Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation

Dr. Rémi Imbach

Inhaltsbereich / Content

Dr. Rémi Imbach





Technische Universität Kaiserslautern
Fachbereich Mathematik
Postfach 3049
67653 Kaiserslautern

Email: imbach[at]mathematik.uni-kl.de

Short bio

I am part of the AGAG (Algebra, Geometry and Computer Algebra) group as Scientific Assistant at Technische Universität Kaiserslautern, department of Mathematics.

From November 2014 to October 2016 I held a post-doctoral position in the VEGAS (Effective Geometric Algorithms for Surfaces and Visibility) research team at INRIA (National Institute for Research in Computer Science and Control).

I was previously PhD student, then A.T.E.R (teaching & research position), in the IGG (Computer Graphics and Geometry) team at ICube laboratory, Université de Strasbourg.


subdivision_solver is a solver for square systems of polynomial equations using exhaustive search in an initial bounded real domain given as a box (i.e. a vector of intervals). It is specifically designed to handle systems of large dense polynomials and uses adaptive multi-precision arithmetic to stay robust to hard cases.

It is available here.



  • Rémi Imbach, Guillaume Moroz and Marc Pouget (2017).
    A certified numerical algorithm for the topology of resultant and discriminant curves.
    Journal of Symbolic Computation. 80, Part 2, 285 - 306.
    [doi] [www] [BibTex]

  • Rémi Imbach, Pascal Mathis and Pascal Schreck (2017).
    A robust and efficient method for solving point distance problems by homotopy.
    Mathematical Programming. 163, (1-2), 115--144.
    [doi] [www] [BibTex]

  • Rémi Imbach, Guillaume Moroz and Marc Pouget (2017).
    Reliable location with respect to the projection of a smooth space curve.
    (Research report, to appear in Reliable Computing)
    [www] [BibTex]


  • Rémi Imbach, Guillaume Moroz and Marc Pouget (2016).
    Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve.
    Kotsireas, Ilias S. and Rump, Siegfried M. and Yap, Chee K. (eds.) Mathematical Aspects of Computer and Information Sciences: 6th International Conference, MACIS 2015, Berlin, Germany, November 11-13, 2015, Revised Selected Papers. Springer International Publishing: Cham 78--92.
    [doi] [www] [BibTex]

  • Rémi Imbach (2016).
    A Subdivision Solver for Systems of Large Dense Polynomials.
    (Technical report)
    [www] [BibTex]


  • Rémi Imbach, Guillaume Moroz and Marc Pouget (2015).
    A Certified Numerical Approach to Describe the Topology of Projected Curves.
    Journées de l'Association Française d'Informatique Graphique.
    [pdf] [www] [BibTex]


  • Rémi Imbach, Pascal Schreck and Pascal Mathis (2014).
    Leading a continuation method by geometry for solving geometric constraints.
    Computer-Aided Design. 46, 138 - 147. (2013 SIAM Conference on Geometric and Physical Modeling)
    [doi] [www] [BibTex]


  • Rémi Imbach (2013).
    Solving geometric constraints by a continuation method led by geometry.
    Université de Strasbourg (In french)
    [pdf] [www] [BibTex]


  • Pascal Mathis, Pascal Schreck and Rémi Imbach (2012).
    Decomposition of Geometrical Constraint Systems with Reparameterization.
    Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM: New York, NY, USA 102--108.
    [doi] [www] [BibTex]

  • Rémi imbach, Pascal Mathis and Pascal Schreck (2012).
    Une approche par décomposition et reparamétrisation de systèmes de contraintes géométriques.
    Journées du Groupe de Travail en Modélisation Géométrique. (In french)
    [pdf] [www] [BibTex]


  • Rémi Imbach, Pascal Mathis and Pascal Schreck (2011).
    Tracking method for reparametrized geometrical constraint systems.
    2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. 31--38.
    [doi] [www] [BibTex]