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Abstract

This paper is concerned with the fast summation of radial func-
tions by the fast Fourier transform for nonequispaced data. We
enhance the fast summation algorithm proposed in [20] by intro-
ducing a new regularization procedure based on the two-point Tay-
lor interpolation by algebraic polynomials and estimate the corre-
sponding approximation error. Our error estimates are more so-
phisticated than those in [20]. Beyond the kernels K3(z) = 1/|z|?
(8 € N) we are also interested in the generalized multiquadrics
which play an important role in the approximation of functions by
radial basis functions.
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1 Introduction

The computation of sums of the form

N
S aK(yj— k) (wr,y; € RY)
=1
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for j =1,..., N with O(N?) arithmetic operations appears as bottleneck
in many applications where the number of knots N is large. Typical ex-
amples are the simulation of particle motion in potential fields [12], the
approximation of curves and surfaces by linear combinations of radial
basis functions (RBFs) [22] and, in a slightly different form, the solution
of integral equations or partial differential equations via boundary inte-
gral methods [15]. The most famous algorithm for the fast evaluation of
these sums with only O(N) arithmetic operations is the fast multipole
method (FMM) introduced by Greengard and Rokhlin [12, 11], e.g. for
the kernel K(z) = log|z| in R?2. Here and in the following | - | denotes
the Euclidean norm in R?.

The panel clustering method developed by Hackbusch et al. [15] at the
same time in the context of the numerical solution of integral equations
and its more recent generalization, the H-matrix arithmetic [13, 14] as
well as the mosaic-skeleton approach of Tyrtyschnikov et al. [23, 24]
follow similar ideas as the FMM. During the last years the FMM was
further adapted to various kernels, e. g. to various RBFs by Beatson et al.
[3, 2]. Recently, Potts and Steidl [20, 19] have proposed a fast summation
algorithm based on the fast Fourier transform for nonequispaced knots
(NFFT) which requires O(N log N) arithmetic operations and has the
following advantages:

— it resembles the well-known algorithm for the fast multiplication
of vectors with Toeplitz matrices based on the FFT,

— the incooperation of new kernels is very simple,

— it has a simple structure consisting of the blocks FFT — NFFT —
fast summation.

The so-called NFFT and its relative, the NFFTT, are approximative
algorithms. Let I := {k := (k1,ka,... ka) € Z? | =2 < k < 2} with
componentwise inequalities, and € := €, - - - €;,, where

Loifl=4+2
=42 2 (1.1)
1 otherwise.
Then, for arbitrary w; in the torus T¢ := [—1, 1)?, the NFFT(n) com-

putes sums of the form

fj = Z ekfk e_QWikwj (] =1,... ,M),

keld
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and the NFFTT(n) sums of the form

M
ilk = € Z fj e27rikwj (k € [g)
j=1

with only O(n?logn-+ M) arithmetic operations. Meanwhile there exists
a rich literature on NFFTs, where the algorithms are described in detail
and where the reader can find estimates of the approximation error versus
the complexity of the algorithm, see e.g. [8, 4, 21] and the references
therein. Moreover, free NFFT software packages are available, e.g. [17,
9].

In this paper, we further develop the ideas from [20]. We intro-
duce new regularization techniques with B-splines and algebraic poly-
nomials. Based on the approach with algebraic polynomials we prove
error estimates for our approximative summation algorithm. These er-
ror estimates are more sophisticated than those for the regularization
with trigonometric polynomials in [20]. The later still involve numerical
computations and consequently are only valid for a bounded number of
parameters. In [20] only kernels of the form

mmwﬂ%qumm=F% (6N (1.2)

were considered. In this paper we add estimates for the parameter-
dependent generalized multiquadrics

K y(mic) = (|22 + A)2, Kglas0) = (Ja)* +2) ¢

(B € N; odd)

(1.3)
which play an important role in the approximation of functions by linear
combinations of RBFs [10].

