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2 M. FENN AND G. STEIDLfor j = 1; : : : ; N with O(N2) arithmeti operations appears as bottlenekin many appliations where the number of knots N is large. Typial ex-amples are the simulation of partile motion in potential �elds [12℄, theapproximation of urves and surfaes by linear ombinations of radialbasis funtions (RBFs) [22℄ and, in a slightly di�erent form, the solutionof integral equations or partial di�erential equations via boundary inte-gral methods [15℄. The most famous algorithm for the fast evaluation ofthese sums with only O(N) arithmeti operations is the fast multipolemethod (FMM) introdued by Greengard and Rokhlin [12, 11℄, e.g. forthe kernel K(x) = log jxj in R2 . Here and in the following j � j denotesthe Eulidean norm in Rd .The panel lustering method developed by Hakbush et al. [15℄ at thesame time in the ontext of the numerial solution of integral equationsand its more reent generalization, the H-matrix arithmeti [13, 14℄ aswell as the mosai-skeleton approah of Tyrtyshnikov et al. [23, 24℄follow similar ideas as the FMM. During the last years the FMM wasfurther adapted to various kernels, e. g. to various RBFs by Beatson et al.[3, 2℄. Reently, Potts and Steidl [20, 19℄ have proposed a fast summationalgorithm based on the fast Fourier transform for nonequispaed knots(NFFT) whih requires O(N logN) arithmeti operations and has thefollowing advantages:{ it resembles the well-known algorithm for the fast multipliationof vetors with Toeplitz matries based on the FFT,{ the inooperation of new kernels is very simple,{ it has a simple struture onsisting of the bloks FFT { NFFT {fast summation.The so-alled NFFT and its relative, the NFFTT, are approximativealgorithms. Let Idn := fk := (k1; k2; : : : ; kd) 2 Zd j �n2 � k � n2 g withomponentwise inequalities, and �k := �k1 � � � �kd , where�l := (12 if l = �n2 ;1 otherwise: (1.1)Then, for arbitrary wj in the torus Td := [�12 ; 12)d, the NFFT(n) om-putes sums of the formfj := Xk2Idn �kf̂k e�2�ikwj (j = 1; : : : ;M);



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 3and the NFFTT(n) sums of the formĥk := �k MXj=1 fj e2�ikwj (k 2 Idn)with only O(nd logn+M) arithmeti operations. Meanwhile there existsa rih literature on NFFTs, where the algorithms are desribed in detailand where the reader an �nd estimates of the approximation error versusthe omplexity of the algorithm, see e. g. [8, 4, 21℄ and the referenestherein. Moreover, free NFFT software pakages are available, e. g. [17,9℄. In this paper, we further develop the ideas from [20℄. We intro-due new regularization tehniques with B-splines and algebrai poly-nomials. Based on the approah with algebrai polynomials we proveerror estimates for our approximative summation algorithm. These er-ror estimates are more sophistiated than those for the regularizationwith trigonometri polynomials in [20℄. The later still involve numerialomputations and onsequently are only valid for a bounded number ofparameters. In [20℄ only kernels of the formK0(x) = log jxj; K�(x) = 1jxj� (� 2 N) (1.2)were onsidered. In this paper we add estimates for the parameter-dependent generalized multiquadrisK�1(x; ) = (jxj2 + 2) 12 ; K�(x; ) = (jxj2 + 2)��2 (� 2 N; odd)(1.3)whih play an important role in the approximation of funtions by linearombinations of RBFs [10℄.Our paper is organized as follows: the next setion desribes oursummation algorithm in 1D. One essential step of this algorithm on-sists in an appropriate kernel regularization whih we onsider in detailin Setion 3. Error estimates for our algorithm with regularization byalgebrai polynomials and the onsequenes for the hoie of the param-eters of the algorithm are derived in Setion 4. Setion 5 briey skethesthe generalization of the algorithm to the multivariate setting. Finally,Setion 6 ontains numerial results, mainly in 2D.



