A GENERALISATION OF A THEOREM OF WIELANDT
FRANCESCO FUMAGALLI AND GUNTER MALLE

ABSTRACT. In 1974, Helmut Wielandt proved that in a finite group G, a subgroup A is
subnormal if and only if it is subnormal in (A, g) for all g € G. In this paper, we prove
that the subnormality of an odd order nilpotent subgroup A of G is already guaranteed
by a seemingly weaker condition: A is subnormal in G if for every conjugacy class C' of
G there exists ¢ € C for which A is subnormal in (A,c). We also prove the following
property of finite non-abelian simple groups: if A is a subgroup of odd prime order p in a
finite almost simple group G, then there exists a cyclic p’-subgroup of F*(G) which does
not normalise any non-trivial p-subgroup of G that is generated by conjugates of A.

1. INTRODUCTION

The main result of our paper is the following criterion for the existence of a non-trivial
normal p-subgroup in a finite group:

Theorem A. Let G be a finite group and p be an odd prime. Let A be a p-subgroup of G
such that

(%)  for every conjugacy class C of G there exists g € C' with A subnormal in (A, g).
Then A < O,(G).

As an immediate consequence we have:

Corollary B. If A is an odd order nilpotent subgroup of a finite group G satisfying
condition (x), then A is subnormal in G.

This can be considered a generalisation of the following result due to H. Wielandt [18]
(see also [15, 7.3.3|):

Theorem (Wielandt). Let A be a subgroup of a finite group G. Then the following
conditions are equivalent.

(i) A is subnormal in G;
(ii) A is subnormal in (A, g) for all g € G;
(iii) A is subnormal in (A, A9) for all g € G;
(iv) A is subnormal in <A, Aag> foralla€e A, g €G.

Our proof of Theorem A makes use of a reduction argument to arrive at a question
about finite almost simple groups and then prove a property of these groups which may
be of independent interest:
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Theorem C. Let G be a finite almost simple group with simple socle S and p > 2 be a
prime dividing |G|. Let A < G be cyclic of order p. Then there exists a cyclic p'-subgroup
X < S such that

HG(X,p) = 2.

Here, I/Ié(X, p) denotes the set of non-trivial p-subgroups of G generated by conjugates
of A and normalised by X.

Our proof is therefore related to (and relies on) the classification of finite simple groups.
It should be noted that for p = 2 the conclusions of Theorem A and Theorem C are no
longer true. In particular condition (x) does not imply that A < Oy(G). An easy example
is reported at the end of Section 3.

In Section 2 we give, after some preparations, the proof of Theorem C, and then in
Section 3 show the reduction of Theorem A to the case of almost simple group.
We end with Section 4, where we analyse similar variations related to the other criteria for
subnormality given by the original Theorem of Wielandt, namely conditions (iii), better
known as the Baer-Suzuki Theorem. We show that in general these generalisations fail to
guarantee the subnormality of odd p-subgroups. For other variations on the Baer-Suzuki
Theorem the interested reader may consult [19], [11], [7], [8], [9] and [10].

2. ALMOST SIMPLE GROUPS

2.1. Notation and preliminary results. In this section we let S be a non-abelian finite
simple group and G any group such that S < G < Aut(S). For p a prime divisor of |G|
denote by S,(G) the set of all (possibly trivial) p-subgroups of G. For a p’-subgroup X
of S we denote by Ug (X, p) the set of p-subgroups of G normalised by X, namely

Ha(X,p) = {Y € 8,(G) | X < Na(¥)}.
Also for A € S,(G) set
NA(X,p) == {Y € Ug(X,p) | Y is generated by G-conjugates of A} .

Note that if A < S, then g (X, p) C Ug(X, p), otherwise if A £ S then no E € U5(X, p)
lies in S.
We aim to prove Theorem C, which we restate:

Theorem 2.1. Let G be a finite almost simple group with simple socle S. Then with the
same notation as above, for every odd prime p dividing |G| and every A < G of order p,
there exists a cyclic p'-subgroup X < S such that HA(X,p) = @.

In [2], a similar condition is considered. The authors investigate finite groups G' and
primes p that have the following property:

(R2) all nilpotent hyperelementary p’-subgroups X of F*(G) satisfy Ug(X,p) # 1

where a hyperelementary group X is one for which O%(X) is cyclic, for some prime g¢;
basically a nilpotent hyperelementary p’-group X is a direct product of a Sylow g-subgroup
for some prime ¢ # p, and a cyclic p’-group. They show (|2, Thm. 2|) that the only almost
simple group G satisfying (R2) at a prime p is for S = L3(4), p = 2, and 4 dividing |G : S|.

Note that assumption (R2) implies our assumption. See also [4] for an analogous
condition and its related subnormality criteria.
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Lemma 2.2. In the situation of Theorem 2.1 assume that A £ S. Let X be a non-trivial
p'-subgroup of S and E € Hé(X, p). Then X commutes with some non-trivial p-element
in G\ S.

Proof. Since A has order p and A £ S, then this also holds for every conjugate of A. Now
E being generated by some conjugates of A, we have that F £ S. The hypothesis X < §
implies that [F, X| < S. By coprime action, £ = [E, X]Cg(X). Therefore Cg(X) £ S
and so it contains a p-element not belonging to S. 0

Lemma 2.3. In the situation of Theorem 2.1 if Hé(X,p) # & then X normalises a
non-trivial elementary abelian p-subgroup of S or it centralises a non-trivial p-element

of G.