Our paper is organized as follows: the next section describes our
summation algorithm in 1D. One essential step of this algorithm con-
sists in an appropriate kernel regularization which we consider in detail
in Section 3. Error estimates for our algorithm with regularization by
algebraic polynomials and the consequences for the choice of the param-
eters of the algorithm are derived in Section 4. Section 5 briefly sketches
the generalization of the algorithm to the multivariate setting. Finally,
Section 6 contains numerical results, mainly in 2D.
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2 Fast Summation at One-dimensional Knots

In this section, we recall the idea of the fast summation algorithm intro-
duced in [20]. Our aim consists in the fast evaluation of sums

N
f(x) = Z apK(x — xp,) (zr € R), (2.1)
k=1

at M knots y; € R (j = 1,...,M) for kernels K(x) = K(|z|), i.e.,
in 1D for even kernels. The kernel function K is in general a non-
periodic function, while the use of Fourier methods requires to replace
K by a periodic version. Without loss of generality we may assume that
the knots are scaled, such that |zy|, |y;| < 1 — 2B and consequently
lyj — zk] < % — ep. The parameter ep > 0, which we specify later,
guarantees that K has to be evaluated only at points in the interval
[—% +€B, % — ep]. This simplifies the later consideration of a 1-periodic
version of K. Beyond a special treatment of K near the boundary :l:%, we
have to take care about properties of K in the neighborhood of the origin.
The kernels (1.2) considered in [20] are C* except of the origin, where
they have a singularity. The parameter-dependent kernels K = Kg(x;c)
in (1.3), or its derivatives in case f = —1, have a singularity at zero if
c— 0.

To deduce a fast summation algorithm for (2.1) we replace the kernel
K by a 1-periodic smooth kernel K by modifying K near the boundary

and near the origin:

Ki(z) forz € [—ep, €],
K(z):={ Kp(x) forze [—%,—%+63]U[%—63,%], (2.2)
K(z) else,

where 0 < g7 < % —ep < % The functions K; and Kpg will be chosen
such that K is in the Sobolev space H?(T) for an appropriate parameter
p > 0 which controls the smoothness of K. Various regularizations K
of K are proposed in Section 3. If p is large enough, then we may
assume that K can be approximated with sufficiently small error by the
trigonometric polynomial

To(K)(x) ==Y ab ™™, (2.3)

ler}
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where

1 =7\ _oriil 1
b::—§:~K— mijl/n leIb).
1 ” €5 <n>e (lel))

JeI}

Now the original kernel K can be decomposed as
K = (K - K) + (K = T,(K)) + To(K), (2.4)

where the summand in the middle becomes small for a sufficiently large
parameter n € N which we will specify later. We neglect this summand
in (2.1) and approximate f by

Instead of f we evaluate f at the knots y;j (j =1,...,M). Indeed this
can be done in a fast way by the following two steps:

1) Near field computation (first sum in (2.5))

To achieve the desired complexity of our algorithm we suppose that
either the N points x; or the M points y; are “sufficiently uniformly
distributed”, i.e., we suppose that there exists a small constant v € N
such that each subinterval of [—%,1] of length 2¢; contains at most v
of the points xj, or of the points y;, respectively. This implies that e
depends linearly on 1/N, respectively 1/M. In the following we restrict

our attention to the case
v

~ ——. 2.6
5N (2.6)

€1

Then, since |y; — 2| < 3 — ep and supp(K — K)n [~ +ep, 3 —eB| =
[—er,er], the evaluation of

N
YooK —K)(yj—x)  (G=1,...,M)
k=1

requires < vM, i.e. O(M) arithmetic operations.

2) NFFT based summation (second sum in (2.5))



6 M. FENN AND G. STEIDL

By (2.3), the evaluation of the second sum in (2.5) can be rewritten as

N N
ST (R (g~ m) = Y ap Y eyl mw)
k=1

k=1 ler}l
N
— Z eby <Z ay, e—27rila:k> eZﬂ'ilyj )
le} k=1

This expression can be handled based on the NFFT as follows:

1. The sums
N .
a; = Zak e 2milz (lerl))
k=1
can be obtained by an NFFT™ (n).
2. Then we compute the products

d; = by (l € Irll)

3. Finally we use the NFFT(n) to compute

Y eaderi o (j=1,...,M).
ler}l
These three steps require O(M + N + nlogn) arithmetic operations.

In summary, our summation algorithm requires
O(M + N +nlogn)

arithmetic operations. The relation between M, N and n determined by
the approximation error of the algorithm will be specified in Section 4.

Once the basic idea of the algorithm is clear, it remains to specify
the regularization procedure and to give estimates of the approximation
error introduced by omitting K — 7,,(K) in the kernel approximation.
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3 Kernel Regularization

Since K is even, we have that K@) (z) = (=1)7 K (—z). To ensure that

Ki(z) forz € [—er,eq],
K(x) := S Kp(z) forz e[, -2 +eplU[E —ep, 1],
K(z) else,

is in HP(T), we need that the function K fulfills the conditions

and the function K the conditions

L1 /1

KU <_ _ 8B> _ g0 <_ _ €B> 7 (3.2)
2 2

K1(3j) <% + 6B> - K <_% +€B> - (_1)jK(j) (% _ 5B>

for all  =0,...,p — 1. Then, the periodicity of K follows by setting

1 1
Kp <—§+x> =Kp (§+x> (z €10,eB]).