4 M. FENN AND G. STEIDL2 Fast Summation at One-dimensional KnotsIn this setion, we reall the idea of the fast summation algorithm intro-dued in [20℄. Our aim onsists in the fast evaluation of sumsf(x) := NXk=1�kK(x� xk) (xk 2 R); (2.1)at M knots yj 2 R (j = 1; : : : ;M) for kernels K(x) = K(jxj), i. e.,in 1D for even kernels. The kernel funtion K is in general a non-periodi funtion, while the use of Fourier methods requires to replaeK by a periodi version. Without loss of generality we may assume thatthe knots are saled, suh that jxkj, jyjj < 14 � "B2 and onsequentlyjyj � xkj < 12 � "B . The parameter "B > 0, whih we speify later,guarantees that K has to be evaluated only at points in the interval[�12 + "B ; 12 � "B ℄. This simpli�es the later onsideration of a 1-periodiversion ofK. Beyond a speial treatment ofK near the boundary�12 , wehave to take are about properties ofK in the neighborhood of the origin.The kernels (1.2) onsidered in [20℄ are C1 exept of the origin, wherethey have a singularity. The parameter-dependent kernels K = K�(x; )in (1.3), or its derivatives in ase � = �1, have a singularity at zero if! 0.To dedue a fast summation algorithm for (2.1) we replae the kernelK by a 1-periodi smooth kernel ~K by modifying K near the boundaryand near the origin:~K(x) := 8><>:KI(x) for x 2 [�"I ; "I ℄;KB(x) for x 2 [�12 ;�12 + "B ℄ [ [12 � "B ; 12 ℄;K(x) else; (2.2)where 0 < "I < 12 � "B < 12 . The funtions KI and KB will be hosensuh that ~K is in the Sobolev spae Hp(T) for an appropriate parameterp > 0 whih ontrols the smoothness of ~K. Various regularizations ~Kof K are proposed in Setion 3. If p is large enough, then we mayassume that ~K an be approximated with suÆiently small error by thetrigonometri polynomialTn( ~K)(x) := Xl2I1n �lbl e2�ilx; (2.3)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 5where bl := 1n Xj2I1n �j ~K�jn� e�2�ijl=n (l 2 I1n):Now the original kernel K an be deomposed asK = �K � ~K�+ � ~K � Tn( ~K)�+ Tn( ~K); (2.4)where the summand in the middle beomes small for a suÆiently largeparameter n 2 N whih we will speify later. We neglet this summandin (2.1) and approximate f by~f(x) := NXk=1�k(K � ~K)(x� xk) + NXk=1�kTn( ~K)(x� xk): (2.5)Instead of f we evaluate ~f at the knots yj (j = 1; : : : ;M). Indeed thisan be done in a fast way by the following two steps:1) Near �eld omputation (�rst sum in (2.5))To ahieve the desired omplexity of our algorithm we suppose thateither the N points xk or the M points yj are \suÆiently uniformlydistributed", i. e., we suppose that there exists a small onstant � 2 Nsuh that eah subinterval of [�14 ; 14 ℄ of length 2"I ontains at most �of the points xk or of the points yj, respetively. This implies that "Idepends linearly on 1=N , respetively 1=M . In the following we restritour attention to the ase "I � �2N : (2.6)Then, sine jyj � xkj < 12 � "B and supp(K � ~K) \ [�12 + "B ; 12 � "B ℄ =[�"I ; "I ℄, the evaluation ofNXk=1�k(K � ~K)(yj � xk) (j = 1; : : : ;M)requires � �M , i. e. O(M) arithmeti operations.2) NFFT based summation (seond sum in (2.5))



6 M. FENN AND G. STEIDLBy (2.3), the evaluation of the seond sum in (2.5) an be rewritten asNXk=1�kT ( ~K)(yj � xk) = NXk=1�kXl2I1n �lbl e2�il(yj�xk)= Xl2I1n �lbl NXk=1�k e�2�ilxk! e2�ilyj :This expression an be handled based on the NFFT as follows:1. The sums al = NXk=1�k e�2�ilxk (l 2 I1n)an be obtained by an NFFTT(n).2. Then we ompute the produtsdl = blal (l 2 I1n):3. Finally we use the NFFT(n) to omputeXl2I1n �l dl e2�ilyj (j = 1; : : : ;M):These three steps require O(M +N + n logn) arithmeti operations.In summary, our summation algorithm requiresO(M +N + n logn)arithmeti operations. The relation between M;N and n determined bythe approximation error of the algorithm will be spei�ed in Setion 4.One the basi idea of the algorithm is lear, it remains to speifythe regularization proedure and to give estimates of the approximationerror introdued by omitting ~K � Tn( ~K) in the kernel approximation.



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 73 Kernel RegularizationSine K is even, we have that K(j)(x) = (�1)jK(j)(�x). To ensure that~K(x) := 8><>:KI(x) for x 2 [�"I ; "I ℄;KB(x) for x 2 [�12 ;�12 + "B ℄ [ [12 � "B ; 12 ℄;K(x) else;is in Hp(T), we need that the funtion KI ful�lls the onditionsK(j)I ("I) = K(j)("I); (3.1)K(j)I (�"I) = K(j)(�"I) = (�1)jK(j)("I)and the funtion KB the onditionsK(j)B �12 � "B� = K(j)�12 � "B� ; (3.2)K(j)B �12 + "B� = K(j)��12 + "B� = (�1)jK(j)�12 � "B�for all j = 0; : : : ; p� 1. Then, the periodiity of ~K follows by settingKB ��12 + x� := KB �12 + x� (x 2 [0; "B ℄):As simple regularizing funtions KI and KB we propose{ algebrai polynomials,{ trigonometri polynomials,{ splines.The regularization by trigonometri polynomials was onsidered in [20℄.However the error estimates in [20℄ are not satisfatory sine they involvenumerial omputations whih an be done only up to a �xed numberp 2 N. In this paper we briey sketh the spline approah and onsiderthe regularization by algebrai polynomials in more detail.



