphic to SLep(q)×

SLn−ep(q), resp., SUdp(q) × SUn−dp(q), and |G : X|p = 1. Let S be a Sylow p-subgroup of
SLn−ep(q), resp., SUn−dp(q), and let Y = S × SLep(q), resp., S × SUdp(q). As |G : Y |p = 1,

by Lemma 2.5, rGY/S(χ) is a Sylp-regular character of Y/S ∼= SLep(q), resp., SUdp(q). This

contradicts Lemma 10.12, unless, possibly, if G = SUn(2) and p = 3. As d > 1, this case does
not occur.

Next, suppose that e = d = 1, that is p|(q − 1) or q + 1. Then we refine the above argument.
Set D = GLp(q) or GUp(q). Then Y/S ∼= D. Set Y1 = G ∩ Y . Then Y1 is normal in Y and
hence Op(Y1) = Y1∩Op(Y ). As Y/S ∼= D, it follows that Y/Op(Y ) = D/Op(D) = D/Op(Z(D)),
and hence E := Y1/Op(Y1) is a non-central normal subgroup of D/Op(Z(D)). By Lemma 2.5,
rGY1/Op(Y1)

(χ) is a Sylp-regular character of E = Y1/Op(Y1). However, by Lemma 10.12, E has no

Sylp-regular character, unless D = GU3(2) and p = 3. So we are left with the case H = GUn(2),
p = 3 and 3 < n < 9.

The group H = GU4(2) is excluded by assumption, and so we first consider H = GU5(2). As
H = H ′×Z(H), it suffices to deal with G = SU5(2). Suppose the contrary, and let χ be a Syl3-
regular character of G. Then we have χ(1) = |G|p = 243. Let λ be an irreducible constituent
of χ, so λ(1) ≤ 243. If g ∈ G is an element from class 3E then λ(g) > 0 unless λ(1) = 176
or 220. As χ(g) = 0, there is a constituent λ1, say, of χ such that λ1(1) ∈ {176, 220}. Then
λ(1) ≤ 67 = 243 − 176. Pick h ∈ G from the class 3F . Then λ1(h) > 0, and if λ(1) ≤ 67 then
λ(h) > 0, unless λ(1) = 10. So χ must have a constituent λ2, say, of degree 10. Then λ2(g) = 4.
If λ1(1) = 176 then λ1(g) = −4, and hence (χ − λ1 − λ2)(g) = 0. As λ(g) > 0 if λ(1) ≤ 67,
it follows that χ = λ1 + λ2, but then 0 = χ(h) = λ1(h) + λ2(h) = 3, a contradiction. So
λ1(1) = 220, and the other constituents are of degree at most 23. As λ1(g) = −5, λ2(g) = 4, we
have (χ−λ1−λ2)(g) = −1, in particular, for the other constituents λ of χ we have λ(g) ≤ 1. By
[1], this implies λ(1) = 1, and λ must occur with multiplicity 1, whence χ(1) = 220+10+1 = 231,
a contradiction.

Let H = GU6(2). By Lemma 2.5, it suffices to deal with X := PGU6(2). Set X ′ = PSU6(2).
Then |X ′|3 = 36 = 729 and the irreducible characters of X ′ of degree less than 616 are positive
on class 3A. In addition, |X|3 = 37 = 2187, and the irreducible characters of X of degree less
than 2187 and not equal to 616 are positive on class 3A. Let χ be a Syl3-regular character
of X or X ′. Then the irreducible character µ of degree 616 is a constituent of χ. Note that
τ(3A) = −14. If χ ∈ Irr(X ′) then the sum of the other constituents of χ is at most 113. By [1],
they are of degree 1 or 22. The trivial character cannot occur with multiplicity greater than 1,
so 113 or 112 must be a multiple of 22, which is false. Let χ ∈ Irr(X). Note that the multiplicity
of µ in χ is at most 3, and if µ occurs with multiplicity 3 then the sum of the other constituents
of χ is at most 2187−1848 = 339. The irreducible characters of degree at most 339 have degrees
252,232,22,1, and all of them as well as µ are positive at class 3C. This is a contradiction.
Suppose that µ occurs once. Then the sum of the other constituent values at class 3A is −14.
It follows that these constituents may only be of degrees 770,252,232,22,1. Inspecting [1], one
observes that all of them as well as µ are positive at class 3C. This is a contradiction. So the
multiplicity of µ must be 2. Then the sum of the other constituent values at class 3A is −28.
Therefore, the degrees of the other constituents may only be 770,560,385,252,232,22,1. Let ν
be the character of degree 385. Then ν(3A) = 25. If (χ, ν) > 0 then the sum of the other



STEINBERG-LIKE CHARACTERS FOR FINITE SIMPLE GROUPS 27

constituent values at class 3A is −3. The trivial character is the only one whose value is at most
3. As this cannot occur twice, we get a contradiction. Therefore, (χ, ν) = 0. As above, this
contradicts χ(3C) = 0. This completes the analysis of the case with n = 6.

Let n = 7. Then H ′ = SU7(2) contains a subgroup isomorphic to GU6(2), which contains
a Sylow 3-subgroup of H ′. So the result for this case follows from n = 6. In addition, H =
H ′ · Z(H), so we are done by Lemma 2.5.

Similarly, the result for n = 8 follows from that with n = 7. �

Remark 10.14. The group SU4(2) has an irreducible projective character of degree 81 (for
p = 3), and hence H = GU4(2) = SU4(2)×Z(H) has a projective character of degree |H|3 = 243.

Theorem 10.15. Let p > 2 and let G be a group such that SLn(q) ≤ G ≤ GLn(q), or SUn(q) ≤
G ≤ GUn(q). Suppose that Sylow p-subgroups of G/Z(G) are not cyclic. Then G has no
Steinberg-like character, unless p = 3 and G ∈ {SU3(2),GU3(2), SU4(2),GU4(2)}.

Proof. If n ≥ ep2 in the linear case and n ≥ dp2 in the unitary case then the result follows from
Proposition 9.6 for G/Op(G) in place of G, and then for G in view of Lemma 2.5.

If ep < n < ep2 in the linear case and dp < n < dp2 in the unitary case then the result follows
from Lemma 10.13. If 2e ≤ n ≤ ep in the linear case and 2d ≤ n ≤ dp in the unitary case then
the result follows from Lemma 10.12. If n < 2e in the linear case and n < 2d in the unitary case
then Sylow p-subgroups of G/Z(G) are cyclic. �

Remark 10.16. Proposition 9.6 gives a better bound for n, but this does not yield an essential
advantage as the cases with n = e(p+ 1) and d(p+ 1) are not covered by Proposition 9.6, and
we have to use Lemma 10.13 anyway.