As simple regularizing functions K; and Kp we propose

— algebraic polynomials,

— trigonometric polynomials,

— splines.
The regularization by trigonometric polynomials was considered in [20].
However the error estimates in [20] are not satisfactory since they involve
numerical computations which can be done only up to a fixed number

p € N. In this paper we briefly sketch the spline approach and consider
the regularization by algebraic polynomials in more detail.
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Figure 1: B-splines B},.

3.1 Regularization by spline interpolation

The normalized cardinal B-splines IV, of degree p are recursively defined

by
1 forxz €]0,1),
No(z) = 0.1
0 otherwise

and
p+1l—z

Ny(w) = TNy (&) +

k

Note that supp N, = [0,p + 1].

In our application we deal with intervals [m —r,m+r] (r > 0), more
precisely with [—e7, 7] and [3 —ep, 3 +ep]. At the interval [m—r,m+r]
we choose the equispaced knots A := {t;, = m—r+ %’”k : k= —p,...,2p}
and introduce the dilated and translated versions of N, with respect to
these spline knots

Bl(z) = N, (M —k) ,

Npei(e—1)  (peN).

see Figure 1.
The set of B-splines { B}, }Z;ip forms a basis of the spline space

Sp(A) == {s € CP ' m —r,m+1] : 3| €Il k=0,...,p— 1}

thsthgi]

Proposition 3.1 (Spline interpolation) For given aj, b; (j =0, ...,
p — 1) there exists a unique spline S € S,(A) which satisfies the interpo-
lation conditions
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at the endpoints of an interval [m —r,m +r] (r > 0). This spline can be

written as
p—1

S(z) = Z i BY ()

k=—p
where the coefficients ¢;, are the solution of the two p X p linear systems

p

Zc,k(B’ik)(j)(m—r) = aj,

k=1

ch,l(Bfk)(j)(m—r) = (—1)jbj (J=0,....p=1)
k=1

with the same coefficient matrix.

The proposition is a direct consequence of [6, Theorem 1] and the
fact that

(B )9 (m —r) = (=1)/(BY_)D (m + ).

Since our kernels are even, we have by (3.1) and (3.2) for our ap-
plication that a; = (—1)J bj. Hence it remains to solve only one p x p
system to obtain all coefficients ¢i. Of course, for large p € N, this sys-
tem is ill-conditioned. However, we will only need small values of p in
our algorithm, and, for p < 16, the corresponding systems can be solved
without substantial errors.

Finally note that the fast evaluation of the spline S(z) can be realized
by the de Boor algorithm [7].

3.2 Regularization by polynomial interpolation

To construct polynomials K; and Kp of degree 2p — 1 which fulfill the
2p Hermite interpolation conditions (3.1) and (3.2), respectively, we use
the following two-point Taylor interpolation, see e. g. [1, Corollary 2.2.6]:

Proposition 3.2 (Two-point Taylor interpolation) For given a;, b;
(j =0, ..., p—1) there exists a unique polynomial P of degree 2p — 1
which satisfies the interpolation conditions
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at the endpoints of an interval [m — r,m + r| (r > 0). This polynomial
can be written as

Pa) = pzfpij(p— ]1+k>

j=0 k=0
(z—m+r) (x—m—r\'(z—m+r\"
0
4! —2r 2r J

+(x—m—r)9 z—m+r\’(z—m—r kb~
4! 2r —2r a

(3.4)

As in the spline case, the representation (3.4) can be further simplified
if we have even kernels and (3.1), (3.2) in mind.

Corollary 3.3 For given a; and b; = (=1)/a; (j = 0,...,p — 1) the

unique polynomial P of degree 2p—1 which satisfies (3.3) at the endpoints
of an interval [m —r,m +r] (r > 0) is given by

p—1
P) = 5 (=P (=g T+ (L), (35)
j=0

M and

J 1
. p—1+1 rd
E Z( l >2l(j —pr

=0

where y :=

Proof. By (3.4) we obtain for our special setting that

p—1 p—1—j P . .
Po) =5 % X (M7 ) R e s - ).

J _ ril g , .
P =5 3 3 ("7 ) G (@ - ).

