Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation

Publikationen

Inhaltsbereich / Content

Preprints

[2] Corina Birghila and Mathias Schulze. Blowup of conductors, 2016. [ file | http ]
[1] Michel Granger and Mathias Schulze. Derivations of negative degree on quasihomogeneous isolated complete intersection singularities, 2014. [ file | http ]

Publikationen

[35] Mathias Schulze. On Saito's normal crossing condition. J. Sing., 14:124--147, 2016. [ DOI | file | http ]
[34] Philipp Korell, Mathias Schulze, and Laura Tozzo. Duality on value semigroups, 2015. To appear in J. Comm. Alg. [ file | http ]
[33] Michel Granger and Mathias Schulze. Quasihomogeneity of Curves and the Jacobian Endomorphism Ring. Comm. Algebra, 43(2):861--870, 2015. [ DOI | file | http ]
[32] Xia Liao and Mathias Schulze. A cohomological interpretation of derivations on graded algebras, 2014. To appear in Contrib. Alg. Geom. [ file | http ]
[31] Xia Liao and Mathias Schulze. Quasihomogeneous free divisors with only normal crossings in codimension one, 2014. To appear in Math. Res. Lett. [ file | http ]
[30] Michel Granger and Mathias Schulze. Normal crossing properties of complex hypersurfaces via logarithmic residues. Compos. Math., 150(9):1607--1622, 2014. [ DOI | file | http ]
[29] Janko Böhm, Wolfram Decker, and Mathias Schulze. Local analysis of Grauert-Remmert-type normalization algorithms. Internat. J. Algebra Comput., 24(1):69--94, 2014. [ DOI | file | http ]
[28] G. Denham, H. Schenck, M. Schulze, M. Wakefield, and U. Walther. Local cohomology of logarithmic forms. Ann. Inst. Fourier (Grenoble), 63(3):1177--1203, 2013. [ DOI | file | http ]
[27] David Mond and Mathias Schulze. Adjoint divisors and free divisors. J. Singul., 7:253--274, 2013. [ file ]
[26] Michel Granger, David Mond, and Mathias Schulze. Partial normalizations of Coxeter arrangements and discriminants. Mosc. Math. J., 12(2):335--367, 460--461, 2012. [ file ]
[25] Mathias Schulze and Uli Walther. Resonance equals reducibility for A-hypergeometric systems. Algebra Number Theory, 6(3):527--537, 2012. [ DOI | file | http ]
[24] Graham Denham, Mehdi Garrousian, and Mathias Schulze. A geometric deletion-restriction formula. Adv. Math., 230(4-6):1979--1994, 2012. [ DOI | file | http ]
[23] Mathias Schulze. Freeness and multirestriction of hyperplane arrangements. Compos. Math., 148(3):799--806, 2012. [ DOI | file | http ]
[22] Graham Denham and Mathias Schulze. Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements. In Arrangements of hyperplanes---Sapporo 2009, volume 62 of Adv. Stud. Pure Math., pages 27--57. Math. Soc. Japan, Tokyo, 2012. [ file ]
[21] Michel Granger, David Mond, and Mathias Schulze. Free divisors in prehomogeneous vector spaces. Proc. Lond. Math. Soc. (3), 102(5):923--950, 2011. [ DOI | file | http ]
[20] Michel Granger and Mathias Schulze. On the symmetry of b-functions of linear free divisors. Publ. Res. Inst. Math. Sci., 46(3):479--506, 2010. [ DOI | file | http ]
[19] Mathias Schulze. Logarithmic comparison theorem versus Gauss-Manin system for isolated singularities. Adv. Geom., 10(4):699--708, 2010. [ DOI | file | http ]
[18] Mathias Schulze. A solvability criterion for the Lie algebra of derivations of a fat point. J. Algebra, 323(10):2916--2921, 2010. [ DOI | file | http ]
