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2 M. FENN AND G. STEIDLfor j = 1; : : : ; N with O(N2) arithmeti
 operations appears as bottlene
kin many appli
ations where the number of knots N is large. Typi
al ex-amples are the simulation of parti
le motion in potential �elds [12℄, theapproximation of 
urves and surfa
es by linear 
ombinations of radialbasis fun
tions (RBFs) [22℄ and, in a slightly di�erent form, the solutionof integral equations or partial di�erential equations via boundary inte-gral methods [15℄. The most famous algorithm for the fast evaluation ofthese sums with only O(N) arithmeti
 operations is the fast multipolemethod (FMM) introdu
ed by Greengard and Rokhlin [12, 11℄, e.g. forthe kernel K(x) = log jxj in R2 . Here and in the following j � j denotesthe Eu
lidean norm in Rd .The panel 
lustering method developed by Ha
kbus
h et al. [15℄ at thesame time in the 
ontext of the numeri
al solution of integral equationsand its more re
ent generalization, the H-matrix arithmeti
 [13, 14℄ aswell as the mosai
-skeleton approa
h of Tyrtys
hnikov et al. [23, 24℄follow similar ideas as the FMM. During the last years the FMM wasfurther adapted to various kernels, e. g. to various RBFs by Beatson et al.[3, 2℄. Re
ently, Potts and Steidl [20, 19℄ have proposed a fast summationalgorithm based on the fast Fourier transform for nonequispa
ed knots(NFFT) whi
h requires O(N logN) arithmeti
 operations and has thefollowing advantages:{ it resembles the well-known algorithm for the fast multipli
ationof ve
tors with Toeplitz matri
es based on the FFT,{ the in
ooperation of new kernels is very simple,{ it has a simple stru
ture 
onsisting of the blo
ks FFT { NFFT {fast summation.The so-
alled NFFT and its relative, the NFFTT, are approximativealgorithms. Let Idn := fk := (k1; k2; : : : ; kd) 2 Zd j �n2 � k � n2 g with
omponentwise inequalities, and �k := �k1 � � � �kd , where�l := (12 if l = �n2 ;1 otherwise: (1.1)Then, for arbitrary wj in the torus Td := [�12 ; 12)d, the NFFT(n) 
om-putes sums of the formfj := Xk2Idn �kf̂k e�2�ikwj (j = 1; : : : ;M);



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 3and the NFFTT(n) sums of the formĥk := �k MXj=1 fj e2�ikwj (k 2 Idn)with only O(nd logn+M) arithmeti
 operations. Meanwhile there existsa ri
h literature on NFFTs, where the algorithms are des
ribed in detailand where the reader 
an �nd estimates of the approximation error versusthe 
omplexity of the algorithm, see e. g. [8, 4, 21℄ and the referen
estherein. Moreover, free NFFT software pa
kages are available, e. g. [17,9℄. In this paper, we further develop the ideas from [20℄. We intro-du
e new regularization te
hniques with B-splines and algebrai
 poly-nomials. Based on the approa
h with algebrai
 polynomials we proveerror estimates for our approximative summation algorithm. These er-ror estimates are more sophisti
ated than those for the regularizationwith trigonometri
 polynomials in [20℄. The later still involve numeri
al
omputations and 
onsequently are only valid for a bounded number ofparameters. In [20℄ only kernels of the formK0(x) = log jxj; K�(x) = 1jxj� (� 2 N) (1.2)were 
onsidered. In this paper we add estimates for the parameter-dependent generalized multiquadri
sK�1(x; 
) = (jxj2 + 
2) 12 ; K�(x; 
) = (jxj2 + 
2)��2 (� 2 N; odd)(1.3)whi
h play an important role in the approximation of fun
tions by linear
ombinations of RBFs [10℄.Our paper is organized as follows: the next se
tion des
ribes oursummation algorithm in 1D. One essential step of this algorithm 
on-sists in an appropriate kernel regularization whi
h we 
onsider in detailin Se
tion 3. Error estimates for our algorithm with regularization byalgebrai
 polynomials and the 
onsequen
es for the 
hoi
e of the param-eters of the algorithm are derived in Se
tion 4. Se
tion 5 brie
y sket
hesthe generalization of the algorithm to the multivariate setting. Finally,Se
tion 6 
ontains numeri
al results, mainly in 2D.