In the next section we will estimate the approximation error intro-
duced by our fast algorithm. For this purpose we will need an estimate
for the pth derivative of K; and Kp, respectively.
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Theorem 3.4 Forp € N, the pth derivative of the polynomial P in (3.5)
can be estimated by

max
xE[mym-+r]

3 p
PO <t (5) r 7

where

p—2 11
. p—1+1 r?
= Z ( I )m |lap—1-1] .

1=0 p—1

Proof. Since the two-point Taylor interpolation polynomial reproduces
polynomials of degree at most 2p — 1, we obtain for the polynomial = 1
by Corollary 3.3 that

p-1 , N (1 — 02)i , ;
2% (p ]1 +J> (1 2J?J ) (L=—y)P T+ 1 +yP7)=1. (3.6
=0

On the other hand, if we reorder the sum in (3.5) with respect to the
coefficients a; (I = 0,...,p — 1), then (3.6) is just the coefficient of ag.
Thus, ag does not appear in the pth derivative of any polynomial P of
the form (3.5).

Now, since %y = %, the pth derivative of (3.5) can be written as

p P” p ) ) )
PO = () S0 - -0+ a )] @)

Jj—1 i
. p—1+1 rd
It =D

=0

We consider Q;(y) := % (1 —y?) 2R;(y)] with
Ri(y) =5 (1 =y)" 7+ (1 +y)"7)

P=J\, 2, (P=J) 4
=1
() ()

N yP—I for p — j even,
(p—J)y?~ /=" for p—j odd.
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Obviously R;(y) is an even polynomial in y of degree at most p — j with
positive coefficients and therefore

Rg.l)(y) >0fory >0 and max |R ( )| = R ( ). (3.8)
y€[0,1]

By applying the Leibniz rule we get

M@

Qjly) =2

k . p—k
(1) e (0= 22V] s (R0

k—j i ' —k
(k) a7y (-] s (R0

=
Il

0

I
M*@

=
Il

J

and further by the Rodrigues formula of the Legendre polynomials, i.e.
P](:E) = ( ]-)J 2]1J| ddx]] [(]— - 1’2)]]7

Qi(y) = (—1/2 1y < ) )RV (y).

k=j

We know that max, ¢ 1 |Pj(k_j)(y)| = Pj(k_j)(l) (see, e.g. [18]). Conse-
quently, we obtain together with (3.8) that

max |0y |_2]+1J'Z<> PEDWRY (1) = Qs (39)

On the other hand we conclude by the Leibniz rule that

dp , . ,
Qi) =5 [0 =2 (L= + (1]
= [0 =0 )+ (1= )1+ )

—p'z( ) ()0t (a=nta e

+ (1 y) 1=y ).
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Now |Q;(1)| can be easily estimated by

£ 00 i

k=0

(—1)P2 + (?) 29 (—1)/

17 (7) + v
csn(())

Here 0y, ; denotes the Kronecker symbol. Combining this with (3.7) and
(3.9), we obtain for z € [m,m + r| that

1\" &
P < (5) > Fllas)
1 p
<n(z) Z()“ZW _max_ [3]

j=1

1\?
=l — P_9p 9P _ 5
p.<2r> (1+2)P -2 +2 3)j:{ri.&.t,x_1 1951

3 P
<p<2r> _pax_ .

It remains to estimate max |y;|. By definition of ¥; it follows

in p—1+1 ri—l u
l 20 — 1)

=0

Jj—1 i1
p—1+1 rd .
< 2 (71t o =

=0

|Q;(1)] = p!

= 2/p!

1yl =

Now one can easily check that s; < sj4q for 1 < 57 < p — 2. Thus,
max _|¥j| < s,—1 = and we are done. O
j=1,p—1
Now we apply Theorem 3.4 and Corollary 3.3 with respect to our
special polynomials K; and Kp, i.e. we consider the intervals [—¢r,e7]
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and [3 — ep, 5 + ep] and set a; = KU (—¢g) = (=1)7KW(er) and
a; = K (j)(% — £p), respectively. The result can be summarized as
follows:

Corollary 3.5 The polynomials K; and Kp which satisfy (3.1) and

(3.2), respectively, are given by (3.5) withy = £, y = —xii,m

£r 3
fy;/ B, respectively, where

and vy; =

J i1 -1
I p—1+0\(=1)"er " (i

J i1 j—l1
B ._ p=1+0\(=)"ep (1
L Z( l ) MG 2 )

=0

The polynomials fulfill the estimates

e, (3.10)

max

(p)
K < pl{=
x€[0,e1] I (J,‘)‘ = P <

LB (3.11)

