Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation


Inhaltsbereich / Content


[48] V. Brînzānescu, A. D. Halanay, and G. Trautmann. Vector bundles on non-Kaehler elliptic principal bundles. Ann. Inst. Fourier (Grenoble), 63(3):1033-1054, 2013. [ DOI | http ]
[47] M. Cuntz, Y. Ren, and G. Trautmann. Strongly symmetric smooth toric varieties. Kyoto J. Math., 52(3):597-620, 2012.
[46] D. Markushevich, A. S. Tikhomirov, and G. Trautmann. Bubble tree compactification of moduli spaces of vector bundles on surfaces. Cent. Eur. J. Math., 10(4):1331-1355, 2012. [ DOI | http ]
[45] I. Biswas and G. Trautmann. A criterion for homogeneous principal bundles. Internat. J. Math., 21(12):1633-1638, 2010. [ DOI | http ]
[44] M. Perling and G. Trautmann. Equivariant primary decomposition and toric sheaves. Manuscripta Math., 132(1-2):103-143, 2010. [ DOI | http ]
[43] I. Biswas, I. Coandā, and G. Trautmann. A Babylonian tower theorem for principal bundles over projective spaces. J. Math. Kyoto Univ., 49(1):69-82, 2009.
[42] I. Coandā and G. Trautmann. The splitting criterion of Kempf and the Babylonian tower theorem. Comm. Algebra, 34(7):2485-2488, 2006. [ DOI | http ]
[41] I. Coandā and G. Trautmann. Horrocks theory and the Bernstein-Gel' fand-Gel'fand correspondence. Trans. Amer. Math. Soc., 358(3):1015-1031 (electronic), 2006. [ DOI | http ]
[40] H. G. Freiermuth and G. Trautmann. On the moduli scheme of stable sheaves supported on cubic space curves. Amer. J. Math., 126(2):363-393, 2004. [ .pdf ]
[39] J.-M. Drézet and G. Trautmann. Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups. Ann. Inst. Fourier (Grenoble), 53(1):107-192, 2003. [ http ]
[38] I. Coandā, A. Tikhomirov, and G. Trautmann. Irreducibility and smoothness of the moduli space of mathematical 5-instantons over P3. Internat. J. Math., 14(1):1-45, 2003. [ DOI | http ]
[37] G. Trautmann. Decomposition of Poncelet curves and instanton bundles. An. Stiint. Univ. Ovidius Constanta Ser. Mat., 5(2):105-110, 1997.
[36] G. Ottaviani and G. Trautmann. The tangent space at a special symplectic instanton bundle on P2n+1. Manuscripta Math., 85(1):97-107, 1994. [ DOI | http ]
[35] R. M. Miró-Roig and G. Trautmann. The moduli scheme M(0,2,4) over P3. Math. Z., 216(2):283-315, 1994. [ DOI | http ]
[34] Th. Nüßler and G. Trautmann. Multiple Koszul structures on lines and instanton bundles. Internat. J. Math., 5(3):373-388, 1994. [ DOI | http ]
[33] M. Maruyama and G. Trautmann. Limits of instantons. Internat. J. Math., 3(2):213-276, 1992. [ DOI | http ]
[32] M. S. Narasimhan and G. Trautmann. The Picard group of the compactification of M P_3(0,2). J. Reine Angew. Math., 422:21-44, 1991.
[31] M. Maruyama and G. Trautmann. Degenerations of instantons. In Complex analysis (Wuppertal, 1991), Aspects Math., E17, pages 324-330. Vieweg, Braunschweig, 1991.
[30] M. Maruyama and G. Trautmann. On compactifications of the moduli space of instantons. Internat. J. Math., 1(4):431-477, 1990. [ DOI | http ]
[29] M. S. Narasimhan and G. Trautmann. Compactification of MP_3(0,2) and Poncelet pairs of conics. Pacific J. Math., 145(2):255-365, 1990. [ http ]
[28] W. Singhof and G. Trautmann. On the topology of the moduli space M(0,2) of stable bundles of rank 2 on P3. Quart. J. Math. Oxford Ser. (2), 41(163):335-358, 1990. [ DOI | http ]
[27] H. Spindler and G. Trautmann. Special instanton bundles on P2N+1, their geometry and their moduli. Math. Ann., 286(1-3):559-592, 1990. [ DOI | http ]
[26] G. Trautmann. Poncelet curves and associated theta characteristics. Exposition. Math., 6(1):29-64, 1988.
[25] W. Böhmer and G. Trautmann. Special instanton bundles and Poncelet curves. In Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), volume 1273 of Lecture Notes in Math., pages 325-336. Springer, Berlin, 1987. [ DOI | http ]