Proof. Let E be a non-trivial p-subgroup of G normalised by X. If X does not centralise
any non-trivial p-element, then A < S by Lemma 2.2 and hence £ < S. Now X also
normalises Z(FE), and then also 4(Z(F)), the largest elementary abelian subgroup of
Z(E). O
The following is a well-known consequence of the classification of finite simple groups

and can be found for example in [6, 2.5.12].
Proposition 2.4. Let S be non-abelian simple, S < G < Aut(S) and assume that © €
G\ S has odd prime order p. Then S is of Lie type and one of the following occurs:

(1) x is a field automorphism of S;

(2) z isa diagonal automorphism of S and one of

(2.1) S = Ly(q) with p|(n,q — 1),

(2.2) S = Un(q) with pl(n,q+1),

(2.3) p= 3 S = Eg(q) with 3|(q — 1),
(2.4) p=3, S =2Es(q) with 3|(q+1); or

(3) p=3 and x is a graph or graph-field automorphism of S = O (q).

We prove Theorem 2.1 by treating separately the cases: S is alternating, sporadic or a
simple group of Lie type.

2.2. The case of alternating groups. Throughout the rest of this subsection we assume
S =%, with n > 5 and G such that S < G < Aut(S). For X a cyclic p’-subgroup of
S we denote by E any element of Ug(X,p). Also, we tacitly assume that any such E is
elementary abelian (see Lemma 2.3).

The following elementary result |2, Lemma 3] will be used several times.

Lemma 2.5. Let X < G < 6, and E € Hg(X,p). If E acts non-trivially on some
X-orbit O, then p divides |O].
Proof. The group EX acts transitively on O and so the orbits of the normal subgroup E

form a system of imprimitivity of O. As F is a p-group, the lemma follows. U

Proposition 2.6. If Hq(X,p) # 1 for every cyclic p'-subgroup X of S, then S = g
and (G,p) € {(PGL2(9),2), (Aut(s),2)}. In particular for every odd prime p and every
subgroup A of order p there exists a cyclic p'-subgroup X for which Hé(X,p) =
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Proof. The cases n = 5 and n = 6, with G < G, follow quite immediately by taking,
as subgroup X a Sylow 5-subgroup, if p = 2 or p = 3, and a cyclic subgroup of order
3if p = 5. Assume that n = 6 and G € Sg. As |G : g is either 2 or 4, if p is odd
then Ug(X,p) = Uy, (X, p), for every X < Rg. Therefore, by what we have just proved,
there is some cyclic p’-subgroup X of g for which Vg (X, p) = 1. Let p = 2. The group
G = Mo contains no elements of order 10 (see [5]). We take X a cyclic subgroup of order
5 of G. Note that if £ is any 2-subgroup of G normalised by X, then E = [F, X| and so F
lies in Ag, but then N (X, 2) = Uy, (X,2) = 1. Let now G = PGLy(9) or G = Aut(s).
Then every element of odd order normalises a non-trivial 2-subgroup of G, basically the
elements of order 3 normalise a copy of %4 lying in s, while the elements of order 5
centralise always an outer involution (see [5]). Therefore we have that 11g(X,2) # 1 for
every cyclic odd order subgroup X of G.

Assume for the rest of the proof that n > 7 and argue by contradiction. We treat
separately the two cases: 1) n is even and 2) n is odd.

Case 1. n is even.
Assume first that p|(n — 1). In particular p is odd. We take as cyclic p’-subgroup X of
2, the one generated by z = (12)(3...n). Let E be a non-trivial element of N (X, p).
Now the set {1,2} cannot lie in fix(E), otherwise E acts non-trivially on {3,...,n}, and
by Lemma 2.5 we would have that p divides n — 2, which is not the case being a divisor
of n — 1. Also from the fact that £ = E?, it follows that none of 1 and 2 are fixed by F.
But then, as p > 2, EX is transitive on {1,2,...,n}, and since p does not divide n we
have a contradiction.

Assume now that pt (n —1).
We choose first X = (x) with x = (2...n) and let 1 # E € Ug(X,p). By Lemma 2.5 we
have that E does not fix 1. Then EX is transitive on {1,2,...,n}. In particular we have
that n is a power of p and since it is even p = 2. Say n = 2" > &.
We can now change our testing subgroup X = (x) and choose now = = (123)(4...n).
This is of course a cyclic p’-subgroup of 2,,. Let E be a non-trivial elementary abelian
2-subgroup lying in (X, 2). Note that F acts fixed-point-freely on {1,2,...,n}. Indeed
if E fixes a point, then as X normalises F, we have that either {1,2,3} or {4,...,n} lie
in fix(£). In any case we reach a contradiction with Lemma 2.5. Now we claim that E is
transitive. Let O be the E-orbit containing 1. Then O cannot be contained in {1,2, 3},
otherwise E being a 2-group, there will be a fixed point of E in {1,2,3}, which is not
the case. Let therefore e € E be such that le = i € {4,...,n}. The subgroup (z?) is
transitive on {4,...,n}, as 3 is coprime to n — 3 = 2" — 3, thus for every j € {4,...,n}
we may take some y € (%) such that 7y = j. But then

1(e¥) = 1(y"ey) = Ley) = i(y) = j

and since ¥ € E the element j lies in O. In particular we have proved that {4,...,n} C O
and, since n — 2 = 2" — 2 is not a power of 2 as n > 8, we have that O = {1,2,...,n}

and E acts regularly on it. Now let e be the unique element of E that maps 1 to 2, then
e” maps 2 to 3. Now as [e,e”] = 1 we have that

1(ee®) =2(e”) =3 = 1(e%¢)
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which means that 1(e®) = 3(e™!), and so 1le® ¢ {1,2,3}. If we set le* = j, for some

j €{4,...,n}, we reach a contradiction, since
e=(12)(3,4)... and €*=(23)(1,7)...
but also as n > 8, jx # j and so e® = (1x,2x)(3z, jx) ... = (23)(1,jx) . . ..

Case 2. n is odd.

In this situation we have that p|n. Indeed if this is not the case, we take X the sub-
group generated by an n-cycle of 2,. Now any 1 # E € g (X, p) acts non-trivially on
{1,2,...,n}, and therefore we reach a contradiction to Lemma 2.5. Thus p|n; in partic-
ular p is odd.