10.3. The symplectic and orthogonal groups for p > 2.

Lemma 10.17. Let G = Sp2n(q) (q even, n ≥ 2, (n, q) 6= (2, 2), (3, 2)), G = Spin2n+1(q) (q

odd, n ≥ 3, (n, q) 6= (3, 3)), or G = Spin±2n(q) (n ≥ 4). Suppose that Sylow p-subgroups of G are
abelian. Then |G|p < µ1(G).

Proof. Let S ∈ Sylp(G). As S is abelian, we have p > 2 and |S| ≤ (q + 1)n. If G = Sp2n(q),
where q is even, n ≥ 2 and (n, q) 6= (2, 2), or Spin2n+1(3), then (see [20, Table II])

µ1(G) ≥ (qn − 1)(qn − q)
2(q + 1)

.

This is greater than (q + 1)n ≥ |S|, except for the cases where q = 2 and n ≤ 6. For these
cases the statement follows by inspection. If G = Spin2n+1(q), where q > 3 is odd and n ≥ 3,
then µ1(G) ≥ (q2n − 1)/(q2 − 1). Again µ1(G) > (q + 1)n, whence the result. The cases with
G = Spin±2n(q) with n ≥ 4, are similar; see [20, Thm. 7.6]. �

Proposition 10.18. Let e be odd and p > 2, and let H = Sp2n(q) with n > 1, GO2n+1(q) with
n > 2, GO+

2n(q) with n > 3, or GO−2n+2(q) with n > 2. Suppose that 2e ≤ n < ep2. Then H has
no Sylp-regular character.

Proof. Let S ∈ Sylp(H). By Lemma 9.2(1), S is conjugate to a Sylow p-subgroup of a subgroup

H1
∼= GLn(q) of H. By Lemmas 10.1, 10.3, 10.12 and 10.13, GLn(q) for 2e ≤ n < ep2 has no

Sylp-regular character, unless possibly when n = 2.
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Let n = 2, so H = Sp4(q), e = 1 and p|(q − 1). Then |H|p = |q − 1|2p. If q is even then

µ1(G) = q(q − 1)2/2 for q > 2. This is greater than |H|p, whence the result. If q is odd then
|H|p ≤ (q − 1)2/4 and µ1(H) = (q2 − 1)/2. So again |H|p < µ1(H). �

Proposition 10.19. Let e be even, p > 2, and let H = Sp2n(q) with n > 1 and (n, q) 6= (2, 2),
GO2n+1(q) with q odd and n > 2, or GO±2n(q) with n > 3. Suppose that 2e ≤ 2n < ep2. Then
H has no Sylp-regular character.

Proof. Write 2n = ek + m with m < e, where k > 1 is an integer. As H contains a subgroup
H1 with (|H : H1|, p) = 1, where H1

∼= Spke(q) or GOke+1(q), respectively, it suffices to prove
the lemma for 2n = ke. Let 2n = ke. By Lemma 9.4, a Sylow p-subgroup of H is contained
in a subgroup isomorphic to GUk(q

e/2). By Lemma 10.12 for 2 < k ≤ p and Lemma 10.13 for

p < k < p2 (with d = 1 and qe/2 in place of q), the group GUk(q
e/2) with (k, qe/2) 6= (3, 2)

has no Sylp-regular character, whence the claim. (The exceptional case H = Sp6(2), p = 3 is
considered below.)

Let k = 2. Then H = Sp2e(q), and p|(qe/2 + 1). Then |H|p = |qe/2 + 1|2p. If q is even then

µ1(G) =
(qe − 1)(qe − q)

2(q + 1)
for q > 2.

This is greater than |H|p, whence the result. If q is odd then

|H|p ≤
(qe/2 + 1)2

4
and µ1(H) =

qe − 1)

2
.

So |H|p < µ1(H), whence the result.
A similar argument works if H = GOke+1(q) as well as for H = GO−ke(q) with k odd, and for

H = GO+
ke(q) with k > 2 even, except when H = GO+

8 (2) and e = 2.

Let H = GO+
8 (2) and e = 2 so p = 3. Then |G|3 = 243 and the irreducible characters of

degree less than 243 are of degrees 1, 28, 35, 50, 84, 175, 210. Let χ be a Sylp-vanishing character
of degree 243 and λ an irreducible constituent of χ. By [1], λ(3E) > 0 whenever λ(1) ≤ 243.
This is a contradiction as χ(3E) = 0.

Let k = 2 and H = GO+
2e(q). Then

|H|p = |qe/2 + 1|2p < µ1(H) =
(qe − 1)(qe−1 − 1)

q2 − 1

for q > 2 and q = 2, e > 4. (If q = 2, e = 4 then p = 5, and it follows that |H|5 = 25 < µ1(H) =
28.) So the result follows. (The case e = 2 has been examined above.)

Suppose that H = GO−2n(q) with k even or H = GO+
2n(q) with k odd. Then some Sy-

low p-subgroup of H is contained in a subgroup H1 isomorphic to, respectively, GO−2n−e(q) or

GO+
2n−e(q). Note that 2n− e = (k − 1)e. For the groups H1 the result has been proven above,

except for the cases where k−1 = 1 or (k−1)e ≤ 6. However, if k−1 = 1 then Sylow p-subgroups
of H1, and hence of H are cyclic, and this case has been examined in Propositions 3.1 and 4.4.
Let (k − 1)e ≤ 6. As k − 1 > 1, we have k = 3, e = 2 as e is even. Then H = GO−8 (q) and
µ1(H) = q(q4 + 1) (see [20]). If p > 3 then |H|p = |q + 1|3p, otherwise |H|3 = 3|q + 1|33. Then
|H|p < µ1(H), unless q = 2.

Let q = 2, p = 3. Then |G|3 = 81. By [1] the irreducible characters of degree less than 81 are
of degrees 1, 26, 52. Therefore only these characters can occur as irreducible constituents of a
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Syl3-regular character χ. However, the values of these characters at an element g ∈ G in class
9A are 1, 2, 1, in particular, positive. As χ(g) = 0, this is a contradiction.

Suppose that G = Sp6(2) and p = 3. Then |S| = 81. Let τ be an irreducible constituent
of χ. Then τ(1) ≤ 81. Let g ∈ G belong to the conjugacy class 3C in the notation of [1]. By
inspection of the character table of G one observes that τ(g) ≥ 0 whenever τ(1) ≤ 81. Therefore,
τ(g) = 0 for every irreducible constituent τ of χ. This implies τ(1) ∈ {21, 27}, see [1]. However,
such a character takes positive values at the elements of class 3A. So this case is ruled out. �

Remark 10.20. Let G be the universal covering group of SO+
8 (2). One observes that G has a

Syl5-regular character and no Syl3-regular characters. If H = Sp4(2) then H has Steinberg-like
characters for p = 3, both reducible and irreducible.