4 M. FENN AND G. STEIDL2 Fast Summation at One-dimensional KnotsIn this se
tion, we re
all the idea of the fast summation algorithm intro-du
ed in [20℄. Our aim 
onsists in the fast evaluation of sumsf(x) := NXk=1�kK(x� xk) (xk 2 R); (2.1)at M knots yj 2 R (j = 1; : : : ;M) for kernels K(x) = K(jxj), i. e.,in 1D for even kernels. The kernel fun
tion K is in general a non-periodi
 fun
tion, while the use of Fourier methods requires to repla
eK by a periodi
 version. Without loss of generality we may assume thatthe knots are s
aled, su
h that jxkj, jyjj < 14 � "B2 and 
onsequentlyjyj � xkj < 12 � "B . The parameter "B > 0, whi
h we spe
ify later,guarantees that K has to be evaluated only at points in the interval[�12 + "B ; 12 � "B ℄. This simpli�es the later 
onsideration of a 1-periodi
version ofK. Beyond a spe
ial treatment ofK near the boundary�12 , wehave to take 
are about properties ofK in the neighborhood of the origin.The kernels (1.2) 
onsidered in [20℄ are C1 ex
ept of the origin, wherethey have a singularity. The parameter-dependent kernels K = K�(x; 
)in (1.3), or its derivatives in 
ase � = �1, have a singularity at zero if
! 0.To dedu
e a fast summation algorithm for (2.1) we repla
e the kernelK by a 1-periodi
 smooth kernel ~K by modifying K near the boundaryand near the origin:~K(x) := 8><>:KI(x) for x 2 [�"I ; "I ℄;KB(x) for x 2 [�12 ;�12 + "B ℄ [ [12 � "B ; 12 ℄;K(x) else; (2.2)where 0 < "I < 12 � "B < 12 . The fun
tions KI and KB will be 
hosensu
h that ~K is in the Sobolev spa
e Hp(T) for an appropriate parameterp > 0 whi
h 
ontrols the smoothness of ~K. Various regularizations ~Kof K are proposed in Se
tion 3. If p is large enough, then we mayassume that ~K 
an be approximated with suÆ
iently small error by thetrigonometri
 polynomialTn( ~K)(x) := Xl2I1n �lbl e2�ilx; (2.3)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 5where bl := 1n Xj2I1n �j ~K�jn� e�2�ijl=n (l 2 I1n):Now the original kernel K 
an be de
omposed asK = �K � ~K�+ � ~K � Tn( ~K)�+ Tn( ~K); (2.4)where the summand in the middle be
omes small for a suÆ
iently largeparameter n 2 N whi
h we will spe
ify later. We negle
t this summandin (2.1) and approximate f by~f(x) := NXk=1�k(K � ~K)(x� xk) + NXk=1�kTn( ~K)(x� xk): (2.5)Instead of f we evaluate ~f at the knots yj (j = 1; : : : ;M). Indeed this
an be done in a fast way by the following two steps:1) Near �eld 
omputation (�rst sum in (2.5))To a
hieve the desired 
omplexity of our algorithm we suppose thateither the N points xk or the M points yj are \suÆ
iently uniformlydistributed", i. e., we suppose that there exists a small 
onstant � 2 Nsu
h that ea
h subinterval of [�14 ; 14 ℄ of length 2"I 
ontains at most �of the points xk or of the points yj, respe
tively. This implies that "Idepends linearly on 1=N , respe
tively 1=M . In the following we restri
tour attention to the 
ase "I � �2N : (2.6)Then, sin
e jyj � xkj < 12 � "B and supp(K � ~K) \ [�12 + "B ; 12 � "B ℄ =[�"I ; "I ℄, the evaluation ofNXk=1�k(K � ~K)(yj � xk) (j = 1; : : : ;M)requires � �M , i. e. O(M) arithmeti
 operations.2) NFFT based summation (se
ond sum in (2.5))