IN

=
AN

N |
 ~—
™ bS]

sy

2

(p)
max Ky (x
2€[L—ep,i] ‘ B ( )‘

with
I = p—1+I 51;_1_l 1-1
vo= Z < ] >m ‘Kw* - )(51) ) (3.12)
1=0 p )
p—2 p—1—1
B L p - ]. + l €B —1—1 ].
=0

4 FError Estimates

Beyond the well-known errors appearing in the NFFT computations
which are discussed for example in [20], our algorithm introduces the

errors |f(y;) — f(y;)| (4 =1,...,M). By (2.4), (2.5) and (2.1), we ob-
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tain for |y| < I — ZE that

1) - Fw)| =

A
M=
2
=
8

where

[ Kerr|loo := g}g)i | Kerr ()], Kere() 1= R(x) - %(K)(x) (4.1)

=2

Lemma 4.1 Let K be an even kernel and let K € H?(T) be defined by
(2.2). Then, for 2 < p < n, the following estimate holds true:

||Kerr||oo = ( 7Tp’I’Lp T \pon—1 /|K |de‘

Proof. The proof follows by standard arguments. By Fourier expansion

of K and (2.3) we obtain for z € [-1, 1] that
Kerr(x) _ Z ch (K) e27rika: - Z eby e27r1la:
keZ ler}l

where the Fourier coefficients ¢;(K) are defined in (A.1). Further, it
follows by the aliasing formula (see Theorem Appendix A:.1) that

err Z €k Z Ck:—l—rn 27r1ka:( 2mirne _1)

keIl reZ
r#0
Since K is even, we can estimate

00
||Kerr“oo < 4 Z €k |Ck(K)|
=3

By construction we have that K € H?(T) which implies that

Ck(R') = (27ik)~P ck(f((p))
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so that
o0
Kerelloo <4 | Y e (2mk) /|K z)| da.

k=2

For p > 2 the above sum can be estimated by an upper integral

1
2(1+22)
- K®(z)|dz.

(p — )mPnr—t

2

[Kerrfloo <

Since p < n, this implies the assertion with a constant C' =~ 4. O

Now we obtain by the definition of K that

1ocp

/ |d:1:—/|K 2)| d + / K (2)] dz + / KD (2)] da

er 1
2 B

2=

and for the polynomials K7 and Kp in Corollary 3.5 by (3.10), (3.11)

1
27 B

p
/|K z)| dz < p! (g) ( Py +513p73) + / |K®)(z)] d.

er
(4.2)
It remains to estimate K®) and the values v/, 2 which depend on
KU)(er) and KU )(— — ep), respectively. Therefore we have to estimate
the derivatives of K.
For the kernels (1.2) and 7 € N we have

@) = U(Zif I>;1)! o @ A0 8 EN),  (43)
where we set (—1)! := 1 in case 8 = 0.

Theorem 4.2 For f € Ny, let K = Kg be defined by (1.2) and K by
(2.2) with K; and Kp given by Corollary 3.5, where ej < min{sBj% —
ep}. Then, for 2 < p < n, the error |Key||oo in (4.1) can be estimated
by

(p+ﬁ—2+50’5)! 3P

€p+671 ppp—1
I

with a constant Cg independent of p,n and €;.

“Kerr“oo S C,B

(4.4)
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Proof. We consider the summands in (4.2). By (4.3) we obtain that

ot RS
/|K(p)(x)|dx — % / ||~ P+F) dg
(p+B-=2)! _(pip—
S (ﬁ_l)' £; (p+8 1)_

Since £7 < min{ep, 1 — ep} it follows by (3.12), (3 13) and (4.3) that

yBel? < 47el P, Thus it remains to estimate y7e; ¥. By (3.12) and
(4.3) we get

I_1-p
Y Er

IA

p—1+1 2—1+p) 27"
“ﬂ§:< ! )6—”%—1—m

1 (p—245 p—1+10\__,
: gp—1+ﬁ( B-1 );( C )P

I

where we set (") := 1 in case B = 0. Using y = 0 in (3.6) we see that
the last sum equals 2°~! so that

3\? —p _pp+B—=2+08s)"3 (i
P2 I_1-p B (p+5-1)
i (5) o P

Combining these estimates with (4.2) and Lemma 4.1 we obtain the
assertion. O

Of course, for small ¢, the derivatives of the generalized multiquadrics
K3(x;c) behave similar to those of Kg(z). The following lemma esti-
mates the derivatives of the generalized multiquadrics by taking c¢ into
account.