11. Classical groups at p = 2

In this section we investigate Sylp-regular and Steinberg-like characters of simple classical
groups over fields of odd order q > 3 at the prime p = 2.

11.1. Linear and unitary groups at p = 2. We first deal with the smallest case:

Proposition 11.1. Let q > 3 be odd.

(a) Let G = PSL2(q). Then G has a reducible Syl2-regular character if and only if q + 1 = 2k

for some k ≥ 3 or if q = 5.
(b) Let G = SL2(q). Then G has a reducible Syl2-regular character if and only if q ± 1 is a

2-power.

Proof. (a) The 2-part of |G| is |q−1|2 if q ≡ 1 (mod 4) and |q+1|2 else. The smallest non-trivial
character degree is (q+1)/2 in the first case, (q−1)/2 in the second. It follows that there cannot
be Syl2-regular characters in the first case, unless q = 5. In the second case, it follows from the
character table of G that the sum of the trivial and the Steinberg character is Syl2-regular when
q + 1 is a power of 2, and there are no cases otherwise. If q = 5 then there are two reducible
Syl2-regular characters of degree 4 by [1].

(b) Let χ be a reducible Syl2-regular character. Let 1 6= z ∈ Z(G); then we have χ = χ1 +χ2,
where χ1(z) = χ1(1) and χ2(z) = −χ2(1). By Lemma 2.5 (with P = G and U = Z(G)), χ1 is
a Syl2-regular character for G/Z(G) = PSL2(q). If χ1 is irreducible then q ± 1 is a 2-power by
Proposition 3.1(2); by (a), this is also true if χ1 is reducible. So q ± 1 is a 2-power.

Then there are irreducible characters χ1, χ2 such that χ1+χ2 is 2-vanishing of degree 2(q±1) =
|G|2. Indeed, using the character table of G one observes that there exist irreducible characters
χ1, χ2 of G that vanish at non-central 2-elements of G, and such that χ1(z) = χ1(1) and
χ2(z) = −χ2(1). It follows that χ1 + χ2 is a reducible Syl2-regular character. �

Recall that µ3(G) denotes the third smallest degree of a non-trivial irreducible representation
of G.

Lemma 11.2. Let G be a quasi-simple group such that G/Z(G) ∈ {PSLn(q),PSUn(q)} with
n ≥ 3, q > 3 odd and |Z(G)|2 = 1. Then |G|2 < µ3(G).

Proof. Let first G/Z(G) = PSL3(q) with q > 3 odd. Then µ1(G) = q(q + 1) by Table 1, while

|G|2 =

{
2|q − 1|22 if q ≡ 1 (mod 4),

4|q + 1|2 if q ≡ 3 (mod 4).
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Thus, |G|2 < µ1(G) unless q−1 is a 2-power. In the latter case, µ3(G) = (q2−1)(q−1), and our
claim follows. Next, let G/Z(G) = PSL4(q) with q > 3 odd. Then µ3(G) = (q3 − 1)(q − 1)/2,
which is larger than |G|2 ≤ 2(q − 1)3 for q ≥ 5. Now assume that G/Z(G) = PSLn(q), with
n ≥ 5 and q > 3 odd. Then (see Table 1)

µ3(G) =
(qn − 1)(qn−1 − q2)

(q2 − 1)(q − 1)

while

|G|2 ≤

{
(q − 1)n−12n−1 if q ≡ 1 (mod 4),

(q + 1)bn/2c2n−1 if q ≡ 3 (mod 4).

Again, the claim follows.
Let G/Z(G) = PSU3(q), q > 3 odd. Then µ1(G) = q(q − 1) by [20, Table V], while

|G|2 =

{
2|q + 1|22 if q ≡ 3 (mod 4),

4|q − 1|2 if q ≡ 1 (mod 4).

Thus, |G|2 < µ1(G) unless q+1 is a 2-power. In the latter case, µ3(G) = (q2−q+1)(q−1), and our

claim follows. Now let G/Z(G) = PSU4(q), q > 3 odd. Then µ3(G) = (q2−q+1)(q2+1)
2 . Suppose

first that 4|(q+1). We have |G|2 = |PSU4(q)|2 ≤ 2(q+1)3, whereas µ3(G) = (q2+1)(q2−q+1)/2.
So |G|2 < µ3(G). Suppose now that 4|(q − 1). Then |G|2 ≤ 2(q − 1)2 which is less than
µ1(G) = (q4 − 1)/(q + 1). Now assume that G/Z(G) = PSUn(q) with n ≥ 5. Here

|G|2 ≤

{
(q − 1)(n−1)/22n−1 if q ≡ 1 (mod 4),

(q + 1)n−12n−1 if q ≡ 3 (mod 4).

As

µ3(G) =

{
(qn+1)(qn−1−q2)

(q2−1)(q+1)
if n is odd,

(qn−1)(qn−1+1)
(q2−1)(q+1)

if n is even,

we conclude that |G|2 < µ3(G), as required. �

Proposition 11.3. Let G be quasi-simple with G/Z(G) ∈ {PSLn(q),PSUn(q)} with n ≥ 3 and
q > 3 odd.

(a) If n = 3, 4 then G has no Syl2-regular character.
(b) If n ≥ 5 then G has no Steinberg-like character for p = 2.

Proof. By Lemma 2.5 (with P = G), it suffices to prove the result in the case where |Z(G)|2 = 1.
So we assume this, and then |G|2 equals the order of a Sylow 2-subgroup of G/Z(G).

Let first G/Z(G) = PSLn(q), q > 3 odd. Let χ be a Syl2-regular character for G. By
Lemma 11.2, we have χ(1) < µ3(G), and hence the non-trivial irreducible constituents of χ are
of degree (qn − 1)/(q − 1) or (qn − q)/(q − 1), see Table 1. The irreducible characters of degree
(qn − 1)/(q − 1) are induced characters λG, where λ 6= 1P is a one-dimensional character of the
stabiliser P of a line of the underlying space for GLn(q), while the irreducible character of degree
(qn−q)/(q−1) is the unique non-trivial constituent τ of the permutation character 1GP = τ +1G
on P .