6 M. FENN AND G. STEIDLBy (2.3), the evaluation of the se
ond sum in (2.5) 
an be rewritten asNXk=1�kT ( ~K)(yj � xk) = NXk=1�kXl2I1n �lbl e2�il(yj�xk)= Xl2I1n �lbl NXk=1�k e�2�ilxk! e2�ilyj :This expression 
an be handled based on the NFFT as follows:1. The sums al = NXk=1�k e�2�ilxk (l 2 I1n)
an be obtained by an NFFTT(n).2. Then we 
ompute the produ
tsdl = blal (l 2 I1n):3. Finally we use the NFFT(n) to 
omputeXl2I1n �l dl e2�ilyj (j = 1; : : : ;M):These three steps require O(M +N + n logn) arithmeti
 operations.In summary, our summation algorithm requiresO(M +N + n logn)arithmeti
 operations. The relation between M;N and n determined bythe approximation error of the algorithm will be spe
i�ed in Se
tion 4.On
e the basi
 idea of the algorithm is 
lear, it remains to spe
ifythe regularization pro
edure and to give estimates of the approximationerror introdu
ed by omitting ~K � Tn( ~K) in the kernel approximation.



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 73 Kernel RegularizationSin
e K is even, we have that K(j)(x) = (�1)jK(j)(�x). To ensure that~K(x) := 8><>:KI(x) for x 2 [�"I ; "I ℄;KB(x) for x 2 [�12 ;�12 + "B ℄ [ [12 � "B ; 12 ℄;K(x) else;is in Hp(T), we need that the fun
tion KI ful�lls the 
onditionsK(j)I ("I) = K(j)("I); (3.1)K(j)I (�"I) = K(j)(�"I) = (�1)jK(j)("I)and the fun
tion KB the 
onditionsK(j)B �12 � "B� = K(j)�12 � "B� ; (3.2)K(j)B �12 + "B� = K(j)��12 + "B� = (�1)jK(j)�12 � "B�for all j = 0; : : : ; p� 1. Then, the periodi
ity of ~K follows by settingKB ��12 + x� := KB �12 + x� (x 2 [0; "B ℄):As simple regularizing fun
tions KI and KB we propose{ algebrai
 polynomials,{ trigonometri
 polynomials,{ splines.The regularization by trigonometri
 polynomials was 
onsidered in [20℄.However the error estimates in [20℄ are not satisfa
tory sin
e they involvenumeri
al 
omputations whi
h 
an be done only up to a �xed numberp 2 N. In this paper we brie
y sket
h the spline approa
h and 
onsiderthe regularization by algebrai
 polynomials in more detail.
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 Figure 1: B-splines Bpk.3.1 Regularization by spline interpolationThe normalized 
ardinal B-splines Np of degree p are re
ursively de�nedby N0(x) := (1 for x 2 [0; 1);0 otherwiseand Np(x) := xkNp�1(x) + p+ 1� xk Np�1(x� 1) (p 2 N):Note that suppNp = [0; p+ 1℄.In our appli
ation we deal with intervals [m� r;m+ r℄ (r > 0), morepre
isely with [�"I ; "I ℄ and [12�"B ; 12+"B℄. At the interval [m�r;m+r℄we 
hoose the equispa
ed knots � := ftk = m�r+ 2rp k : k = �p; : : : ; 2pgand introdu
e the dilated and translated versions of Np with respe
t tothese spline knots Bpk(x) := Np�p(x�m+ r)2r � k� ;see Figure 1.The set of B-splines fBpkgp�1k=�p forms a basis of the spline spa
eSp(�) := fs 2 Cp�1[m� r;m+ r℄ : sj[tk;tk+1℄ 2 �p; k = 0; : : : ; p� 1g:Proposition 3.1 (Spline interpolation) For given aj, bj (j = 0, . . . ,p� 1) there exists a unique spline S 2 Sp(�) whi
h satis�es the interpo-lation 
onditionsS(j)(m� r) = aj; S(j)(m+ r) = bj (j = 0; : : : ; p� 1)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 9at the endpoints of an interval [m� r;m+ r℄ (r > 0). This spline 
an bewritten as S(x) = p�1Xk=�p 
kBpk(x)where the 
oeÆ
ients 
k are the solution of the two p� p linear systemspXk=1 
�k(Bp�k)(j)(m� r) = aj ;pXk=1 
k�1(Bp�k)(j)(m� r) = (�1)jbj (j = 0; : : : ; p� 1)with the same 
oeÆ
ient matrix.The proposition is a dire
t 
onsequen
e of [6, Theorem 1℄ and thefa
t that (Bp�k)(j)(m� r) = (�1)j(Bpk�1)(j)(m+ r):Sin
e our kernels are even, we have by (3.1) and (3.2) for our ap-pli
ation that aj = (�1)jbj. Hen
e it remains to solve only one p � psystem to obtain all 
oeÆ
ients 
k. Of 
ourse, for large p 2 N, this sys-tem is ill-
onditioned. However, we will only need small values of p inour algorithm, and, for p � 16, the 
orresponding systems 
an be solvedwithout substantial errors.Finally note that the fast evaluation of the spline S(x) 
an be realizedby the de Boor algorithm [7℄.3.2 Regularization by polynomial interpolationTo 
onstru
t polynomials KI and KB of degree 2p � 1 whi
h ful�ll the2p Hermite interpolation 
onditions (3.1) and (3.2), respe
tively, we usethe following two-point Taylor interpolation, see e. g. [1, Corollary 2.2.6℄:Proposition 3.2 (Two-point Taylor interpolation) For given aj , bj(j = 0, . . . , p � 1) there exists a unique polynomial P of degree 2p � 1whi
h satis�es the interpolation 
onditionsP (j)(m� r) = aj ; P (j)(m+ r) = bj (j = 0; : : : ; p� 1) (3.3)