8 M. FENN AND G. STEIDL
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 Figure 1: B-splines Bpk.3.1 Regularization by spline interpolationThe normalized ardinal B-splines Np of degree p are reursively de�nedby N0(x) := (1 for x 2 [0; 1);0 otherwiseand Np(x) := xkNp�1(x) + p+ 1� xk Np�1(x� 1) (p 2 N):Note that suppNp = [0; p+ 1℄.In our appliation we deal with intervals [m� r;m+ r℄ (r > 0), morepreisely with [�"I ; "I ℄ and [12�"B ; 12+"B℄. At the interval [m�r;m+r℄we hoose the equispaed knots � := ftk = m�r+ 2rp k : k = �p; : : : ; 2pgand introdue the dilated and translated versions of Np with respet tothese spline knots Bpk(x) := Np�p(x�m+ r)2r � k� ;see Figure 1.The set of B-splines fBpkgp�1k=�p forms a basis of the spline spaeSp(�) := fs 2 Cp�1[m� r;m+ r℄ : sj[tk;tk+1℄ 2 �p; k = 0; : : : ; p� 1g:Proposition 3.1 (Spline interpolation) For given aj, bj (j = 0, . . . ,p� 1) there exists a unique spline S 2 Sp(�) whih satis�es the interpo-lation onditionsS(j)(m� r) = aj; S(j)(m+ r) = bj (j = 0; : : : ; p� 1)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 9at the endpoints of an interval [m� r;m+ r℄ (r > 0). This spline an bewritten as S(x) = p�1Xk=�p kBpk(x)where the oeÆients k are the solution of the two p� p linear systemspXk=1 �k(Bp�k)(j)(m� r) = aj ;pXk=1 k�1(Bp�k)(j)(m� r) = (�1)jbj (j = 0; : : : ; p� 1)with the same oeÆient matrix.The proposition is a diret onsequene of [6, Theorem 1℄ and thefat that (Bp�k)(j)(m� r) = (�1)j(Bpk�1)(j)(m+ r):Sine our kernels are even, we have by (3.1) and (3.2) for our ap-pliation that aj = (�1)jbj. Hene it remains to solve only one p � psystem to obtain all oeÆients k. Of ourse, for large p 2 N, this sys-tem is ill-onditioned. However, we will only need small values of p inour algorithm, and, for p � 16, the orresponding systems an be solvedwithout substantial errors.Finally note that the fast evaluation of the spline S(x) an be realizedby the de Boor algorithm [7℄.3.2 Regularization by polynomial interpolationTo onstrut polynomials KI and KB of degree 2p � 1 whih ful�ll the2p Hermite interpolation onditions (3.1) and (3.2), respetively, we usethe following two-point Taylor interpolation, see e. g. [1, Corollary 2.2.6℄:Proposition 3.2 (Two-point Taylor interpolation) For given aj , bj(j = 0, . . . , p � 1) there exists a unique polynomial P of degree 2p � 1whih satis�es the interpolation onditionsP (j)(m� r) = aj ; P (j)(m+ r) = bj (j = 0; : : : ; p� 1) (3.3)



10 M. FENN AND G. STEIDLat the endpoints of an interval [m � r;m + r℄ (r > 0). This polynomialan be written asP (x) = p�1Xj=0 p�1�jXk=0 �p� 1 + kk � (x�m+ r)jj! �x�m� r�2r �p�x�m+ r2r �kaj+ (x�m� r)jj! �x�m+ r2r �p�x�m� r�2r �kbj!:(3.4)As in the spline ase, the representation (3.4) an be further simpli�edif we have even kernels and (3.1), (3.2) in mind.Corollary 3.3 For given aj and bj = (�1)jaj (j = 0; : : : ; p � 1) theunique polynomialP of degree 2p�1 whih satis�es (3.3) at the endpointsof an interval [m� r;m+ r℄ (r > 0) is given byP (x) = 12p p�1Xj=0 j(1� y2)j�(1� y)p�j + (1 + y)p�j�; (3.5)where y := x�mr andj := jXl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l:Proof. By (3.4) we obtain for our speial setting thatP (x) = 12p p�1Xj=0 p�1�jXk=0 �p� 1 + kk � rj2k ajj! �(1+y)j+k(1�y)p+(1�y)j+k(1+y)p�:Now the hange of the summation order results in the desired formulaP (x) = 12p p�1Xj=0 jXl=0 �p� 1 + ll �rj�l2l aj�l(j � l)!�(1+y)j(1�y)p+(1�y)j(1+y)p�:2In the next setion we will estimate the approximation error intro-dued by our fast algorithm. For this purpose we will need an estimatefor the pth derivative of KI and KB , respetively.



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 11Theorem 3.4 For p 2 N, the pth derivative of the polynomial P in (3.5)an be estimated by maxx2[m;m+r℄ ���P (p)(x)��� � p!�32�pr�p ;where  := p�2Xl=0 �p� 1 + ll � rp�1�l2l(p� 1� l)! jap�1�lj :Proof. Sine the two-point Taylor interpolation polynomial reproduespolynomials of degree at most 2p� 1, we obtain for the polynomial � 1by Corollary 3.3 that12p p�1Xj=0�p� 1 + jj �(1� y2)j2j �(1� y)p�j + (1 + y)p�j� = 1: (3.6)On the other hand, if we reorder the sum in (3.5) with respet to theoeÆients al (l = 0; : : : ; p � 1), then (3.6) is just the oeÆient of a0.Thus, a0 does not appear in the pth derivative of any polynomial P ofthe form (3.5).Now, sine ddx y = 1r , the pth derivative of (3.5) an be written asP (p)(x) = � 12r�p p�1Xj=1 ~j dpdyp h(1� y2)j�(1� y)p�j + (1 + y)p�j�i; (3.7)where ~j := j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l:We onsider Qj(y) := dpdyp �(1� y2)j 2Rj(y)� withRj(y) :=12 �(1� y)p�j + (1 + y)p�j�=1 +�p� j2 �y2 +�p� j4 �y4 + : : :+(yp�j for p� j even;(p� j)yp�j�1 for p� j odd:



12 M. FENN AND G. STEIDLObviously Rj(y) is an even polynomial in y of degree at most p� j withpositive oeÆients and thereforeR(l)j (y) � 0 for y � 0 and maxy2[0;1℄ jR(l)j (y)j = R(l)j (1): (3.8)By applying the Leibniz rule we getQj(y) = 2 pXk=0�pk� dkdyk �(1� y2)j� dp�kdyp�k [Rj(y)℄= 2 pXk=j �pk� dk�jdyk�j djdyj �(1� y2)j� dp�kdyp�k [Rj(y)℄and further by the Rodrigues formula of the Legendre polynomials, i. e.Pj(x) = (�1)j 12jj! djdxj [(1� x2)j ℄,Qj(y) = (�1)j2j+1j! pXk=j�pk�P (k�j)j (y)R(p�k)j (y):We know that maxy2[0;1℄ jP (k�j)j (y)j = P (k�j)j (1) (see, e. g. [18℄). Conse-quently, we obtain together with (3.8) thatmaxy2[0;1℄ jQj(y)j = 2j+1j! pXk=j�pk�P (k�j)j (1)R(p�k)j (1) = jQj(1)j: (3.9)On the other hand we onlude by the Leibniz rule thatQj(y) = dpdyp h(1� y2)j�(1� y)p�j + (1 + y)p�j�i= dpdyp �(1� y)p(1 + y)j + (1� y)j(1 + y)p�=p! jXk=0�pk��jk�(�1)k �(1� y)k(1 + y)j�k(�1)p+ (1 + y)k(1� y)j�k� :



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 13Now jQj(1)j an be easily estimated byjQj(1)j = p! ����� jXk=0�pk��jk�(�1)k �Æk;02j�k(�1)p + 2kÆk;j������= p! ����(�1)p2j +�pj�2j(�1)j ����= 2jp! ����(�1)j�pj�+ (�1)p����� 2jp!��pj�+ 1� :Here Æk;j denotes the Kroneker symbol. Combining this with (3.7) and(3.9), we obtain for x 2 [m;m+ r℄ thatjP (p)(x)j � � 12r�p p�1Xj=1 j~jj jQj(1)j� p!� 12r�p0�p�1Xj=1�pj�2j + p�1Xj=1 2j1A maxj=1;:::;p�1 j~j j= p!� 12r�p�(1 + 2)p � 2p + 2p � 3� maxj=1;:::;p�1 j~j j< p!� 32r�p maxj=1;:::;p�1 j~jj :It remains to estimate max j~j j. By de�nition of ~j it followsj~jj = �����j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l������ j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! jaj�lj =: sj:Now one an easily hek that sj � sj+1 for 1 � j � p � 2. Thus,maxj=1;:::;p�1 j~jj � sp�1 =  and we are done. 2Now we apply Theorem 3.4 and Corollary 3.3 with respet to ourspeial polynomials KI and KB , i. e. we onsider the intervals [�"I ; "I ℄



14 M. FENN AND G. STEIDLand [12 � "B ; 12 + "B ℄ and set aj := K(j)(�"I) = (�1)jK(j)("I) andaj := K(j)(12 � "B), respetively. The result an be summarized asfollows:Corollary 3.5 The polynomials KI and KB whih satisfy (3.1) and(3.2), respetively, are given by (3.5) with y = x"I , y = x�1=2"B and j =I=Bj , respetively, whereIj := jXl=0 �p� 1 + ll �(�1)j�l"j�lI2l(j � l)! K(j�l)("I);Bj := jXl=0 �p� 1 + ll �(�1)j�l"j�lB2l(j � l)! K(j�l)��12 + "B� :The polynomials ful�ll the estimatesmaxx2[0;"I ℄ ���K(p)I (x)��� � p!�32�p"�pI I ; (3.10)maxx2[ 12�"B; 12 ℄ ���K(p)B (x)��� � p!�32�p"�pB B (3.11)with I := p�2Xl=0 �p� 1 + ll � "p�1�lI2l(p� 1� l)! ���K(p�1�l)("I)��� ; (3.12)B := p�2Xl=0 �p� 1 + ll � "p�1�lB2l(p� 1� l)! ����K(p�1�l)�12 � "B����� :(3.13)4 Error EstimatesBeyond the well-known errors appearing in the NFFT omputationswhih are disussed for example in [20℄, our algorithm introdues theerrors jf(yj) � ~f(yj)j (j = 1; : : : ;M). By (2.4), (2.5) and (2.1), we ob-



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 15tain for jyj � 14 � "B2 that���f(y)� ~f(y)��� = ����� NXk=1�k � ~K(y � xk)� Tn( ~K)(y � xk)������� NXk=1 j�kj kKerrk1;wherekKerrk1 := maxjxj� 12 jKerr(x)j ; Kerr(x) := ~K(x)� Tn( ~K)(x): (4.1)Lemma 4.1 Let K be an even kernel and let ~K 2 Hp(T) be de�ned by(2.2). Then, for 2 � p� n, the following estimate holds true:kKerrk1 � C(p� 1)�pnp�1 12Z0 j ~K(p)(x)jdx:Proof. The proof follows by standard arguments. By Fourier expansionof ~K and (2.3) we obtain for x 2 [�12 ; 12 ℄ thatKerr(x) =Xk2Zk( ~K) e2�ikx�Xl2I1n �lbl e2�ilx;where the Fourier oeÆients k( ~K) are de�ned in (A.1). Further, itfollows by the aliasing formula (see Theorem Appendix A:.1) thatKerr(x) = Xk2I1n �kXr2Zr 6=0 k+rn( ~K) e2�ikx(e2�irnx�1):Sine ~K is even, we an estimatekKerrk1 � 4 1Xk=n2 "k jk( ~K)j:By onstrution we have that ~K 2 Hp(T) whih implies thatk( ~K) = (2�ik)�p k( ~K(p))