Let n ≥ 5 and let g ∈ SLn(q) be a block-diagonal matrix, with an (n − 2) × (n − 2)-block
corresponding to a primitive element of Fqn−2 with determinant 1, and a 2×2-block corresponding
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to an element of order q + 1. Since g has no eigenvalue in Fq, no conjugate of g is contained in
P , so all induced characters from P to G vanish on g. In particular λG(g) = 0 and τ(g) = −1.
Note that the image ḡ ∈ G of g has even order, so χ(g) = 0 if χ is Steinberg-like. Write
χ = x11G + x2τ + Λ, where Λ is a sum of x3 induced characters of degree (qn − 1)/(q− 1), with
suitable xi ≥ 0. Evaluating on g we see that x1 = x2, but then χ(1) = (x1 + x3)(q

n− 1)/(q− 1)
is divisible by some odd prime, so cannot equal the 2-power |G|2. This proves part (b) for
G/Z(G) = PSLn(q).

Now assume that n = 4. Then an easy estimate shows that when q − 1 is not a 2-power, so
|q − 1|2 ≤ (q − 1)/3, and q 6= 7, then |G|2 < µ1(G). So we may assume that in addition either
q = 7 or q − 1 is a power of 2. For q 6= 7 let g be the 2-element

g =


0 1 0 0
a 0 0 0
0 0 0 1
0 0 a−1 0

 ∈ SL4(q),

where a ∈ F×q is a 2-element of order q− 1. Observe that again g is not conjugate to an element

of P , and thus λG(h) = 0 and τ(h) = −1. As g is a 2-element and χ is Syl2-regular, we have
χ(g) = 0. We may now argue as above to conclude. When q = 7 then the candidate characters
have degrees 1, 399 and 400, while |G|2 = 29 = 512, so clearly there can be no Syl2-regular
character.

Now consider the case when G/Z(G) = PSL3(q). The proof of Lemma 11.2 shows that
µ1(G) > |G|2 unless q − 1 is a 2-power. In the latter case the possible constituents of χ can
have degrees 1, q2 + q, q2 + q + 1, while |G|2 = 2(q − 1)2. Clearly at most one of the degrees
q2 + q, q2 + q + 1 can contribute to χ(1), but then necessarily q = 5. But in that case the
character table shows that there is no Syl2-regular character. This completes the proof of (a)
when G/Z(G) = PSLn(q).

Now let G/Z(G) = PSUn(q) with q > 3 odd, and let χ be a Syl2-regular character of G.
According to Lemma 11.2, χ(1) < µ3(G), and hence the non-trivial irreducible constituents of
χ are of degree (qn − (−1)n)/(q + 1) or (qn + (−1)nq)/(q + 1) (see [20, Table V]). The first
of these are semisimple characters lying in the Lusztig series of an element s of order q + 1 in
the dual group G∗ = PGUn(q) with centraliser CG∗(s) ∼= GUn−1(q), the second is a unipotent
character, τ say, corresponding to the character of the Weyl group Sn parametrised by the
partition (n − 1, 1). Let g ∈ SUn(q) be a regular element of even order in a maximal torus T
of order (q2 − 1)(q2n−2 − (−1)2n−2)/(q + 1) (see [10, Lemma 3.1(a)]). Then no conjugate of
the dual maximal torus T ∗ contains s, so the characters in E(G, s) vanish on g (see e.g. [11,
Prop. 6.4]). If χ is Steinberg-like, then χ(g) = 0. As τ is unipotent, its value on g is (up to sign)
the same as ψ(h) where ψ ∈ Irr(Sn) is labelled by (n − 1, 1) and h is a permutation of cycle
shape (n−2, 2), see [10, Prop. 3.3 and the remark before Prop. 4.2]. The Murnaghan–Nakayama
rule gives ψ(h) ∈ {±1}, so τ(g) ∈ {±1}. We may now argue as in the first part to conclude that
χ cannot be Steinberg-like, thus completing the proof of (b).

Next, assume that G/Z(G) = PSU4(q) with q > 3 odd. If q+1 is not a power of 2 and q 6= 5, 9
then |G|2 < µ1(G), as |q+1|2 ≤ (q+1)/3. So now assume that q+1 is a power of 2, and hence in
particular q ≡ 3 (mod 4). Then |G|2 = 2(q+ 1)3, while the three smallest character degrees are
1, (q4− 1)/(q+ 1), (q4 + q)/(q+ 1), with the trivial character occurring at most once. It is easily
seen that there is no non-negative integral solution for a possible decomposition of χ. When



32 GUNTER MALLE AND ALEXANDRE ZALESSKI

q = 5 then the three smallest degrees are 1, 104, 105, while |G|2 = 128; if q = 9 then the three
smallest degrees are 1, 656, 657 while |G|2 = 512; so in neither case can there be Syl2-regular
characters either.

Finally, when G/Z(G) = PSU3(q) then again the proof of Lemma 11.2 shows that q + 1
must be a 2-power. Here the possible constituents of χ have degrees 1, q2 − q, q2 − q + 1, while
|G|2 = 2(q + 1)2. Again an easy consideration shows that at most the case q = 7 needs special
attention. But there the existence of Syl2-regular characters can be ruled out from the known
character table. �

We now treat the case q = 3, which is considerably more delicate.

Lemma 11.4. Let G = PSL3(3) or PSU3(3). Then G does not have reducible Syl2-regular
characters.

Proof. For G = PSL3(3) we have |G|2 = 16, and all irreducible characters of degree less than 16
take non-negative values on class 4A, so there are no Syl2-regular characters. For G = PSU3(3)
we have |G|2 = 32, and all irreducible characters have degree at most that large. Since the
smallest non-trivial character degree is 6, those of degrees 27 and 28 cannot be constituents of
a Syl2-regular character χ. Thus, we need to consider the characters of degrees 1, 6, 7, 14, 21.
Clearly those of degree 21 cannot occur either. As 32 ≡ 4 (mod 7) we see that the character of
degree 6 has to appear at least three times, but then the values on elements of order 4 give a
contradiction. �

Remark 11.5. PSL3(3) and PSU3(3) both have irreducible Syl2-regular characters, see Propo-
sition 3.1.

Lemma 11.6. Let G = PSL4(3) or PSU4(3). Let χ be a Syl2-vanishing character of G. Then
l2(χ) ≥ 4.

Proof. Suppose the contrary. Note that χ is reducible. As |G|2 = 128, we have χ(1) ≤ |G|2 · 3 =
384. Let τ be an irreducible constituent of χ of maximal degree. For all numerical data see [1].

Let G = PSL4(3). Then we have τ(1) < 351 (otherwise, we have τ(1) = 351, so (χ− τ)(1) =
33, and then χ(2B) > 0, which is false).

Let µ ∈ Irr(G) and µ(1) < 351. Then we have µ(4B) ≥ 0 unless µ(1) = 90, and µ(4B) 6= 0
unless µ(1) = 52 or 260. Let µ(1) = 90. Then (χ, µ) > 0. Indeed, otherwise the irreducible
constituents of χ are of degree 52 or 260, which implies χ(2A) > 0, a contradiction.