We take now z the (n — 2)-cycle (3,4,...,n) and X = (x). Then any 1 # E € Ugs(X,p)
does not fix both 1 and 2, otherwise by Lemma 2.5, p|(n — 2) which is not the case as
pln and p is odd. Assume that 1 is not fixed by E (otherwise argue considering 2 in
place of 1) and let O; be the E-orbit containing 1. Since p is odd there is some ¢ € E
such that le = i for some ¢ € {3,...,n}. Now as X is transitive on {3,...,n}, for every
j €43,...,n} there is some power m of z such ix™ = j. But then

1(e™) = 1(z ™ex™) = 1(ex™) = i(z™) = 7,
and as e*" € E we have proved that {3,...,n} C O;. Since ptn — 1 we conclude that
E is transitive on {1,...,n}. We show now that E is regular. The stabiliser Stabg(1)
is normalised by X, and therefore if this is non-trivial, then by Lemma 2.5 we reach the
contradiction p|(n — 2). It follows that F is regular on {1,2,... n} and so n = |E| =p",
and any non-trivial element o of E is a product of exactly p"~! cycles of length p. In
particular there exists a unique ¢ € F which maps 1 to 2. We write

0 = 0102 0pr—1

with o7 = (12u3...u,), a p-cycle. Since 0® € E maps 1 to 2, we necessarily have that
o = 0%, but this is not the case as 0 = (12usx ... uyz) # (12u3...u,) = o1. O

2.3. The case of sporadic groups. We assume now that S is one of the 27 sporadic
simple groups (including the Tits simple group %F;(2)’), and S < G < Aut(S). As before
X will denote a cyclic p’-subgroup of S and E a non-trivial elementary abelian p-subgroup
of G normalised by X. Our basic reference for properties of sporadic groups is [5].

Proposition 2.7. Let S be a simple sporadic group, S < G < Aut(S) and p a prime.
Then there exists a cyclic p'-subgroup X of S such that Hg(X,p) = 1. In particular, for
every odd prime p and every subgroup A of G of order p, there exists a cyclic p'-subgroup
X such that HA(X,p) = @.

Proof. We extend a little our notation. Given a prime p and a positive integer ¢ coprime
to p, we write U (g, p) for the set of p-subgroups of G that are normalised by some cyclic
g-subgroup of S.

Table 1 summarises the situation for the sporadic groups and their automorphism
groups. For every group S, we list a pair (¢;r) of primes such that g(q,p) = 1 for all
p # q, and Ug(r,q) = 1. For four groups, Ng(q,p) # 1 for another prime p # ¢, in which
case either Ug(r,p) = 1, or we give a further integer s such that Ug(s,p) = 1. Our choice
of (q;r), respectively (¢;7;s) works for both S and Aut(95).
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TABLE 1. The case of sporadic groups.

My, (11;3) Coy  (23;5) M (59;71)
My (11;3) Cor (23(p#2);33(p=2);13) | (19;11)
My (23;5) He (17;7) O'N  (31;19)
Jo (7;5) Fios (23 (p # 2);17) Ly (67;37)
Suz  (13;11) Fit, (29;23) Ru  (29;13)
HS (11;3) HN (19;11) J4 (43;37)
ML (11(p£2:7) |Th  (31(p#2)19) 2R (13:5)

We prove the validity of Table 1 by considering the individual groups in turn.

The groups S = My, Ji1, Jo, Maz, Msy, Cos, Cos, Ru, Ly, Js, Fioz have trivial outer
automorphism group. The validity of our claim is immediate from the known lists of
maximal subgroups [5].

For S = Mlg, MQQ, HS, H67 Jg, O/N, ]’I]\/v7 Th7 2F4(2)/ we have |Out(S)\ = 2. For
G = S we can argue as before, while for G = Aut(S) we invoke Lemma 2.2 for a suitable
subgroup X < S of prime order as listed in Table 1. We deal with the remaining groups
in some more detail.

S = Suz. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by
13 are isomorphic to G3(4), L3(3):2 or Ly(25). As these have no elements of order 11,
we immediately obtain Ug,.(5,11) = 1. Moreover, for any of these groups, a Sylow 13-
subgroup does not normalise any other p-subgroup, for p # 13. Thus Ug,.(13,p) = 1 for
every prime p # 13. Finally the outer involutions do not centralise any element of order
13, forcing the same conclusions for Aut(Suz).

S = M°L. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by
11 are isomorphic to My; and Mj,. Therefore Uyer(7,11) = Uper(11,p) = 1 for every
p # 11. Now consider G = Aut(M°L). Again, X of order 11 shows that there are no
examples except possibly when p = 2. In the latter case for X we take a cyclic subgroup
of order 7. The Atlas [5] shows that Co(X) < S, and so there can be no example for G
by Lemma 2.2.

S = Coy. Here Out(S) = 1. The maximal subgroups of S of order divisible by 23
are isomorphic to Co,, 2'1:Mys or Cos. Since these groups have no elements of order
13, we obtain that We,, (13,23) = 1. Moreover if YV is any of these maximal subgroups
Uy (23,p) = 1, for every p different from 23 and 2. Finally Co; has elements of order
33 which are self-centralising. As C'o; and Co, do not contain elements of order 33, the
unique maximal subgroups of S that have such an element are: Ug(2):S3, 3%:2M;5 and
3'Suz:2. Now, a cyclic subgroup of order 33 in Ug(2):&3 does not lie completely in Ug(2);
therefore, if such a subgroup normalises a non-trivial 2-subgroup, then, since S has no
elements of order 66, we should have that Iy,2)(11,2) # 1. This is not the case as in
Ug(2) the maximal subgroups of order divisible by 11 are My and U;(2). Consider now a
cyclic subgroup Y of order 33 inside 35:2M,. This is the direct product of a subgroup of
order 3 in 3% by a Sylow 11-subgroup of 2M;,. Assume that X is a non-trivial 2-subgroup
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of 3¢:2M;5 normalised by Y. Then X € Wy, (11,2), and since 1y, (11,2) = 1 we deduce
that X is centralised by a Sylow 11-subgroup of Mis, and thus by the whole Y, which is
a contradiction since in S there are no elements of order 66. Finally, a similar argument
shows that if X is a non-trivial element of I3 g,..2(33,2), then X N Suz is a non-trivial
element of Ug,,(11,2). This is impossible since the maximal subgroups of Suz of order
divisible by 11 are: Us(2), 3°:My; and M:2, forcing Ug,.(11,2) = 1.