16 M. FENN AND G. STEIDLso that kKerrk1 � 40� 1Xk=n2 "k (2�k)�p1A 12Z� 12 j ~K(p)(x)jdx:For p � 2 the above sum an be estimated by an upper integralkKerrk1 � 2�1 + p�1n �(p� 1)�pnp�1 12Z� 12 j ~K(p)(x)jdx:Sine p� n, this implies the assertion with a onstant C � 4. 2Now we obtain by the de�nition of ~K that12Z0 j ~K(p)(x)jdx = "IZ0 jK(p)I (x)jdx+ 12�"BZ"I jK(p)(x)jdx+ 12Z12�"B jK(p)B (x)jdxand for the polynomials KI and KB in Corollary 3.5 by (3.10), (3.11)12Z0 j ~K(p)(x)jdx � p!�32�p �"1�pI I + "1�pB B� + 12�"BZ"I jK(p)(x)jdx:(4.2)It remains to estimate K(p) and the values I , B whih depend onK(j)("I) and K(j)(12 � "B), respetively. Therefore we have to estimatethe derivatives of K.For the kernels (1.2) and j 2 N we have���K(j)� (x)��� = (j + � � 1)!(� � 1)! jxj�(j+�) (x 6= 0;� 2 N0); (4.3)where we set (�1)! := 1 in ase � = 0.Theorem 4.2 For � 2 N0 , let K = K� be de�ned by (1.2) and ~K by(2.2) with KI and KB given by Corollary 3.5, where "I � minf"B ; 12 �"Bg. Then, for 2 � p� n, the error kKerrk1 in (4.1) an be estimatedby kKerrk1 � C� (p+ � � 2 + Æ0;�)!"p+��1I 3p�pnp�1 (4.4)with a onstant C� independent of p; n and "I .



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 17Proof. We onsider the summands in (4.2). By (4.3) we obtain that12�"BZ"I jK(p)(x)jdx = (p+ � � 1)!(� � 1)! 12�"BZ"I jxj�(p+�) dx� (p+ � � 2)!(� � 1)! "�(p+��1)I :Sine "I � minf"B ; 12 � "Bg it follows by (3.12), (3.13) and (4.3) thatB"1�pB � I"1�pI . Thus it remains to estimate I"1�pI . By (3.12) and(4.3) we getI"1�pI � 1"p�1+�I p�2Xl=0 �p� 1 + ll �(p� 2� l + �)! 2�l(� � 1)!(p � 1� l)!� 1"p�1+�I �p� 2 + �� � 1 � p�1Xl=0 �p� 1 + ll �2�l;where we set � n�1� := 1 in ase � = 0. Using y = 0 in (3.6) we see thatthe last sum equals 2p�1 so thatp! �32�p I"1�pI � p(p+ � � 2 + Æ0;�)! 3p2(� � 1)! "�(p+��1)I :Combining these estimates with (4.2) and Lemma 4.1 we obtain theassertion. 2Of ourse, for small , the derivatives of the generalized multiquadrisK�(x; ) behave similar to those of K�(x). The following lemma esti-mates the derivatives of the generalized multiquadris by taking  intoaount.Lemma 4.3 The derivatives ofK(x) = K�(x; ) := (x2 + 2)��2 (� 2 N; odd)an be estimated by���K(j)� (x; )��� � 4q�(1 + 22x2 ) (j + � � 1)!p2j���2� (x2 + 2) j+�2 :



18 M. FENN AND G. STEIDLProof. We use the well-known formula [22℄K�(x; ) = 1����2� 1Z0 e�t(x2=2+1)t(��2)=2 dt:By di�erentiation we obtainK(j)� (x; ) = 1����2� 1Z0 djdxj he�tx2=2i e�tt(��2)=2 dt:Using the Rodrigues formula of Hermite polynomials, i. e.Hj(x) = (�1)jex2 djdxj �e�x2�, we an rewrite this asK(j)� (x; ) = 1����2� 1Z0 (�1)je�tx2=2Hj�xpt ��pt �j e�tt(��2)=2 dt:Now we substitute y = xpt and obtainK(j)� (x; ) = 2(�1)j���2�xj+� 1Z0 e�y2Hj(y)e�y22=x2yj+��1 dy:Sine the integrand is even, this is equal toK(j)� (x; ) = (�1)j���2�xj+� 1Z�1 e�y2Hj(y)e�y22=x2yj+��1 dy:By the Cauhy-Shwarz inequality we get���K(j)� (x; )��� � 1���2� jxjj+� 0� 1Z�1 e�y2H2j (y) dy1A 120� 1Z�1 e�y2(1+22=x2)y2(j+��1) dy1A12 :By the normalization of the Hermite polynomials, i. e.1Z�1 e�x2Hj(x)Hm(x) dy = (0 for j 6= m;2jj!p� for j = m;