[17] Michel Granger and Mathias Schulze. Initial logarithmic Lie algebras of hypersurface singularities. J. Lie Theory, 19(2):209--221, 2009. [ file ]
[16] Mathias Schulze and Uli Walther. Hypergeometric D-modules and twisted Gauß-Manin systems. J. Algebra, 322(9):3392--3409, 2009. [ DOI | file | http ]
[15] Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze. Linear free divisors and the global logarithmic comparison theorem. Ann. Inst. Fourier (Grenoble), 59(2):811--850, 2009. [ file | http ]
[14] Mathias Schulze and Uli Walther. Cohen-Macaulayness and computation of Newton graded toric rings. J. Pure Appl. Algebra, 213(8):1522--1535, 2009. [ DOI | file | http ]
[13] Mathias Schulze and Uli Walther. Irregularity of hypergeometric systems via slopes along coordinate subspaces. Duke Math. J., 142(3):465--509, 2008. [ DOI | file | http ]
[12] Mathias Schulze. A criterion for the logarithmic differential operators to be generated by vector fields. Proc. Amer. Math. Soc., 135(11):3631--3640 (electronic), 2007. [ DOI | file | http ]
[11] Mathias Schulze. Maximal multihomogeneity of algebraic hypersurface singularities. Manuscripta Math., 123(4):373--379, 2007. [ DOI | file | http ]
[10] Michel Granger and Mathias Schulze. Quasihomogeneity of isolated hypersurface singularities and logarithmic cohomology. Manuscripta Math., 121(4):411--416, 2006. [ DOI | file | http ]
[9] Michel Granger and Mathias Schulze. On the formal structure of logarithmic vector fields. Compos. Math., 142(3):765--778, 2006. [ DOI | file | http ]
[8] Mathias Schulze. Good bases for tame polynomials. J. Symbolic Comput., 39(1):103--126, 2005. [ DOI | file | http ]
[7] Mathias Schulze. A normal form algorithm for the Brieskorn lattice. J. Symbolic Comput., 38(4):1207--1225, 2004. [ DOI | file | http ]
[6] Mathias Schulze. Monodromy of hypersurface singularities. Acta Appl. Math., 75(1-3):3--13, 2003. Monodromy and differential equations (Moscow, 2001). [ DOI | file | http ]
[5] Mathias Schulze. The differential structure of the Brieskorn lattice. In Mathematical software (Beijing, 2002), pages 136--146. World Sci. Publ., River Edge, NJ, 2002. [ file ]
[4] Gert-Martin Greuel, Christoph Lossen, and Mathias Schulze. Three algorithms in algebraic geometry, coding theory and singularity theory. In Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), volume 36 of NATO Sci. Ser. II Math. Phys. Chem., pages 161--194. Kluwer Acad. Publ., Dordrecht, 2001. [ file ]
[3] Mathias Schulze. Algorithms for the Gauss-Manin connection. J. Symbolic Comput., 32(5):549--564, 2001. [ DOI | file | http ]
[2] Mathias Schulze and Joseph Steenbrink. Computing Hodge-theoretic invariants of singularities. In New developments in singularity theory (Cambridge, 2000), volume 21 of NATO Sci. Ser. II Math. Phys. Chem., pages 217--233. Kluwer Acad. Publ., Dordrecht, 2001. [ file ]
[1] Jürg Nievergelt, Fabian Maeser, Christoph Wirth, Bernward Mann, Karsten Roeseler, and Mathias Schulze. CRASH! Mathematik und kombinatorisches Chaos prallen aufeinander. Inf. Spektrum, 22(1):45--48, 1999. [ DOI | file | http ]

Software

[4] Ivor Saynisch and Mathias Schulze. linalg.lib, 2004. [ http ]
[3] Mathias Schulze. gmssing.lib, 2004. [ http ]
[2] Mathias Schulze. gmspoly.lib, 2004. [ http ]
[1] Mathias Schulze. mondromy.lib, 1999. [ http ]


The stable URL for this page is http://www.mathematik.uni-kl.de/~mschulze