Lemma 4.3 The derivatives of

B
2

K(z) = Kg(w;¢) i= (22 + )~ (B €N; odd)

can be estimated by

ﬁw
( ) x2+c2

Lt,~

N[
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Proof. We use the well-known formula [22]

1
1)

Ks(z;c) = et /1) (5-2)/2 gy

By differentiation we obtain

Gy 1 KL RS Py
K; (x,C)_CﬁF(g)/d$j [e }e t dt.

Using the Rodrigues formula of Hermite polynomials, i.e.
Hj(z) = (—1)7e®’ % [e‘”’2], we can rewrite this as

() 1) e=ta*/e p () (S2) e=ty(5-2)/2
K (z;¢) = cﬁFg(]/ H]<xc><c>et dt.

Now we substitute y = x? and obtain

_1)j

Gy — 2
Kj(x,c)—w

e.¢]
2 227,20
5 /e Y Hj(y)e yret /2ty i +B-1 gy
0

Since the integrand is even, this is equal to

) (=1 / Ly )2 -1
KW (z50) = ——L v H o (y)e ™ J+8-1 4y,
B ('/"E’C) F(g)xﬁ‘ﬂ € ](y)e Y Yy

— 00

By the Cauchy-Schwarz inequality we get

N|=

. 1 = _
KD @0 < g / e~V H3 () dy
L) e\
1
oo 2
/ V(14262 /%), 2(j46-1) )

By the normalization of the Hermite polynomials, i. e.

o0

0 for 5
[ et @@=, or g
24/m for j=m

—0o0
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the first integral is equal to 275!\/7 . To evaluate the second integral we

set o2 :=1+ 233%2 and use that

oo
a2 2B gy — L priig_ Ly L g gy
/e y dy = =i LU+ 8 —3) < g U +HA- DL
—00
Combining these estimates we arrive at

Y1+ 22) ((j + B — 1) 4120)
i+B8

T'(2) (22 +2e2)%

Theorem 4.4 For odd f € NU{—1}, let K = Kg(-;c) be defined by
(1.3) and K by (2.2) with K; and Kp given by Corollary 3.5, where
er < min{sB,% —ep}. Further, let 0 < ¢ < 7. Then the error || Kep||oo
in (4.1) can be estimated by

(p+5—2420_15)! (3V2)P
(F+e)™

HKerrHoo S Cﬁ

with a constant Cg independent of p,n and €;.

Proof. The proof follows the same lines as the proof of Theorem 4.2.
First we obtain for 3 € N by Lemma 4.3 and since ¢® < £% that

1 1
3 €B 27 ¢B
—D/2P

/ K® () de < S@FA—DWV2 / (22 + 2)=0+)/2 g4y

r()
er €r

1
< C(p‘i‘ﬁ—ﬁ?)! 20+ (€2 + c2)~(pHA-1)/2,
()
Next we have for § € N by (3.12) and Lemma 4.3 that
p—1
716}_17 S Cﬁ

X
T'(2)(e2 + 2)p+8-1)/2

(p—1-1) 2v/2¢;

[

=0
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and since ¢ < 8% further

(p—2+B8)! V2 ”i(p—Hz)Q_z

(0= L (e + )0 107 !

(p—2+pB)! (2v2)P1
(p— D! (2 + 2)pt6-1)/2

716}710 < Cp

< Cp

This results in

3\Y ;1 pp+B—-2) (3v2) —(p+B—
. (5) MEN Y 2 (2 4 ) HI-1/2

Substituting of these estimates in (4.2) and applying Lemma 4.1 we
obtain the assertion for 5 € N.

The case § = —1 follows similarly by using the fact that the Hardy
multiquadric K (z;¢) = (2% + 62)% fulfills

K@) =@ K (e)  (1=2.3...). .

Note that the right-hand side of (4.5) also converges under the
weaker condition ¢? < 78% so that one can prove similar estimates with
d?, d > 3/2, instead of (31/2)? assuming weaker conditions than ¢ < £2.

We will use the estimates in the Theorems 4.2 and 4.4 to specify the
parameters €7, p and n of our algorithm. Since both cases can be handled
in the same way, we restrict our attention to Theorem 4.2. Using the
Stirling formula p! < 1.1/27p (g)p we can rewrite our error estimate as

X —1\*! - ! _
| Kerlloo < Caer” <ip 1) (P+ P =2+ dos)y/2m(p — 1)

em €rn (p—1)!