S = Fligy. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by 13
are isomorphic to 2F(2) or O7(3). Since both these groups have orders not divisible by
11, we have that 1g(11,13) = 1. Now, Uap,(5)(13,p) = 1 for every p # 13, since the
maximal subgroups of 2F}(2) containing a Sylow 13-subgroup are Ly(25) and L3(3):2 and
Cs(13) = 13. In O7(3) there are three isomorphism classes of maximal subgroups of order
divisible by 13, namely G5(3),L4(3):2 and 3%"3:L3(3). We have that Uo,3)(13,p) = 1 if
p # 3 (and p # 13), forcing g (13,p) = 1 for every prime p different from 3 and 13. To
deal with the case p = 3, we look at the maximal subgroups of S of order divisible by 11.
These are isomorphic to one of the following: My, 2'%:Myy and 2 "Ug(2). For any of these
groups Y we have Uy (11,3) = 1, thus the same happens in S. Since |Out(S)| = 2, we
only need to show that My, s)(q,2) = 1 for some odd integer ¢. This is guaranteed by
the fact that Ng(13,2) = 1 and Cyuys)(13) = 13.

For the last three groups, the Atlas does not contain complete lists of maximal sub-
groups, so we need to give a different argument.

S = Fil,. Here |S| =2%1.31.52.11-13-17-23- 29, |Out(S)| = 2. Here, a subgroup
of order 29 cannot act faithfully on an elementary abelian p-subgroup for p # 29, by the
order formula. On the other hand, subgroups of order 29 are not normalised by elements
of order 23.

S = B. Here |S| =2%.313.56.72.11-13-17-19 - 23 - 31 - 47, Out(S) = 1. From
the order formula it is clear that a subgroup of order 47 cannot act non-trivially on an
elementary abelian p-subgroup of S, except possibly for p = 2. Since elements of order 47
are self-centralising, and not normalised by an element of order 31, we must have p = 2.
But the 2-rank of S is 14 by [14], too small for an action of Cys.

S = M. Here |S| =2%6.320.5%.76.112.13%.17-19-23-29-31-41-47-59 - 71,
Out(S) = 1. A subgroup of order 59 cannot act faithfully on an elementary abelian p-
subgroup for p # 59, by the order formula. On the other hand, subgroups of order 59 are
not normalised by elements of order 71. 0

2.4. Classical groups of Lie type. We consider the following setup. Let S be a finite
simple group of Lie type. There exists a simple linear algebraic group H of adjoint
type defined over the algebraic closure of a finite field and a Steinberg endomorphism
F : H — H such that the finite group of fixed points H = H” satisfies S = [H, H].

We now make use of the fact that groups of Lie type possess elements of orders which
cannot occur in their Weyl group, and with small centraliser. These can be found, for
example, in the Coxeter tori. For this we need the existence of Zsigmondy primitive prime
divisors (see |12, Thm. 3.9]):

Lemma 2.8. Let q be a power of a prime and e > 2 an integer. Then unless (q,e) = (2,6)
there exists a prime ¢ dividing ¢¢ — 1, but not dividing ¢/ —1 for any f <e, and £ > e+ 1.
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In Table 2 we have collected for each type of classical group two maximal tori T}, T
of H (indicated by their orders). Then the order of T; is divisible by a Zsigmondy prime
divisor ¢; of ¢® — 1, with e; given in the table (unless e; = 2 or (e;, q) = (6,2)).

TABLE 2. Two tori for classical groups.

H |T1‘ |T2| €1 ()]
PR (1) R I (LN /(N ) R W R
4,01 (n>30dd) | (¢"+1)/(g+1) -1 2n  n—1
(n > 4 even) ¢t +1 (" —=1)/(¢g+1) [2n—2 n

B,,C, (n>2even) "+ 1 (@ '+1)(g+1)| 2n 2n-—2
(n > 3 odd) " +1 -1 2n n

D, (n>4even)| (¢ +1)(g+1) (" '—1(g—-1)|2n—2 n-—1
(n>50dd) | (¢" '+ 1)(g+1) " —1 2n—2 n

D, (n>4) "+ 1 (@ t+1)(¢g—1)| 2n 2n-—2

Proposition 2.9. Assume that S is of classical Lie type not in characteristic p. Then
Theorem 2.1 holds for all S < G < Aut(S).

Proof. Let H, H be as above so that S = [H, H]. We distinguish three cases.

Case 1: A< S.

The cases when e; < 2, that is, H is of type A;, As, 245 or B,, will be considered
in Proposition 2.10. For all other types, for X we choose a maximal cyclic subgroup of
T;NS for i = 1,2, with T} from Table 2. Note that the orders of 71N S, T5N.S are coprime,
and T; is the centraliser in H of any s; € T; of order ¢;. Assume that I/IQ(X, p) # &. By
Lemma 2.3 and the fact that A < S, X normalises a non-trivial elementary abelian p-
subgroup FE of S. Let m : H — H be a simply-connected covering of H, and hence
ker(m) = Z(ﬂ) We let E be a (normal) Sylow p-subgroup of the full preimage of E in
H. Then E is normalised by the full preimage of X. First assume that |Z(H)| is prime
to p. Then E >~ E is abelian. As H is simply-connected, p > 2 is not a torsion prime
of H (see [16, Tab. 14.1]), so an inductive application of [16, Thm. 14.16] to a sequence
of generators of the abelian group E shows that C := C’H(E) contains a maximal torus
of H and is connected reductive, hence a subsystem subgroup of H of maximal rank.
Then Ng(C) = CNg(T) for any maximal torus T of H, so Ng(C)/C is isomorphic to
a section of the Weyl group W of H. As Ng(E) < Ng(Cgx(FE)) = Ng(C) we see that

Nu(E)/Cu(E) is a section of W.