It follows that (χ−µ)(1) ≤ 294. Let σ ∈ Irr(G) with σ(1) = 39. The irreducible characters of
G of degree at most 294 and distinct from σ are non-negative at 2A. In addition, σ(2A) = −1,
and µ(2A) = 10. As χ(2A) = 0, it follows that (χ, σ) ≥ 10. Then χ(1) ≥ µ(1) + 10σ(1) > 384,
a contradiction.

Let G = PSU4(3) and µ ∈ Irr(G) with (χ, µ) > 0. The irreducible characters of degree at
most 384 are of degree at most 315. If τ(1) = 315 then µ(1) ≤ 69. Then τ(2A) > 0 and
µ(2A) > 0, a contradiction.

Suppose that τ(1) = 280. Then µ(1) ≤ 104, but then we obtain a positive value on class 2A.
The same consideration rules out τ(1) = 210.

Suppose that τ(1) = 189. It occurs once as otherwise 1G occurs 6 times, which is false as
(χ, 1G) ≤ 3. Then µ(1) 6= 140, 90, so µ(4A) > 0, τ(4A) > 0, a contradiction. No other option
exists, as the irreducible characters of degree less than 189 are positive on 2A. �
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Lemma 11.7. Let PSL4(3) ≤ G ≤ PGL4(3) or PSU4(3) ≤ G ≤ PGU4(3). Let χ be a 2-
vanishing character of G. Then l2(χ) ≥ 4.

Proof. By Lemma 2.9(a), χ = ψG, where ψ is a proper character of G′. By inspection of the
character table of G′, see [1], it is easily checked that the conjugacy class of any element g ∈ G′
of 2-power order is G-invariant. Then, by Lemma 2.9(b), ψ(g) = 0 for every 2-element g 6= 1 of
G′. This means that ψ is Syl2-vanishing. By Lemma 11.6, l2(ψ) ≥ 4. Then l2(ψ

G) ≥ 4. �

Lemma 11.8. Let G = PGL4(3), and let χ be a 2-vanishing character of G. Let η1, . . . , ηk
be the irreducible constituents of χ disregarding multiplicities, and η = η1 + · · · + ηk. Then
η(1) ≥ 2|G|2.

Proof. Let G′ = PSL4(3). Then |G′|2 = 128 and thus 2 · |G|2 = 512. Suppose the contrary.
Then we have η(1) < 512. We can assume that ηi(1) ≥ ηj(1) for 1 ≤ i < j ≤ k. Note that
k > 1, otherwise χ = aη1 for some a, and hence η1 is a 2-vanishing character of G and η1(1) is
a multiple of |G|2. By [1], G has no character of degree at most 512 with this property.

By [1], we have η1(1) ≤ 468. Note that all irreducible characters of G′ of degree at most 468
extend to G = G′ · 2 except χ11, χ12 of degree 260, χ9, χ10 of degree 234, χ6, χ7 of degree 65
and χ2, χ3 of degree 26. The corresponding characters of G are of degrees 520, 468, 130 and 52,
respectively. Let χ =

∑
aiηi, where ai > 0 are integers.

(i) Suppose η1(1) = 468. Then
∑

i>1 ηi(1) ≤ 44. Computing χ(4B) we get a contradiction
(as η1(4B) = 0 and

∑
i>1 aiηi(4B) > 0 and k > 1).

(ii) Suppose η1(1) = 416. If η2(1) ≤ 90 then
∑

i>2 ηi(1) ≤ 6, whence k = 3 and η3 = 1G.
Computing χ(2B) we get a contradiction.

So η2(1) ≤ 52. If η2(1) = 52 then
∑

i>2 ηi(1) ≤ 44. Computing χ(4B) we get a contradiction,
unless k = 2 and η2(4B) = 0 (that is, η2 = χ5 in [1]). In this case computing χ(4C) gives a
contradiction. So ηi(1) ≤ 39 for i > 1. This violates χ(2B) = 0.

(iii) Let η1(1) = 390. Then η2(1) ≤ 90. If η2(1) = 90 then η3(1) ≤ 32, whence k = 1
and η3(1) = 1. This conflicts with χ(4A) = 0. If η2(1) ≤ 52 then computing χ(4B) yields a
contradiction.

(iv) Let η1(1) = 351. So we have
∑

i>1 ηi(1) ≤ 161. If η2(1) = 130 then
∑

i>1 ηi(1) ≤ 31, and
hence η3(1) = 1, a contradiction with χ(20A) = 0. Let η2(1) ≤ 90. Then ηi(1) ≤ 71 for i > 2.
Then we have ηi(2A) + ηi(2B) > 0 for i = 1, . . . , k, which violates χ(2A) + χ(2B) = 0.

(v) Let η1(1) = 260. Then η1(2A) ≥ 0 and the only irreducible character λ of degree less
than 260 with negative value at 2A has λ(1) = 39. It follows that (χ, λ) ≥ 0, and then ηi(1) ≤ 213
if i > 1 and ηi 6= λ. Note that λ(8A) = 1 and η1(8A) = 0. As χ(8A) = 0, it follows that a
character of degree 130 occurs in χ, which implies η2(1) = 130. Then we get a contradiction to
χ(2A) + χ(4B) = 0.

(vi) Let η1(1) ≤ 234. Computing χ(2A) + χ(4B) leads to a contradiction. �

Lemma 11.9. Let G = PGU4(3), and let χ be a 2-vanishing character of G. Let η1, . . . , ηk
be the irreducible constituents of χ disregarding multiplicities, and η = η1 + · · · + ηk. Then
η(1) ≥ 2|G|2.

Proof. Let G′ = PSU4(3). Then |G′|2 = 128, |G|2 = 512 and 2 · |G|2 = 1024. Suppose the
contrary. Then η(1) < 1024. We can assume that ηi(1) ≥ ηj(1) for 1 ≤ i < j ≤ k.

Note that χ · τ = χ for every linear character τ of G. Therefore, ηiτ is a constituent of η. Let
g ∈ G \G′. Then ηiτ = η implies ηi(g) = 0.
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By [1], if 630 6= ηi(1) > 420 then ηi(4E) 6= 0 or ηi(4G) 6= 0; it follows that η must contain at
least 2 representations of the same degree, which contradicts η(1) ≤ 1024.

So ηi(1) either equals 630 or ηi(1) ≤ 420. By [1], ηi(2A) + ηi(4B) > 0 for these ηi, unless
ηi(1) = 210. This violates χ(2A) + χ(4B) = 0 unless k = 1 and η1(1) = 210. Then χ(2A) > 0,
a contradiction. �

Lemma 11.10. Let H = H1 × · · · ×Hn, where H1
∼= · · · ∼= Hn

∼= PGL4(3) or PGU4(3). Let χ
be a 2-vanishing character of H. Then χ(1) ≥ 2n+1|H|2.