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 19the �rst integral is equal to 2jj!p� . To evaluate the seond integral weset �2 := 1 + 22x2 and use that1Z�1 e��2y2y2(j+��1) dy = 1�2(j+�)�1�(j+�� 12) � 1�2(j+�)�1 (j+��1)! :Combining these estimates we arrive at���K(j)� (x; )��� � 4q�(1 + 22x2 ) �(j + � � 1)! j! 2j�1=2���2� (x2 + 22) j+�2 : 2Theorem 4.4 For odd � 2 N [ f�1g, let K = K�( � ; ) be de�ned by(1.3) and ~K by (2.2) with KI and KB given by Corollary 3.5, where"I � minf"B ; 12 � "Bg. Further, let 0 <  � "I . Then the error kKerrk1in (4.1) an be estimated bykKerrk1 � C� (p+ � � 2 + 2Æ�1;�)!("2I + 2) p+��12 (3p2)p�pnp�1with a onstant C� independent of p; n and "I .Proof. The proof follows the same lines as the proof of Theorem 4.2.First we obtain for � 2 N by Lemma 4.3 and sine 2 � "2I that12�"BZ"I jK(p)(x)jdx � C (p+ � � 1)!p2 p���2� 12�"BZ"I (x2 + 2)�(p+�)=2 dx� C (p+ � � 2)!p2 p+1���2� ("2I + 2)�(p+��1)=2:Next we have for � 2 N by (3.12) and Lemma 4.3 thatI"1�pI � Cp2p�1���2�("2I + 2)(p+��1)=2 �p�2Xl=0 �p� 1 + ll �(p� 2� l + �)!(p� 1� l)! 0�q"2I + 22p2"I 1Al (4.5)



20 M. FENN AND G. STEIDLand sine 2 � "2I furtherI"1�pI � C� (p� 2 + �)! p2p�1(p� 1)! ("2I + 2)(p+��1)=2 p�1Xl=0 �p� 1 + ll � 2�l� C� (p� 2 + �)! (2p2)p�1(p� 1)! ("2I + 2)(p+��1)=2 :This results inp! �32�p I"1�pI � C� p (p+ � � 2)! (3p2)p2p2 ("2I + 2)�(p+��1)=2 :Substituting of these estimates in (4.2) and applying Lemma 4.1 weobtain the assertion for � 2 N.The ase � = �1 follows similarly by using the fat that the Hardymultiquadri K�1(x; ) = (x2 + 2) 12 ful�llsK(j)�1(x; ) = 2K(j�2)3 (x; ) (j = 2; 3; : : :) : 2Note that the right{hand side of (4.5) also onverges under theweaker ondition 2 < 7"2I so that one an prove similar estimates withdp, d > 3p2, instead of (3p2)p assuming weaker onditions than 2 < "2I .We will use the estimates in the Theorems 4.2 and 4.4 to speify theparameters "I ; p and n of our algorithm. Sine both ases an be handledin the same way, we restrit our attention to Theorem 4.2. Using theStirling formula p! � 1:1p2�p �pe�p we an rewrite our error estimate askKerrk1 � ~C� "��I � 3e� p� 1"I n �p�1 (p+ � � 2 + Æ0;�)!p2�(p� 1)(p� 1)! :Thus, hoosing "I suh that 3(p�1)e� "In < 1, our error deays exponentiallyin p. In our numerial examples we hoose"I = pn: (4.6)While (4.6) steers the error, ondition (2.6) on "I is neessary to keepthe near �eld omputation linear in M . Now (4.6) and (2.6) togetherimply that n � 2Np� : (4.7)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 21If M = N , then the near �eld omputation requires approximately�Nand the NFFT omputationsn log n+O(N) = 2Np� log�2Np� �+O(N)arithmeti operations. One should hoose � suh that both operationounts are balaned. It seems that � � 2pp, respetively by (4.7),n � ppNis a good hoie.5 Fast Summation at Multidimensional KnotsIn this setion we briey explain how to extend our one-dimensionalsheme to higher dimensions d � 2 and rotation-invariant kernels K(x) =K(jxj). We fous on the fast omputation off(yj) := NXk=1�kK(yj � xk) = NXk=1�kK(jyj � xkj) (xk; yj 2 Rd) (5.1)for j = 1; : : : ;M . Similar as in Setion 3 we regularize K near 0 and nearthe boundary of [�12 ; 12)d to obtain a smooth periodi kernel ~K:~K(x) := 8>>>><>>>>:KI(jxj) if jxj � "I ;KB(jxj) if 12 � "B < jxj < 12 ;KB�12� if jxj � 12 ;K(jxj) otherwise:Here we hoose KI as in Corollary 3.3. But instead of (3.2) we requirethat the polynomial KB ful�lls the onditionsK(j)B �12 � "B� = K(j)�12 � "B� (j = 0; : : : ; p� 1);K(j)B �12� = Æ0;j K�12� ; (j = 0; : : : ; p� 1): (5.2)