Now note that the order of the Weyl group of H is not divisible by any prime larger
than e;, except for H of type D,,, with n > 4 even and e; = n — 1. Here, {5 > es +1 = n,
but n is even so that in fact ¢5 > n does not divide the order of the Weyl group either.
This shows that elements s; € X of order ¢; must centralise F, for « = 1,2. So p divides
the order of Cs(s;) =1; N S for i = 1,2, a contradiction as these orders are coprime.

The cases when (g,e;) = (2,6), that is, S = Lg(2),L7(2), Us(2), O7(2),05(2), 0g(2)
will be handled in Proposition 2.11, while S = U4(2) = S,4(3) will be treated in Proposi-
tion 2.10.
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Now assume that E is non-abelian. Then p divides |Z(H)| and thus S = L,(q) or
S = U,(q). Let E; be a minimal non-cyclic characteristic subgroup of E. Then F,
is of symplectic type, hence extra-special (see |1, (23.9)]) and normalised by X. Write
|E1| = p*¢™!, then p* < n as F; < SL,(q) or SU,(¢q). Now the outer automorphism group
of Fy is Spy,(p), and all prime divisors of its order are at most (p® + 1)/2 < n. But our
Zsigmondy prime divisors ¢; of |X| satisfy ¢; > n, so again we conclude that X must
centralise an element of order p. We conclude as before.

Case 2: A £ S contains diagonal automorphisms.

In this case by Proposition 2.4 we have S = L, (q) or S = U, (q). Here let X be generated
by a regular unipotent element. By Lemma 2.2, if X normalises a non-trivial p-subgroup
generated by conjugates of A, X must centralise some non-trivial element of order p. But
the centraliser of a regular unipotent element in the group PGL,(q) resp. PGU,(q) of
inner-diagonal automorphisms is obviously unipotent, hence this case does not occur, as
by assumption p is not the defining characteristic.

Case 3: A £ S does not contain diagonal automorphisms.

By Proposition 2.4, A contains field, graph or graph-field automorphisms. Now in all
cases, a maximal cyclic subgroup X of 77 N S can be identified to a subgroup of the
multiplicative group of Fg; by viewing some isogeny version of H as a classical matrix
group. The normaliser in S of X then acts by field automorphisms of Fe; /F,. Using
the embedding into a matrix group one sees that the field automorphisms of S act on
X as the field automorphisms of F,/F,, where r is the characteristic of H. In particular
they induce automorphisms of X different from those induced by Ng(X). So with this
choice of X field automorphisms cannot lead to examples by Lemma 2.2. Finally, if
S = OF (¢) and A contains graph or graph-field automorphisms of order 3 then we choose
X to be generated by an element z of order (¢*> + 1)/d in a maximal torus T < S of
order (¢* + 1)%/d?, where d = ged(q — 1,2). The normaliser Ng(T) acts by the complex
reflection group G(4,2,2) of 2-power order (see the description in |3, §3A]). The group &3
of graph automorphisms extends the Weyl group of type D, of S to a Weyl group of type
Fy (see e.g. [16, Exmp. 13.9]), in which the normaliser of 7" acts by the primitive reflection
group Gy (see [3, Table 3|). So the extension by a graph or graph-field automorphism of
order 3 acts by a subgroup of Gy of index 2. These automorphisms hence induce further
non-trivial elements normalising X, and not centralising z. ([l

We now complete the proof for the small rank cases.

Proposition 2.10. Assume that S = La(q) (¢ > 8), Ls(q), Us(q) (¢ > 2), or Si(q)
(g >2), and ptq. Then Theorem 2.1 holds for all S < G < Aut(S).

Proof. We just need to deal with the case that G = S, since the other possibilities were
already discussed in the proof of Proposition 2.9. First assume that S = La(q). If ¢ > 8
is even, then elements of order ¢ + 1 do not normalise any non-trivial p-subgroup with
p dividing ¢ — 1, while elements of order ¢ — 1 do not normalise any with p|(¢ + 1). If
g = v’ > 9 is odd, elements of order r do not normalise non-trivial p-subgroups for
2 <pl(¢° = 1).

Next let S = L3(q). Elements of order (¢* + ¢ + 1)/ ged(3,q — 1) do not normalise
non-trivial p-subgroups for p dividing ¢> — 1, while elements of order 2 do not normalise
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non-trivial p-subgroups for p dividing (¢? + ¢+ 1)/ ged(3,q — 1). Similarly for S = Uz(q),
q > 2, we can argue using elements of order (¢*> — ¢ + 1)/gcd(3,q + 1), respectively of
order 2.

Finally assume that S = Sy(¢q). Using X of order ¢*> + 1 we see that we must have
pl(¢* +1). In this case, take X of order 3. O

Proposition 2.11. Assume that S is one of Lg(2), L7(2), Ug(2), 07(2), O£ (2) or Og(2).
Then Theorem 2.1 holds for all S < G < Aut(95).

TABLE 3. Some groups over .

L(2) (Z7)  |Us@ (1L:3) [O01(2) (7:5)
L(2) (127:31) |07(2) (1:5) |O5(2) (17:3)
0y(2) (17:5)

Proof. In all of these groups, just one of the two Zsigmondy primes ¢; exists. By the
argument given in the proof of Proposition 2.9, we still obtain that either elements of
order ¢; centralise a p-element or that S # G. We may then conclude as in the proof of
Proposition 2.7, using an additional prime as in Table 3, except in the two cases when
|Out(S)| > 2; i.e., Ug(2) and OF (2).