Thus, choosing €7 such that 2(7’:;172 < 1, our error decays exponentially

in p. In our numerical examples we choose

p

=—. 4.6

er= (4.6)

While (4.6) steers the error, condition (2.6) on 5 is necessary to keep

the near field computation linear in M. Now (4.6) and (2.6) together
imply that

__2Np

1%

n

(4.7)
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If M = N, then the near field computation requires approximately
vN

and the NFFT computations

2Np 2Np
) = ——log

nlogn+ O(N T) + O(N)

arithmetic operations. One should choose v such that both operation
counts are balanced. It seems that v ~ 2,/p, respectively by (4.7),

n~ /pN

is a good choice.

5 Fast Summation at Multidimensional Knots
In this section we briefly explain how to extend our one-dimensional

scheme to higher dimensions d > 2 and rotation-invariant kernels K(x) =
K(|z|). We focus on the fast computation of

N N
Fl) =Y oKy —zr) =Y aeK(ly; —ml)  (wp.y; €RY) (5.1)
k=1 =1

for j=1,..., M. Similar as in Section 3 we regularize K near 0 and near
the boundary of [—1, 1) to obtain a smooth periodic kernel K:

Ki(|a]) i fz] <er,
Kp(lz|) if 1 —ep<|z| <3,
Kp(3) if |of 2 5,
K(|z|)  otherwise.

Here we choose K as in Corollary 3.3. But instead of (3.2) we require
that the polynomial K fulfills the conditions

N (1 A .
Kg)(§—53>=K(J)<§—6B> (7=0,....,p—1),

K3 (%> :5[”]’K<%>v (G =0,....p—1). (52)
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The unique solution Kpg of (5.2) is given by Theorem 3.2, but now it
does not have the symmetry of Corollary 3.3.
Then we approximate /U by the Fourier series

To(K)(z) = e ™,

leld

where . ]
= J\ —2riji/n d
by = — KL= J .
l mi}:fbn<n>e (e
JEIL

Now we can decompose the original kernel as
K= (K=K)+ (K- Ta(K)) + Tu(K)

and, by neglecting the summand in the middle, we approximate f by

N N
f@)=>" ap(K = K)(@ - 2) + > axTn(K)(@ — ). (5.3)
k=1

k=1

Instead of f we evaluate f at the knots y; € R? (j =1,..., M) by the
following two steps:

1) Near field computation (first sum in (5.3))

To achieve the desired complexity of our algorithm we suppose that
either the N points x; or the M points y; are “sufficiently uniformly
distributed” in the ball with radius % — ep, 1.e., we suppose that there
exists a small constant ¥ € N such that each ball with radius €; contains
at most v of the points z;, or of the points y;, respectively. This implies
that e; depends linearly on N~/? respectively M ~1/?. In the following

we restrict our attention to the case
1 ,v\1/d
TR — | — . 5.4
I=3 (N) (5:4)

Then, as in one dimension, the computation of the first sum requires
only < v M arithmetic operations.

2) NFFT based summation (second sum in (5.3))

The evaluation of the second sum in (5.3) is done exactly in the same
way as in one dimension, but with d-dimensional NFFTs of size n now,
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which really involve a multidimensional setting. This computation part
requires O(n%logn 4+ N 4+ M) arithmetic operations.

To obtain an exponential error decay in p, we have to choose again
er = Z; see (4.6). On the other hand, we have to ensure (5.4) for an

efficient near field computation. Thus,

N\ M
n =~ 2p <—> .
v

To get a balanced arithmetic complexity of both parts of our algorithm
one may choose n ~ \/ﬁNl/d if N =M.

6 Numerical Examples

Our algorithms were implemented in C using double precision arithmetic
and tested on an AMD Athlon(tm) XP 1800+, 512MB RAM, SuSe-Linux
8.2.

Throughout our experiments we apply the NFFT/NFFTT package
[16] with Kaiser-Bessel functions and oversampling factor o = 2.

For simplicity we have chosen M = N in our summation algorithm
and randomly distributed knots y; =2; (j =1...,N) in {z | |z] < 312},
i.e. eg = 1. The coefficients aj were randomly distributed in [0, 1].
Moreover, we set e7 = £.