22 M. FENN AND G. STEIDLThe unique solution KB of (5.2) is given by Theorem 3.2, but now itdoes not have the symmetry of Corollary 3.3.Then we approximate ~K by the Fourier seriesTn( ~K)(x) :=Xl2Idn �lbl e2�ilx;where bl := 1nd Xj2Idn �j ~K�jn� e�2�ijl=n (l 2 Idn):Now we an deompose the original kernel asK = (K � ~K) + � ~K � Tn( ~K)�+ Tn( ~K)and, by negleting the summand in the middle, we approximate f by~f(x) := NXk=1�k(K � ~K)(x� xk) + NXk=1�kTn( ~K)(x� xk): (5.3)Instead of f we evaluate ~f at the knots yj 2 Rd (j = 1; : : : ;M) by thefollowing two steps:1) Near �eld omputation (�rst sum in (5.3))To ahieve the desired omplexity of our algorithm we suppose thateither the N points xk or the M points yj are \suÆiently uniformlydistributed" in the ball with radius 12 � "B , i. e., we suppose that thereexists a small onstant � 2 N suh that eah ball with radius "I ontainsat most � of the points xk or of the points yj, respetively. This impliesthat "I depends linearly on N�1=d, respetively M�1=d. In the followingwe restrit our attention to the ase"I � 12 � �N �1=d : (5.4)Then, as in one dimension, the omputation of the �rst sum requiresonly � � M arithmeti operations.2) NFFT based summation (seond sum in (5.3))The evaluation of the seond sum in (5.3) is done exatly in the sameway as in one dimension, but with d-dimensional NFFTs of size n now,



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 23whih really involve a multidimensional setting. This omputation partrequires O(nd log n+N +M) arithmeti operations.To obtain an exponential error deay in p, we have to hoose again"I � pn ; see (4.6). On the other hand, we have to ensure (5.4) for aneÆient near �eld omputation. Thus,n � 2p�N� �1=d :To get a balaned arithmeti omplexity of both parts of our algorithmone may hoose n � ppN1=d if N =M .6 Numerial ExamplesOur algorithms were implemented in C using double preision arithmetiand tested on an AMD Athlon(tm) XP 1800+, 512MB RAM, SuSe-Linux8.2.Throughout our experiments we apply the NFFT/NFFTT pakage[16℄ with Kaiser-Bessel funtions and oversampling fator � = 2.For simpliity we have hosen M = N in our summation algorithmand randomly distributed knots yj = xj (j = 1 : : : ; N) in fx j jxj � 732g,i. e. "B = 116 . The oeÆients �k were randomly distributed in [0; 1℄.Moreover, we set "I = pn .We are interested in the errorE := maxj=1;:::;N jf(xj)� ~f(xj)jjf(xj)j : (6.1)Figure 2 shows the behaviour of E in 2D for various kernels in (1.2)and (1.3) with spline regularization (left) and regularization by algebraipolynomials (right). Here we have hosen N = 5122 points, n = pNand  = 1=pN as parameter of the generalized multiquadris. Furtherwe use the trunation parameter m = 8 in the NFFT omputations.First we observe that the error E with spline regularization is slightlybetter than the error with regularization by algebrai polynomials. Fur-ther, the results on�rm the exponential error deay with inreasing pproved in the Theorems 4.2 and 4.4. In the following we will always useregularization by polynomial interpolation.
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Figure 2: Error E in dependene on p for various kernels in 2D withN = 5122, n = 512; regularization by spline interpolation (left) and bypolynomial interpolation (right).Figure 3 presents the 1D error E in dependene on p for the Hardymultiquadri (left) and the inverse Hardy multiquadri (right) with var-ious saling parameters . Here we took n = N = 1024. Further weuse the trunation parameter m = 8 in the NFFT omputations. Asexpeted, for dereasing , the error inreases until  = 1N , where it isapproximately the same as for  = 0 in both ases. For  = 1, the erroris about the same for both multiquadris. In this ase, we an also applythe algorithm without inner regularization, i. e. without near �eld om-putation. The orresponding urve is drawn with symbol M. Note thatwithout inner regularization n does not depend on N and the omplexityof our algorithm beomes linear in N .Figure 4 ompares the omputational time in dependene on thenumber N of two-dimensional points for the diret omputation of (5.1)and for our algorithm. As kernel funtion we have used K(x) = log jxj.The parameters for our algorithm were n = 2pN and p = 4 to ahievean auray of E � 10�6. Further we use the trunation parameterm = 4 in the NFFT omputations. Note that the omputation time forthe near �eld omputation inludes the time for the searh of all pointsin the near �eld whih requires O(logN). The diret omputation forN = 220 was only estimated based on the omputational time and errorfor the �rst 1000 points, sine the diret omputation would take about66 hours. Comparing this time with about 1:6 minutes required by our
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Figure 3: Error E in dependene on p for the Hardy multiquadri (left)and the inverse multiquadri (right) in 1D with various parameters  andn = N = 1024. Here  = 1� denotes the algorithm without near �eldomputation.
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26 M. FENN AND G. STEIDLour algorithm Beatson et al.N n diret fast diret fast2000 96 2:70 � 10�1 6:0� 10�2 2:97� 10�1 7:8� 10�24000 144 1:02 � 10+0 1:50 � 10�1 1:19� 10+0 2:03 � 10�18000 180 4:48 � 10+0 3:10 � 10�1 4:75� 10+0 4:84 � 10�116000 216 2:32 � 10+1 7:20 � 10�1 2:50� 10+1 9:84 � 10�132000 288 9:33 � 10+1 1:83 � 10+0 1:10� 10+2 2:23 � 10+0Table 1: Computational times (in seonds) of the algorithm of Beatsonet al. in [5℄ and of our algorithm for K(x) = px2 + 2 in R2 .As in [5℄ the multiquadri parameter was  = 1pN and the oeÆientswere �k = 1 for all k = 1; : : : ; N . The omputational times for theBeatson algorithm were taken fron Table 9.1 in [5℄. Note that a di�erenthardware was used for both algorithms so that the time for the diretomputation may serve as a measure for omparison.Referenes[1℄ R. P. Agarwal and P. J. Y. Wong. Error inequalities in polynomialinterpolation and their appliations, volume 262 ofMathematis andits Appliations. Kluwer Aademi Publishers Group, Dordreht,1993.[2℄ R. K. Beatson and W. A. Light. Fast evaluation of radial basisfuntions: methods for two-dimensional polyharmoni splines. IMAJ. Numer. Anal., 17:343{372, 1997.[3℄ R. K. Beatson and G. N. Newsam. Fast evaluation of radial basisfuntions. I. Comput. Math. Appl., 24:7{19, 1992.[4℄ G. Beylkin. On the fast Fourier transform of funtions with singu-larities. Appl. Comput. Harmon. Anal., 2(4):363{381, 1995.[5℄ J. B. Cherrie, R. K. Beatson, and G. N. Newsam. Fast evaluationof radial basis funtions: methods for generalized multiquadris inRn . SIAM J. Si. Comput., 23:1549{1571, 2002.[6℄ C. de Boor. Total positivity of the spline olloation matrix. IndianaUniv. Math. J., 25(6):541{551, 1976.