Let S = Ug(2). Here ¢; = 11 shows that p = 11 if G = S, and since a subgroup of
order 7 does not normalise one of order 11, we reach a contradiction in this case. We
assume therefore that p = 3 and A £ S. Let first X be a subgroup of S of order 11
and Y a maximal subgroup of S containing X. Then Y ~ U;(2) or Mass, and therefore
Ny (X,3) = Ug(X,3) = 1. Now if E € U4(X,3) we have that EN S € g(X,3) =1 and
so E' = Cg(X) has order 3, and, E being generated by conjugates of A, we have that E
is a conjugate of A. Now the group S has four classes of outer elements of order three,
denoted 3D, 3F,3F and 3G in [5]. Amongst these just 3D has centraliser in S divisible
by 11, namely Cs(3D) ~ Us(2). We have therefore that A = () for some x in 3D. Now
take X a subgroup of S of order 7. We may argue as before. Since a maximal subgroup
Y of S containing X is isomorphic to one of

Moy, 2°.13(4), Uy(3):2, Ss(2), Ls(4):2,

we have that 1y (X,3) = Ug(X,3) = 1, and therefore any element E € g (X,3) is a
cyclic subgroup conjugate to A and centralised by X. This is a contradiction since 7 does
not divide |Us(2)].

Let S = Of (2). The prime ¢, = 7 shows that p = 7 if A < S. Since a subgroup of
order 5 does not normalise any non-trivial 7-subgroup, we reach a contradiction if A < S.
Let p=3and A £ S. In G there are three classes of outer 3-elements, two of order 3 and
one of order 9. In all cases 5 does not divide the order of their centralisers in S. Thus if
X is a cyclic subgroup of order 5 we reach a contradiction with Lemma 2.2. 0

2.5. Groups of exceptional type. In this section we prove Theorem 2.1 when S is one of
the exceptional groups of Lie type. We keep the setting from the beginning of the previous
subsection. Note that we need not treat ?By(2) (which is solvable), G5(2) ~ U;(3).2,
2(5(3) ~ 1y(8).3 and ?Fy(2) (see Section 2.3).
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As in the case of classical groups we provide in Table 4 for each type of group two
maximal tori of H, indicated by their orders. Here, we denote by ®, the n-th rational
cyclotomic polynomial evaluated at g, and moreover we let ®} = ¢ + V2q+1, 9! =
¢ —V2q+1, 8 = ¢ +V2¢° + P+ V20 + 1, ¥y = '~ V200 + > V2q+ 1 for ¢ = 227,
and @), = > +v/3q+1, Yy = ¢>—/3q+1 for ¢*> = 32/+1. We then have ged(|T1|,|T3|) = d,
where d = (3,q—1), (3,q+1) and d = (2,q — 1) for S = Fg(q),*Es(q), F7(q) respectively,
and d = 1 otherwise. Furthermore, |H : S| = |T; : T; N S| = d in all cases.

TABLE 4. Two tori for exceptional groups.

H 11| |13 H T} 15| d
;B2<q22) (‘122 >8) | &y g Fy(q) g D9 1
Go(q®) (¢° >227)| @), @Yy || Be(q) | P3Pia @9 (3,¢—1)

G2(q) (g>3) | &5 Pg ’Fe(q) | PePra P15 (3,¢+1)

3D4(q) P2 Py E-(q) Oydyy O1P; (2,¢g—1)
Fu(q?) (¢ >8) | Py D4, Fx(q) D5 D3 1

Proposition 2.12. Assume that S is of exceptional Lie type not in characteristic p. Then
Theorem 2.1 holds for all S < G < Aut(95).

Proof. First assume that A < S. Using for X maximal cyclic subgroups of S NT;, for T;
as listed in Table 4, we conclude by the same arguments as in the proof of Proposition 2.9
that in a possible counterexample to Theorem 2.1 the prime p would divide the orders of
both SNT;, i = 1,2, which is a contradiction as their orders are coprime, unless possibly
if p is a torsion prime for H. The torsion primes for groups of exceptional Lie type are
just the bad primes (see [16, Tab. 14.1]); in particular p < 5, and even p = 3 unless
S = Fg(q). The maximal rank of an elementary abelian p-subgroup of H, for p odd, is at
most the rank m of H, see e.g. [6, Thm. 4.10.3]. It is easy to check that for all bad primes
p1qand s < m, p* — 1 is not divisible by ¢; for i € {1,2}, so again T; must centralise
a non-trivial p-element, which contradicts the fact that ged(|T1|, |T3|) = 1, except for the
groups Fy(2), Fg(2) and ?Eg(2) (each with p = 3). In all of the latter cases, at least one
of the ¢; does not divide 3° — 1 for s < 4, and does not divide the centraliser order of an
element of order 3 either, so again we are done.

Now assume that A £ S. Then either A contains field automorphisms, in which case
taking for X a maximal cyclic subgroup of 7} shows that no example arises by Lemma 2.2
as field automorphisms induce proper non-inner automorphisms on this torus. Or, we have
that S = Fg(q) or *Es(q), p = 3, and A contains diagonal automorphisms. In this case we
take for X the subgroup generated by a regular unipotent element; this has a unipotent
centraliser in the group of inner-diagonal automorphisms and thus we are done. 0

2.6. Groups of Lie type in defining characteristic. If p is the defining prime for S,
we can again make use of the two tori T, T5 introduced before.

Proposition 2.13. Assume that S is of Lie type in characteristic p. Then Theorem 2.1
holds for all S < G < Aut(S5).
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Proof. Let A < H be cyclic of order p and 1 # P < H be a p-subgroup generated by
conjugates of A. First assume that A < S. Then P is a non-trivial unipotent subgroup of
S, hence its normaliser Ng(P) is contained in some proper parabolic subgroup of S (see
[16, Thm. 26.5]). Let s be a regular semisimple element of S in the torus 7} as given in
Table 2 when S is classical, or in Table 4 in case S is exceptional. Then the centraliser
Cs(s) is contained in 77, in particular s does not centralise any non-trivial split torus of
H and so is not contained in a proper parabolic subgroup of S. Thus I/Ié(X,p) = .