Proof. By Lemma 11.7, the claim holds for n = 1, so by induction we can assume that it is true
for X := H2 × · · · × Hn. By Lemma 2.7, χ =

∑
i ηiσi, where ηi ∈ Irr(H1), σi are 2-vanishing

characters of X and χ′ =
∑

i l2(σi)ηi is a 2-vanishing character of H1. By induction, σi(1) ≥
2n|X|2. By Lemmas 11.8 and 11.9 applied to χ′, we have

∑
i ηi(1) ≥ 2|H1|2, so χ(1) ≥ 2n+1|H|2

by Lemma 2.9. �

Proposition 11.11. Let n > 1 and G = GL4n(3) or GU4n(3). Let χ be a 2-vanishing character
of G. Then l2(χ) ≥ 4.

Proof. Let X be the direct product of n copies of GL4(3) or GU4(3). Let χ be a 2-vanishing
character of X. By Lemmas 2.5 and 11.10, χ(1) ≥ 2n+1|X|2.

Let Y = X · Sn, the semidirect product, where Sn acts on X by permuting the factors. Then
Y contains a Sylow 2-subgroup of G. Let M = X · S, where S ∈ Syl2(Sn), so the index |G : M |
is odd. Note that |G|2 = |X|2 · |Sn|2. As |Sn|2 ≤ 2n−1 (see the proof of Proposition 6.7), the
result follows for these groups. �

Theorem 11.12. Let p = 2, m > 3 and G be one of GLm(3), SLm(3), PSLm(3), GUm(3),
SUm(3), PSUm(3). Then G has no Steinberg-like character. Moreover, if χ is a 2-vanishing
character of G then l2(χ) ≥ 4.

Proof. Let first G = GLm(3) or GUm(3). For m ≡ 0 (mod 4) the result is stated in Proposi-
tion 11.11. Let m = 4n+ l, where 1 ≤ l < 4, and H = GL4n(3) or GU4n(3). Let S0 be a Sylow
2-subgroup of GLl(3) or GUl(3); set U = H × S0. Then U contains a Sylow 2-subgroup of G.
Therefore, we have l2(χ) = l2(χ|U ). By Lemma 2.5, if ν is a 2-vanishing character of U then
l2(ν) = l2(µ) for some 2-vanishing character µ of H. So l2(ν) ≥ 4 by Proposition 11.11. So the
result follows for these groups.

For G = SLm(3) or SUm(3) the result follows from the above and Lemma 2.12. For G =
PSLm(3) or PSUm(3) the statement follows from the above and Lemma 2.5. �

11.2. Orthogonal and symplectic groups at p = 2. Let V be the natural module for H =
Sp2n(q), q odd, and for g ∈ G let d(g) be the dimension of the fixed point subspace of g on V . Let

ωn denote the Weil character of H. By Howe [7, Prop. 2], |ωn(g)| = qd(g)/2. Let ωn = ω′n + ω′′n,
where ω′n, ω

′′
n ∈ Irr(H) and ω′n(z) = −ω′n(1) for 1 6= z ∈ Z(H).

Lemma 11.13. The following statements hold.

(a) Let h ∈ H be semisimple such that h and zh fix no non-zero vector on V. Then |ω′′n(h)| ≤ 1.
(b) Let V = V1 ⊕ V2, where V1 is a non-degenerate subspace of dimension 2, and let g ∈ H be

an element such that gVi = Vi, i = 1, 2, g|V1 = −Id, and g and zg fix no non-zero vector on
V2. Then |ω′′n(g)| ≥ (q − 1)/2.

(c) Let q > 3. Then ω′′n is not constant on the 2-singular elements of PSp2n(q).
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Proof. (a) We have ωn(h) = ω′n(h) + ω′′n(h) and ωn(zh) = −ω′n(h) + ω′′n(h). Therefore, by [7,
Prop. 2], 2 ≥ |ωn(h) + ωn(zh)| = |2ω′′n(h)|, whence the claim.

(b) By [7, Prop. 2] we have |ωn(g)| = 1 and |ωn(zg)| = q. Then q − 1 ≤ |ωn(g) + ωn(zg)| =
|2ω′′n(g)|, whence the claim.

(c) Choose g as in (b) and h to be an element stabilising V1, V2 such that h coincides with

g on V2 and the matrix of h on V1 is similar to

(
0 1
−1 0

)
. Then h is a 2-singular element

satisfying (a), and hence |ω′′n(h)| ≤ 1. Let h and g be the images of h, g in H/Z(H). Then h
and g are 2-singular elements of PSp2n(q). As Z(H) is in the kernel of ω′′n, this can be viewed
as a character of H/Z(H). As (q − 1)/2 is greater than 1 for q > 3, (c) follows. �

Proposition 11.14. Let G = PSp2n(q), with q > 3 odd and n ≥ 2. Then G has no Syl2-regular
characters.

Proof. We have

|PSp2n(q)|2 =

{
|q − 1|n2 · 2n−1 · |n!|2 if 4|(q − 1),

|q + 1|n2 · 2n−1 · |n!|2 if 4|(q + 1).

Let k be minimal with n ≤ 2k, then as |n!|2 ≤ |2k!|2 = 22
k−1 we have

|PSp2n(q)|2 ≤

{
|q − 1|n2 · 4n−1 if 4|(q − 1),

|q + 1|n2 · 4n−1 if 4|(q + 1).

On the other hand µ3(G) = (qn− 1)(qn− q)/(2(q+ 1)) by [20, Thm. 5.2], and this is larger than
|G|2, unless n = 2 and q = 5, 7. Let’s set aside these cases for a moment. Then otherwise if
χ is Syl2-regular, the constituents of χ are either Weil characters or the trivial character. Now
note that a Weil character of Sp2n(q) of degree (qn ± 1)/2 has the centre in its kernel if and
only if its degree is odd. So, the non-trivial constituents of χ have degree (qn − 1)/2 if q ≡ 3
mod 4 and n is odd, and (qn + 1)/2 otherwise. According to Lemma 2.1 the trivial character
occurs at most once in χ. As (qn ± 1)/2 is never a power of 2 for n ≥ 2 and odd q (consider a
Zsigmondy prime divisor), the trivial character must occur exactly once. Let ψ1, ψ2 denote the
two Weil characters of G, interchanged by the outer diagonal automorphism γ of G. Observe
that γ is induced by an element of GL2n(q) and thus fixes all involution classes of G. Let g ∈ G
be an involution and write a := ψ1(g) = ψ2(g). Then χ(g) = ma+ 1, where m is the number of
non-trivial constituents of χ. As necessarily m > 1 (compare the degrees) we see that χ(g) 6= 0,
so χ is not Syl2-regular.