[24] M. S. Narasimhan and G. Trautmann. Compactification of M(0,2). In Vector bundles on algebraic varieties (Bombay, 1984), volume 11 of Tata Inst. Fund. Res. Stud. Math., pages 429-443. Tata Inst. Fund. Res., Bombay, 1987.
[23] G. Trautmann. Parameters for instanton bundles and smoothness of M(0,2). In Several complex variables (Hangzhou, 1981), pages 161-166. Birkhäuser Boston, Boston, MA, 1984.
[22] G. Trautmann. Yang-Mills fields and vector bundles. In Proceedings Poiana Brasov 1981, volume 5 of Progress in Physics, pages 145-176. Birkhäuser Boston, Boston, MA, 1981.
[21] G. Trautmann. Holomorphic vector bundles and Yang-Mills fields. In Proceedings Trieste 1980, volume 950 of Lecture Notes in Mathematics, pages 377-401. Springer Verlag, 1982.
[20] Y.-T. Siu and G. Trautmann. Deformations of coherent analytic sheaves with compact supports. Mem. Amer. Math. Soc., 29(238):iii+155, 1981. [ DOI | http ]
[19] G. Trautmann. Zur Berechnung von Yang-Mills Potentialen durch holomorphe Vektorbündel. In Vector bundles and differential equations (Proc. Conf., Nice, 1979), volume 7 of Progr. Math., pages 183-249. Birkhäuser, Boston, Mass., 1980.
[18] G. Trautmann. Deformations and moduli of coherent analytic sheaves with finite singularities. In Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), volume 670 of Lecture Notes in Math., pages 233-302. Springer, Berlin, 1978.
[17] G. Trautmann. Deformations of sheaves and bundles. In Variétés analytiques compactes (Colloq., Nice, 1977), volume 683 of Lecture Notes in Math., pages 29-41. Springer-Verlag, 1978.
[16] G. Trautmann. Moduli for vector bundles on Pn(C). Math. Ann., 237(2):167-186, 1978. [ DOI | http ]
[15] G. Trautmann. Deformations of coherent analytic sheaves with isolated singularities. In Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pages 85-89. Amer. Math. Soc., Providence, R.I., 1977.
[14] G. Trautmann. Deformations of coherent analytic sheaves with finite singularities. In Séminaire Pierre Lelong (Analyse), Année 1974/75, pages 1-20. Lecture Notes in Math., Vol. 524. Springer, Berlin, 1976.
[13] G. Trautmann. Deformationen von isolierten Singularitäten kohärenter analytischer Garben. Math. Ann., 223(1):71-89, 1976.
[12] G. Trautmann. Vektorraumbündel von kleinem Rang über Cn-{0}. In Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. CNRS, No. 208, Paris, 1972), pages 256-262. “Agora Mathematica”, No. 1. Gauthier-Villars, Paris, 1974.
[11] G. Trautmann. Darstellung von Vektorraumbündeln über Cn-{0}. Arch. Math. (Basel), 24:303-313, 1973.
[10] Y.-T. Siu and G. Trautmann. Gap-sheaves and extension of coherent analytic subsheaves. Lecture Notes in Mathematics, Vol. 172. Springer-Verlag, Berlin-New York, 1971.
[9] G. Trautmann. A rank theorem for coherent analytic sheaves. Trans. Amer. Math. Soc., 157:495-498, 1971.
[8] Y.-T. Siu and G. Trautmann. Extension of coherent analytic subsheaves. Math. Ann., 188:128-142, 1970.
[7] Y.-T. Siu and G. Trautmann. Closedness of coboundary modules of analytic sheaves. Trans. Amer. Math. Soc., 152:649-658, 1970.
[6] G. Trautmann. Ein Endlichkeitssatz in der analytischen Geometrie. Invent. Math., 8:143-174, 1969.
[5] G. Trautmann. Fortsetzung lokal-freier Garben über 1-dimensionale Singularitätenmengen. Ann. Scuola Norm. Sup. Pisa (3), 23:155-184, 1969.
[4] G. Trautmann. Cohérence des faisceaux analytiques de la cohomologie locale. C. R. Acad. Sci. Paris Sér. A-B, 267:A694-A695, 1968.
[3] G. Trautmann. Abgeschlossenheit von Corandmoduln und Fortsetzbarkeit kohärenter analytischer Garben. Invent. Math., 5:216-230, 1968.
[2] G. Trautmann. Eine Bemerkung zur Struktur der kohärenten analytischen Garben. Arch. Math. (Basel), 19:300-304, 1968.
[1] G. Trautmann. Ein Kontinuitätssatz für die Fortsetzung kohärenter analytischer Garben. Arch. Math. (Basel), 18:188-196, 1967.

This file was generated by bibtex2html 1.94.