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 27[7℄ C. de Boor. Splinefunktionen. Letures in Mathematis ETH Z�urih.Birkh�auser Verlag, Basel, 1990. With a prefae by Manfred R.Trummer.[8℄ A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaeddata. SIAM J. Si. Comput., 14:1368{1393, 1993.[9℄ J. A. Fessler and B. P. Sutton. NUFFT { nonuniform FFT toolboxfor Matlab.http://www.ees.umih.edu/~bpsutton/MR/Code/NUFFT/, 2002.[10℄ R. Franke. Sattered data interpolation: tests of some methods.Math. Comp., 38(157):181{200, 1982.[11℄ L. Greengard. The rapid evaluation of potential �elds in partilesystems. MIT Press, Cambridge, MA, 1988.[12℄ L. Greengard and V. Rokhlin. A fast algorithm for partile simula-tions. J. Comput. Phys., 73:325{348, 1987.[13℄ W. Hakbush. A sparse matrix arithmeti based on H-matries. I.Introdution to H-matries. Computing, 62:89{108, 1999.[14℄ W. Hakbush and B. N. Khoromskij. A sparse H-matrix arith-meti. II. Appliation to multi-dimensional problems. Computing,64:21{47, 2000.[15℄ W. Hakbush and Z. P. Nowak. On the fast matrix multipliationin the boundary element method by panel lustering. Numer. Math.,54:463{491, 1989.[16℄ S. Kunis and D. Potts. NFFT, software pakage, C subroutine li-brary. http://www.math.uni-luebek.de/potts/nfft, 2002.[17℄ S. Kunis, D. Potts, and G. Steidl. Fast Fourier transform at noneq-uispaed knots - a user's guide to a C-library. Preprint, MU-L�ubekB-02-13, September 2002.[18℄ C. M�uller. �Uber die ganzen L�osungen der Wellengleihung. Math.Annalen, 124:235{264, 1952.[19℄ A. Nieslony, D. Potts, and G. Steidl. Rapid evaluation of radial fun-tions by fast Fourier transforms at nonequispaed knots. Preprint,MU-L�ubek A02-11, May 2002.



28 M. FENN AND G. STEIDL[20℄ D. Potts and G. Steidl. Fast summation at nonequispaed knots byNFFTs. SIAM J. Si. Comput., to appear.[21℄ D. Potts, G. Steidl, and M. Tashe. Fast Fourier transforms fornonequispaed data: a tutorial. In Modern sampling theory, Appl.Numer. Harmon. Anal., pages 247{270. Birkh�auser Boston, Boston,MA, 2001.[22℄ M. J. D. Powell. The theory of radial basis funtion approximationin 1990. In Advanes in numerial analysis, Vol. II (Lanaster,1990), Oxford Si. Publ., pages 105{210. Oxford Univ. Press, NewYork, 1992.[23℄ E. E. Tyrtyshnikov. Mosai-skeleton approximations. Calolo,33:47{57, 1996.[24℄ E. E. Tyrtyshnikov. Mosai ranks and skeletons. In L. G. Vulkov,J. Wasniewski, and P. Y. Yalamov, editors, Numerial Analysis andits Appliations (Rousse, 1996), volume 1196 of Leture Notes inComputer Siene, pages 505{516. Springer, Berlin, 1997.Appendix A: Aliasing FormulaTheorem Appendix A:.1 (Aliasing formula) Let g be a 1-periodifuntion with absolutely onvergent Fourier series and Fourier oeÆientsk(g) := 12Z� 12 g(x) e�2�ikx dx: (A.1)For even n 2 N and "j given by (1.1) de�ne an approximationĝk := 1n n2Xj=�n2 �jg�jn� e�2�ijk=nof k(g) by using the trapezoidal quadrature rule. Then the followingrelation holds true: ĝk = k(g) +Xr2Zr 6=0 k+rn(g):