We now discuss the two exceptions. For G = PSp4(5), |G|2 = 26 = 64 and all irreducible
characters of degree at most 64 take non-negative values on class 2B, so there is no Syl2-regular
character. For G = PSp4(7), |G|2 = 28 = 256 and all irreducible characters of degree at most 256
take positive values on class 8A, except for one of degree 175 which takes value −1, and one of
degree 224 which takes value 0. As at most one of those latter two characters could occur, and
at most once, there can be no Syl2-regular character for p = 2. �

Proposition 11.15. Let G = Ω2n+1(q) with q > 3 odd and n ≥ 3. Then G has no Syl2-regular
characters.

Proof. According to [20, Thm. 6.1] we have µ1(G) = (q2n − 1)/(q2 − 1), which is larger than
|G|2 unless either n = 3 and q = 7, or n = 4 and q = 5, 7.
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For G = Ω7(7) the only non-trivial character of degree less than |G|2 = 212 is the semisimple
character of degree 2451 (see [20]). Since the trivial character can occur at most once in a Syl2-
regular character, we see that no example can arise here. For G = Ω9(5) the only non-trivial
character of degree less than |G|2 = 214 is the semisimple character of degree 16276 (see [20]).
Again, this does not lead to an example. For G = Ω9(7) the only non-trivial character of degree
less than |G|2 = 218 is the character of degree 120100, and we conclude as before. �

Proposition 11.16. Let G = PΩ±2n(q) with q > 3 odd and n ≥ 4. Then G has no Syl2-regular
characters.

Proof. The second smallest non-trivial character degree of G = PΩ+
2n(q) is given by µ2(G) =

(qn− 1)(qn−1− 1)/(q+ 1)/2 (see [16, Thm. 1.4]), which is larger than |G|2 unless (n, q) = (4, 7).
Leaving that case aside for a moment, we see that any Syl2-regular character of G is a multiple
of the smallest non-trivial character, of degree (qn − 1)(qn−1 + q)/(q2 − 1), plus possibly the
trivial character. Arguing as in the case of symplectic groups we see that such characters take
non-zero value on involutions. For G = PΩ+

8 (7) the constituents of a Syl2-regular character
could have degree 1, 17500, or 51300. No non-negative integral linear combination of these three
degrees, with 1G appearing at most once, adds up to |G|2 = 216 = 65536.

The second smallest non-trivial character degree of G = PΩ−2n(q) is µ2(G) = (qn + 1)(qn−1 +
1)/(q + 1)/2 (see again [16, Thm. 1.4]), which is larger than |G|2. We conclude as before. �

Again, we are left with the case that p = 2, q = 3.

Lemma 11.17. Let G = PSp6(3), Ω7(3) or PΩ−8 (3). Then G has no Steinberg-like character.

Proof. For G = PSp6(3) we have |G|2 = 29, and all irreducible characters of G of degree at
most 512 take positive value on the class 4A, see [1].

Let G = Ω7(3). Then |G|2 = 29. All irreducible characters of G of at most that degree are
positive at the elements of conjugacy class 2B [1].

Let G = PΩ−8 (3). By [1], G has 8 irreducible characters of degree at most |G|2 = 210. All of
them take positive values on class 2A. So the result follows.

This implies the result. �

Lemma 11.18. Let G = PGO+
8 (3) or PSp8(3). Let χ be a 2-vanishing character of G, and

η1, . . . , ηk the irreducible constituents of χ disregarding their multiplicities. Set η = η1 + · · ·+ηk.
Then η(1) ≥ 2|G|2.

Proof. Suppose first that G = PGO+
8 (3). Note that |G′|2 = 212, so 2 · |G|2 = 215 = 32768.

Suppose the contrary. Then η(1) < 32768. We use notation from [1]. There are 43 characters
of G′ of degree less than 32768, the maximal degree among them is 29120.

There is only one irreducible character of G′ of degree less that 32768 that is negative at 4A
(this is of degree 9450), while all other are positive. So it must be a constituent of η|G′ . This
character extends toG, so the other constituents of η are of degrees at most 32768−9450 = 23318.

It follows that ηi(1) ≤ 18200. In fact, ηi(1) < 18200. Indeed, if ηi(1) = 18200 and ηj(1) = 9450
for some i 6= j then ηl for l 6= i, j are of degree at most 23318− 18200 = 5118. These characters
are positive at 2A (as well as those of degree 18200 and 9450). This violates χ(2A) = 0.

Thus, ηi(1) < 18200, and hence ηi(1) ≤ 17550. Furthermore, computing the character table of
G by a program in the computer package GAP, one observes that there are 4 distinct irreducible
characters of degree 17550, and only one irreducible character of this degree forG′. It follows that
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these 4 characters differ from each other by multiplication by a linear character. As |G/G′| = 4,
one observes that χ · λ = χ for every linear character λ of G. Therefore, ηi · λ must be a
constituent of χ. So, if ηi(1) = 17550 then there are 3 more constituents of η of this degree,
which contradicts the inequality η(1) < 32768.

Thus, ηi(1) < 17550 for i = 1, . . . , k. By [1], all such irreducible characters of G′, and hence
of G, are positive at 4A, which contradicts χ(4A) = 0.

Let G = PSp8(3). Note that |G|2 = 214, so 2 · |G|2 = 215 = 32768. Suppose the contrary.
Then η(1) < 32768. There are 19 irreducible characters of degree less than 32768. All such
characters are positive at 4A, which violates χ(4A) = 0. �

Lemma 11.19. The following statements hold.

(a) Let H = H1×· · ·×Hn, where H1
∼= · · · ∼= Hn

∼= PGO+
8 (3) or PSp8(3). Let χ be a 2-vanishing

character of H. Then χ(1) ≥ 2n|H|2.
(b) Let G = G1 × · · · ×Gn, where G1

∼= · · · ∼= Gn ∼= GO+
8 (3) or Sp8(3). Let χ be a 2-vanishing

character of G. Then χ(1) ≥ 2n|G|2.

Proof. (a) If n = 1 then the result is contained in Lemma 11.18. By induction we can assume
that it is true for X := H2 × · · · ×Hn. By Lemma 2.7, χ =

∑
i ηiσi, where ηi ∈ Irr(H1), σi are

2-vanishing characters of X and χ′ =
∑
l2(σi)ηi is a 2-vanishing character of H1. By induction,

σi(1) ≥ 2n−1|X|2. By Lemma 11.18 applied to χ′, we have
∑

i ηi(1) ≥ 2|H1|2, so χ(1) ≥ 2n|H|2
by Lemma 2.9.