We are interested in the error

E:= max ‘2 201 (6.1)
j=1,...N | f(z5)]

Figure 2 shows the behaviour of E in 2D for various kernels in (1.2)
and (1.3) with spline regularization (left) and regularization by algebraic
polynomials (right). Here we have chosen N = 5122 points, n = VN
and ¢ =1/ VN as parameter of the generalized multiquadrics. Further
we use the truncation parameter m = 8 in the NFFT computations.
First we observe that the error F with spline regularization is slightly
better than the error with regularization by algebraic polynomials. Fur-
ther, the results confirm the exponential error decay with increasing p
proved in the Theorems 4.2 and 4.4. In the following we will always use
regularization by polynomial interpolation.
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(x2+c2)f312 (x2+c2)f312

, o 12 | 107 & o 12
S 1)x] S 1]
. g (X2+C2)_1/2 . g (X2+C2)_1/2
[ o logxl | 10} ~&- log x|

2, 2\1/2

(%+c?) 2, 2\1/2

— (P+?)

Figure 2: Error E in dependence on p for various kernels in 2D with
N = 5122, n = 512; regularization by spline interpolation (left) and by
polynomial interpolation (right).

Figure 3 presents the 1D error £ in dependence on p for the Hardy
multiquadric (left) and the inverse Hardy multiquadric (right) with var-
ious scaling parameters c. Here we took n = N = 1024. Further we
use the truncation parameter m = 8 in the NFFT computations. As
expected, for decreasing ¢, the error increases until ¢ = %, where it is
approximately the same as for ¢ = 0 in both cases. For ¢ = 1, the error
is about the same for both multiquadrics. In this case, we can also apply
the algorithm without inner regularization, i.e. without near field com-
putation. The corresponding curve is drawn with symbol A. Note that
without inner regularization n does not depend on N and the complexity
of our algorithm becomes linear in N.

Figure 4 compares the computational time in dependence on the
number N of two-dimensional points for the direct computation of (5.1)
and for our algorithm. As kernel function we have used K(z) = log |z|.
The parameters for our algorithm were n = 2v/N and p = 4 to achieve
an accuracy of £ < 1076, Further we use the truncation parameter
m = 4 in the NFFT computations. Note that the computation time for
the near field computation includes the time for the search of all points
in the near field which requires O(log N). The direct computation for
N = 220 was only estimated based on the computational time and error
for the first 1000 points, since the direct computation would take about
66 hours. Comparing this time with about 1.6 minutes required by our
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8 4

10|
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Figure 3: Error E in dependence on p for the Hardy multiquadric (left)
and the inverse multiquadric (right) in 1D with various parameters ¢ and
n = N = 1024. Here ¢ = 1* denotes the algorithm without near field
computation.

.
10° 10" 10° 10°

Figure 4: Computational time versus the number N of points in 2D for
the direct summation and our algorithm with n = 2v/N and K(z) =
log |x|.

algorithm, the time saving for large problem sizes N becomes clear.
Finally, Table 1 compares the computational times required by our
algorithm and by the algorithm proposed by Beatson et al. in [5]. In
order to achieve an error E &~ 10~ % in our algorithm, we have chosen
m = 4 and p = 3. Further we have adapted the length n ~ /p N of
our NFFT such that the incorporated FFTs show a good performance.
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our algorithm Beatson et al.

N n direct fast direct fast

2000 | 96 || 2.70 x 1071 | 6.0 x 1072 || 2.97 x 10~1 | 7.8 x 1072
4000 | 144 || 1.02 x 107 | 1.50 x 1071 || 1.19 x 1079 | 2.03 x 107!
8000 | 180 || 4.48 x 1010 | 3.10 x 10~1 || 4.75 x 1010 | 4.84 x 107!
16000 | 216 | 2.32 x 10T | 7.20 x 1071 || 2.50 x 107! | 9.84 x 107!
32000 | 288 || 9.33 x 10! | 1.83 x 1010 || 1.10 x 1072 | 2.23 x 1070

Table 1: Computational times (in seconds) of the algorithm of Beatson
et al. in [5] and of our algorithm for K (z) = V&2 + 2 in R2.

As in [5] the multiquadric parameter was ¢ = ﬁ and the coefficients

were o = 1 for all k = 1,...,N. The computational times for the
Beatson algorithm were taken fron Table 9.1 in [5]. Note that a different
hardware was used for both algorithms so that the time for the direct
computation may serve as a measure for comparison.
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Appendix A: Aliasing Formula

Theorem Appendix A:.1 (Aliasing formula) Let g be a 1-periodic
function with absolutely convergent Fourier series and Fourier coefficients

cr(g) == /g(x)e_%ikxdx. (A.1)

1
2
For even n € N and €; given by (1.1) define an approximation

n

1< J omijk
g, 1= — E g (=) e 2miik/n
Ik n n ejg (n>

=%

of ¢;(g) by using the trapezoidal quadrature rule. Then the following
relation holds true:

k= cr(9) + D crirnl9)-
rez
r#0