It A £ S, then by Proposition 2.4 either A contains a field automorphism of S, or
p = 3 and A contains a graph or graph-field automorphism. According to Lemma 2.2, X
is centralised by an outer p-element. Now as pointed out in the proof of Propositions 2.9
and 2.12, field automorphisms do not enlarge the centraliser of X as defined above, so we
may assume that S = Of (q), p = 3 and H involves a graph or graph-field automorphism.
In this case take X generated by a semisimple element of order (¢* +1)/ged(2,q— 1) and
conclude as in the proof of Proposition 2.9. 0]

3. PROOF OF THEOREM A

In this section we complete the proof of Theorem A. We need the following result,
whose proof can be found in |13, Thm. 4.2].

Lemma 3.1. Let G be a finite group and V' a faithful irreducible G-module. Assume that
p is an odd prime number different from the characteristic of V' and that A is a subgroup
of G of order p that lies in O,(G). Then there exists an element v € V' such that

Ag | Calvy.

geG

Given a finite group G and a subgroup A < G we say that the pair (G, A) satisfies (x)
if for every conjugacy class C' of G there exists g € C such that A is subnormal in (A, g).

Proof of Theorem A. We argue by contradiction: assume that G is a finite group, A an
odd p-subgroup of G, A £ O,(G), and the pair (G, A) satisfies the condition (x). Moreover
we assume that that |G| 4 |A| is minimal with respect to these conditions. We proceed
by steps.

Step 1. We have O,(G) = 1.

Indeed, note that (G/O,(G), AO,(G)/O,(G)) satisfies (x), therefore if O,(G) # 1 by
our minimal assumption, we would have that AO,(G)/0,(G) < O,(G/O,(G)) = 1, which
is a contradiction.

Step 2. We have |A| = p.

Let B be a proper subgroup of A and note that (G, B) satisfies (x). By the minimal
choice, every proper non-trivial subgroup of A lies in O,(G). Since O,(G) = 1, we conclude
that B =1, i.e., A has order p.

From now on we set A = (a).

Step 3. G has a unique minimal normal subgroup M.

Assume that M and N are two distinct minimal normal subgroups of G and assume
also that A £ N. Then (G/N, AN/N) satisfies (x) and so, by our minimal choice we have
that AN/N < O,(G/N). In particular, AN <<<G. Then also ANNM <<1G. If A< M,
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then A = A(NNM) = ANNM, and we have that A << G. Since A is a p-subgroup, then
A < O,(G), which is not the case. Therefore A £ M and by the same arguments as for N
above, we conclude that AM, and thus also AM N AN, is subnormal in G. Finally note
that M N AN = 1. Indeed, otherwise we have that A < M N, as |[A|=pand MNN = 1.
Now M N/N is a minimal normal subgroup of G/N and, being isomorphic to M, it is not
a p-subgroup by Step 1. Then M N/NNO,(G/N) = 1, forcing AN/N = 1 a contradiction.
Thus MNAN =1and A= A(MNAN) = AMNAN, therefore is subnormal in GG, which
again contradicts Step 1.

Step 4. M is non-abelian.

Assume that M is an elementary abelian ¢-group, with ¢ a prime different from p,
by Step 1. Let Y/M = O,(G/M), then by our minimal assumption A < Y. We take
P € Syl,(Y) such that A < P. By the Irattini argument G = YN = MN, with
N = Ng(P). Now [Ny(P),P] < MNP =1, thus Ny (P) = Cpy(P). Also, M being
normal and abelian, Cj/(P) is normalised by both M and Ng(P), thus Cy(P) < G.
As M is the unique minimal normal subgroup of G, we have that either Cy/(P) = 1 or
Cr(P) = M. Note that in the latter case P is normal in G, which contradicts Step 1.
Therefore we have that G is a split extension G = M x N. Moreover, since M is the
unique minimal normal subgroup of G, Cy(M) =1, i.e., N acts faithfully on M. Let m
be an arbitrary non-trivial element of M. By condition (%) there exists some n € N such
that A << (A, m"). In particular the subgroup V := <a, amn> is a p-group. As m" € M,
MV = MA, and therefore

V=MANV =(MNV)A=A,

as M and V have coprime orders. Therefore (a) = (a™"), i.e., m" normalises A. In
particular, as M is a normal g-subgroup, we have that

[a,m"] € ANM =1,
which means that A C Cy(m)". By the arbitrary choice of m in M we have reached a
contradiction with Lemma 3.1.

Step 5.

Let M = 51 x Sy X ... x S, be the unique minimal normal subgroup of G, with all the
Si’s isomorphic to a finite non-abelian simple group S. Denote by 7; the projection map
of M onto S;, for every ¢+ = 1,2,...n. Let also 1 = xy,xs,...,2, be elements of G such
that S7* = S;, for i = 1,2,...,n. Let K be the kernel of the permutation action of G on
the set S := {51, 59,...,5.}, i.e.,

We treat separately the two cases: A £ K and A < K.

Case 1. A L K.

Set G := G/K and use the “bar” notation to denote subgroups and elements of G. By
induction, we have that A < O,(G). Since p is odd, by Gluck’s Theorem ([17, Cor. 5.7])
there exists a proper non-empty subset R C S such that

GrNO,G) =1,
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where G denotes the stabiliser in G of the set R. Without loss of generality, we may
assume R = {S4,...,S5,} for some r < n. Let ¢ be any prime different from p dividing
|S1], and let s; € S; be any non-trivial g-element. Set

Sp = 8158]°...5]" € M.
By assumption, there exists a G-conjugate of sg, say y := s%, such that A is subnormal
in (a,y), in particular (a,a") is a p-subgroup. Thus [a,y] = a"'a¥ is a p-element. Also,
[a,y] is G-conjugate to [a? , sg]. Since a9 ' is a non-trivial element of O,(G), a9 does

not stabilise R, therefore there exists some i € R such that (S;)* = S; for some j € R,
this forces that Wj([agfl, sg]) is a non-trivial g-element of S}, and since p # g, (a9 sg]
cannot be a non-trivial p-element of M. So we have [a,y| = 1, but then (a) stabilises R,
which is in contradiction with Gg N O,(G) = 1.