(b) This follows from (a) and Lemma 2.5, as Z(G) is a 2-group. �

Lemma 11.20. Let G = GO+
8n(3), Ω+

8n(3), PΩ+
8n(3), Sp8n(3) or PSp8n(3). Then G has no

Steinberg-like character for p = 2.

Proof. Let X be the direct product of n copies of GO+
8 (3) or Sp8(3). Let ν be a 2-vanishing

character of X. By Lemma 11.10, ν(1) ≥ 2n|X|2.
Let Y = X · Sn, the semidirect product, where Sn acts on X by permuting the factors. Then

Y contains a Sylow 2-subgroup of G. Let M = X · S, where S ∈ Syl2(Sn), so the index |G : M |
is odd. Note that |G|2 = |X|2 · |Sn|2. As |Sn|2 ≤ 2n−1 (see the proof of Proposition 6.7), the
result follows for the groups GO+

8n(3) and Sp8n(3).
For G = Ω+

8n(3) the result follows from the above and Lemma 2.12. For G = PΩ+
8n(3) or

PSp8n(3) the statement follows from the above and Lemma 2.5. �

Proposition 11.21. Let m ≥ 4 and G = GO+
2m(3) or Sp2m(3). Then G has no Steinberg-like

character for p = 2.

Proof. For m ≡ 0 (mod 4) the result is stated in Lemma 11.20. Let m = 4n+ l, where 1 ≤ l < 4,
and H = GO+

8n(3) or Sp8n(3). Let S0 be a Sylow 2-subgroup of GO+
2l(3) or Sp2l(3). Set

U = H ×S0. Then U contains a Sylow 2-subgroup of G. Let χ be a 2-vanishing character of G.
Therefore, l2(χ) = l2(χ|U ). By Lemma 2.5, if ν is a 2-vanishing character of U then l2(ν) = l2(µ)
for some 2-vanishing character µ of H. By Lemma 11.20, l2(µ) ≥ 2. So l2(ν) ≥ 2, and the result
follows. �

Proposition 11.22. Let G = GO−2m(3) with m ≥ 5. Then G has no Steinberg-like character
for p = 2.
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Proof. Let m = 4n+ l, where 1 ≤ l ≤ 4, and let H = GO+
8n(3). Then G contains a subgroup D

isomorphic to H ×GO−2l(3). Then one concludes that D contains a Sylow 2-subgroup of G. Let

S0 be a Sylow 2-subgroup of GO−2l(3). Set U = H ×S0. Then U contains a Sylow 2-subgroup of
G. By Lemma 2.5, if ν is a 2-vanishing character of U then l2(ν) = l2(µ) for some 2-vanishing
character µ of H. So l2(ν) ≥ 2 by Lemma 11.20 and the result follows. �

Proposition 11.23. Let G = GO2m+1(3), m ≥ 3. Then G has no Steinberg-like character for
p = 2.

Proof. The case m = 3 is dealt with in Lemma 11.17. So we assume that m > 3, that is,
2m + 1 ≥ 9. Let m = 4n + l, where 0 ≤ l ≤ 3, and let H = GO+

8n(3). Then G contains a
subgroup D isomorphic to H × GO2l+1(3). Then D contains a Sylow 2-subgroup of G. Set
U = H × S0, where S0 is a Sylow 2-subgroup of GO2l+1(3), so U contains a Sylow 2-subgroups
of G. By Lemma 2.5, if ν is a 2-vanishing character of U then l2(ν) = l2(µ) for some 2-vanishing
character µ of H. So l2(ν) ≥ 2 by Lemma 11.20, and the result follows. �

Theorem 11.24. Let G = GO2m+1(3) with m ≥ 3, GO±2m(3) with m ≥ 4, or Sp2m(3) with
m ≥ 3, and let G′ be the derived group of G. Let H be a group such that G′ ≤ H ≤ G. Then H
and H/Z(H) have no Steinberg-like character for p = 2.

Proof. ForH this follows from Lemma 11.17, Propositions 11.21, 11.22 and 11.23 using Lemma 2.12,
and for H/Z(H) from Lemma 2.5. �

We now collect our results to prove our main theorems from the introduction.

Proof of Theorem 1.1. Assume thatG is a finite non-abelian simple group possessing a Steinberg-
like character χ with respect to a prime p. The cases when χ is irreducible have been recalled
in Proposition 3.1. If Sylow p-subgroups of G are cyclic, then (G, p, χ) is as in Proposition 4.4.
So we may now assume that Sylow p-subgroups of G are non-cyclic. For G alternating and p
odd there are no cases by Theorem 6.4 except for A6

∼= PSL2(9) with p = 3. The Steinberg-like
characters of sporadic groups are listed in Theorem 5.1.

Thus G is of Lie type. The case when p is the defining prime was handled in [17] and
Propositions 8.1 and 8.2, respectively. So now assume p is not the defining prime for G. Groups
of exceptional Lie type were handled in Theorem 7.1. For classical groups of large rank with p
odd, our result is contained in Proposition 9.6, the cases for PSLn(q) and PSUn(q) with p > 2
are completed in Theorem 10.15, and those for the other classical groups in Propositions 10.18
and 10.19. Finally, the cases with p = 2 are covered by Proposition 11.1 for G = PSL2(q),
Proposition 11.3 for PSLn(q) and PSUn(q) with q 6= 3, Theorem 11.12 for PSLn(3) and PSUn(3),
Propositions 11.14, 11.15 and 11.16 for classical groups with q 6= 3, and Theorem 11.24 for the
case that q = 3. �

Proof of Theorem 1.2. The characters of projective FpG-modules of dimension |G|p are in par-
ticular Steinberg-like, so in order to prove this result we need to go through the list given in
Theorem 1.1(2)–(5). When Sylow p-subgroups of G are cyclic, the possibilities are given in
Lemma 4.5(b). For G of Lie type in characteristic p, see [23, Thm. 1.1]. Theorem 1.1(4) is
subsumed in statement (1), and finally the alternating groups for p = 2 are discussed in Theo-
rem 6.14. �



STEINBERG-LIKE CHARACTERS FOR FINITE SIMPLE GROUPS 39

References

[1] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson. Atlas of Finite Groups. Clarendon Press,
Oxford, 1985.

[2] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and
Orders. Wiley, New York, 1990.

[3] L. Emmett and A.E. Zalesski, On regular orbits of elements of classical groups in their permutation
representations. Comm. Algebra 39 (2011), 3356–3409.

[4] W. Feit, The Representation Theory of Finite Groups. North-Holland, Amsterdam, 1982.
[5] E. Giannelli, S. Law, On permutation characters and Sylow p-subgroups of Sn. J. Algebra 506 (2018),

409–428.
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