Case 2. A< K.

We consider first the case in which A < Cg(S;), for every i = 1,...,n. Then

A< CalS) = (CalS))e
i=1

the normal core of S; in G. Since M is the unique minimal normal subgroup of G and
M £ (Cg(S1))a, we necessarily have that (Cg(S1))e = 1, and so A = 1, which is a
contradiction.

Assume now that A does not centralise some S;, say S;. Let 1 # s; € S; and let
m = s;812...8{" € M. Let g € G be such that A << (A, m?). Writing m? = hik, with
hy =7 € Sy for somei=1,....n,and k = H#isfjg € Sy x ... x S, we have that for
every u,v € N

", (m?)"] = [a", k") = [ K*)la", 1" = [a®, hg]la® &°),
since A normalises each S; and S; is centralised by S}, for every j # 1. In particular we
have that
[A, (m?)] = [A, (h)] x [A, (k)].

Therefore m([A, (m9)]) = [A, (h1)] is a p-subgroup of S;. Finally note that h; = s7Y, and
so for the arbitrary element s; € S; there exists x;g € Ng(S1) such that A<k (A, s7*9). In
particular if s; is chosen to be a p’-element of S we have that s; normalises a non-trivial
p-subgroup of G which is generated by G-conjugates of A. Therefore, as A £ Cq(S1),
we have proved that the almost simple group G := Ng(S1)/Ce(S)) contains a non-trivial
subgroup of order p, namely A := ACq(S;)/Ce(S:), such that for every cyclic p/-subgroup
X of F*(G) we have that I/Ié(f(,p) # @. This is in contradiction to Theorem 2.1. O

We end this section by showing with an easy example that for p = 2 the conclusion of
Theorem A does no longer hold.

Example 3.2. Let H be a Sylow 2-subgroup of GLy(3), namely H is a semidihedral group
of order 16, acting, in the natural way, on the natural module M ~ C3 x C3. Let G be the
semidirect product M x H, and a a non-central involution of H. Since Oy(G) =1, (a) is
not subnormal in G. We show that (a) satisfies (x). A non-trivial element of G has order
either a 2-power, or 3, or 6. In the first case, it is conjugate to an element g of H and
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so (a) is subnormal in the 2-group (a, g). In the second case, the element lies in M, but
note that every element of M centralises a conjugate in H of a, i.e., M = |,y Cu(a®),
thus there exists an x € H such that (a) is subnormal in (a, g*) ~ Cs. In the latter case,
up to conjugation, we have (a, g) = (g).

4. OTHER CONDITIONS FOR SUBNORMALITY

As stated in the Introduction, in this Section we briefly analyse similar variations related
to the other criteria for subnormality given by the original Theorem of Wielandt (namely
conditions (iii) and (iv)). We see that in general these generalisations fail to guarantee
the subnormality of odd p- subgroups.

Given a finite group G and a p-subgroup A of G, we consider the following condition:

(xx) for every conjugacy class C' of G there ezists g € C such that A << (A, A9).
It is trivial that condition () implies ().
The next result shows that (#x*) is enough to guarantee the subnormality of A in the class
of finite solvable groups when p is odd.

Theorem 4.1. Let G be a finite solvable group and p an odd prime. If there exists a
p-subgroup A of G satisfying (xx) then A < O,(G).

Proof. As A is nilpotent, every subgroup of A also satisfies («x). Therefore we can assume
that A is cyclic, say A = (a).

We argue by induction on the order of G.

Note that if M is a minimal normal subgroup of G the assumption holds for the group
G/M. Thus in particular, we may assume that G admits a unique minimal normal
subgroup, say M, and that aM € O,(G/M) :=Y /M. Now if M is a p-group we are done.
Let M be an elementary abelian ¢-group, with ¢ # p. Take P a Sylow p-subgroup of Y
containing a, so that by the Frattini argument G = YN = M N, with N = Ng(P). Being
M minimal normal in G, we have that Cy;(P) = M N Ng(P) = 1 (otherwise Y = M x P
and a € Oy(G)). Thus G = M x N. Since also M is the unique minimal normal subgroup
of G we have Cy(M) = 1. Let m be a non-trivial element of M. By assumption there
exists n € N such that the subgroup V' := <a, amn> is nilpotent. In particular, as m”™ € M,
MV = M {(a), and therefore

V=M(@nNV=MnNV)x(a),
forcing (a) = (a™"). So
[a,m"|€e ANM =1,
which means that A C Cy(m)". By the arbitrary choice of m in M we have reached a
contradiction with Lemma 3.1. ]

For non-solvable groups the situation is completely different and the following example
shows that there are almost simple groups with non-trivial p-subgroups satisfying ().

Example 4.2. Every subgroup of Gg generated by a 3-cycle satisfies (xx). Indeed, let
A = ((123)) and C a conjugacy class of Gg. If every element of C is the product of at
least three disjoint cycles of length > 1, then C contains g = (14...)(25...)(36...)... and
so A is subnormal in the abelian subgroup (A, A%). If C' contains a k-cycle, then k > 6
otherwise there exists g in C fixing pointwise {1, 2,3} and so (A, A9) = A. But then take
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g = (142536...) € C and argue as before. The remaining case is when the elements of C
are products of two disjoint cycles and fix at most two points. If one of these cycle is a
3-cycle, then g = (123)... € C, forcing again A% = A. We can then assume that one cycle
is at least a 2-cycle and the other a 4-cycle, but then take g = (14...)(2536...) € C and
conclude as before.

A similar behaviour can be noticed for every prime p, if n is big enough.
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