10 M. FENN AND G. STEIDLat the endpoints of an interval [m � r;m + r℄ (r > 0). This polynomial
an be written asP (x) = p�1Xj=0 p�1�jXk=0 �p� 1 + kk � (x�m+ r)jj! �x�m� r�2r �p�x�m+ r2r �kaj+ (x�m� r)jj! �x�m+ r2r �p�x�m� r�2r �kbj!:(3.4)As in the spline 
ase, the representation (3.4) 
an be further simpli�edif we have even kernels and (3.1), (3.2) in mind.Corollary 3.3 For given aj and bj = (�1)jaj (j = 0; : : : ; p � 1) theunique polynomialP of degree 2p�1 whi
h satis�es (3.3) at the endpointsof an interval [m� r;m+ r℄ (r > 0) is given byP (x) = 12p p�1Xj=0 
j(1� y2)j�(1� y)p�j + (1 + y)p�j�; (3.5)where y := x�mr and
j := jXl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l:Proof. By (3.4) we obtain for our spe
ial setting thatP (x) = 12p p�1Xj=0 p�1�jXk=0 �p� 1 + kk � rj2k ajj! �(1+y)j+k(1�y)p+(1�y)j+k(1+y)p�:Now the 
hange of the summation order results in the desired formulaP (x) = 12p p�1Xj=0 jXl=0 �p� 1 + ll �rj�l2l aj�l(j � l)!�(1+y)j(1�y)p+(1�y)j(1+y)p�:2In the next se
tion we will estimate the approximation error intro-du
ed by our fast algorithm. For this purpose we will need an estimatefor the pth derivative of KI and KB , respe
tively.



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 11Theorem 3.4 For p 2 N, the pth derivative of the polynomial P in (3.5)
an be estimated by maxx2[m;m+r℄ ���P (p)(x)��� � p!�32�pr�p 
;where 
 := p�2Xl=0 �p� 1 + ll � rp�1�l2l(p� 1� l)! jap�1�lj :Proof. Sin
e the two-point Taylor interpolation polynomial reprodu
espolynomials of degree at most 2p� 1, we obtain for the polynomial � 1by Corollary 3.3 that12p p�1Xj=0�p� 1 + jj �(1� y2)j2j �(1� y)p�j + (1 + y)p�j� = 1: (3.6)On the other hand, if we reorder the sum in (3.5) with respe
t to the
oeÆ
ients al (l = 0; : : : ; p � 1), then (3.6) is just the 
oeÆ
ient of a0.Thus, a0 does not appear in the pth derivative of any polynomial P ofthe form (3.5).Now, sin
e ddx y = 1r , the pth derivative of (3.5) 
an be written asP (p)(x) = � 12r�p p�1Xj=1 ~
j dpdyp h(1� y2)j�(1� y)p�j + (1 + y)p�j�i; (3.7)where ~
j := j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l:We 
onsider Qj(y) := dpdyp �(1� y2)j 2Rj(y)� withRj(y) :=12 �(1� y)p�j + (1 + y)p�j�=1 +�p� j2 �y2 +�p� j4 �y4 + : : :+(yp�j for p� j even;(p� j)yp�j�1 for p� j odd:



12 M. FENN AND G. STEIDLObviously Rj(y) is an even polynomial in y of degree at most p� j withpositive 
oeÆ
ients and thereforeR(l)j (y) � 0 for y � 0 and maxy2[0;1℄ jR(l)j (y)j = R(l)j (1): (3.8)By applying the Leibniz rule we getQj(y) = 2 pXk=0�pk� dkdyk �(1� y2)j� dp�kdyp�k [Rj(y)℄= 2 pXk=j �pk� dk�jdyk�j djdyj �(1� y2)j� dp�kdyp�k [Rj(y)℄and further by the Rodrigues formula of the Legendre polynomials, i. e.Pj(x) = (�1)j 12jj! djdxj [(1� x2)j ℄,Qj(y) = (�1)j2j+1j! pXk=j�pk�P (k�j)j (y)R(p�k)j (y):We know that maxy2[0;1℄ jP (k�j)j (y)j = P (k�j)j (1) (see, e. g. [18℄). Conse-quently, we obtain together with (3.8) thatmaxy2[0;1℄ jQj(y)j = 2j+1j! pXk=j�pk�P (k�j)j (1)R(p�k)j (1) = jQj(1)j: (3.9)On the other hand we 
on
lude by the Leibniz rule thatQj(y) = dpdyp h(1� y2)j�(1� y)p�j + (1 + y)p�j�i= dpdyp �(1� y)p(1 + y)j + (1� y)j(1 + y)p�=p! jXk=0�pk��jk�(�1)k �(1� y)k(1 + y)j�k(�1)p+ (1 + y)k(1� y)j�k� :



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 13Now jQj(1)j 
an be easily estimated byjQj(1)j = p! ����� jXk=0�pk��jk�(�1)k �Æk;02j�k(�1)p + 2kÆk;j������= p! ����(�1)p2j +�pj�2j(�1)j ����= 2jp! ����(�1)j�pj�+ (�1)p����� 2jp!��pj�+ 1� :Here Æk;j denotes the Krone
ker symbol. Combining this with (3.7) and(3.9), we obtain for x 2 [m;m+ r℄ thatjP (p)(x)j � � 12r�p p�1Xj=1 j~
jj jQj(1)j� p!� 12r�p0�p�1Xj=1�pj�2j + p�1Xj=1 2j1A maxj=1;:::;p�1 j~
j j= p!� 12r�p�(1 + 2)p � 2p + 2p � 3� maxj=1;:::;p�1 j~
j j< p!� 32r�p maxj=1;:::;p�1 j~
jj :It remains to estimate max j~
j j. By de�nition of ~
j it followsj~
jj = �����j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! aj�l������ j�1Xl=0 �p� 1 + ll � rj�l2l(j � l)! jaj�lj =: sj:Now one 
an easily 
he
k that sj � sj+1 for 1 � j � p � 2. Thus,maxj=1;:::;p�1 j~
jj � sp�1 = 
 and we are done. 2Now we apply Theorem 3.4 and Corollary 3.3 with respe
t to ourspe
ial polynomials KI and KB , i. e. we 
onsider the intervals [�"I ; "I ℄



14 M. FENN AND G. STEIDLand [12 � "B ; 12 + "B ℄ and set aj := K(j)(�"I) = (�1)jK(j)("I) andaj := K(j)(12 � "B), respe
tively. The result 
an be summarized asfollows:Corollary 3.5 The polynomials KI and KB whi
h satisfy (3.1) and(3.2), respe
tively, are given by (3.5) with y = x"I , y = x�1=2"B and 
j =
I=Bj , respe
tively, where
Ij := jXl=0 �p� 1 + ll �(�1)j�l"j�lI2l(j � l)! K(j�l)("I);
Bj := jXl=0 �p� 1 + ll �(�1)j�l"j�lB2l(j � l)! K(j�l)��12 + "B� :The polynomials ful�ll the estimatesmaxx2[0;"I ℄ ���K(p)I (x)��� � p!�32�p"�pI 
I ; (3.10)maxx2[ 12�"B; 12 ℄ ���K(p)B (x)��� � p!�32�p"�pB 
B (3.11)with 
I := p�2Xl=0 �p� 1 + ll � "p�1�lI2l(p� 1� l)! ���K(p�1�l)("I)��� ; (3.12)
B := p�2Xl=0 �p� 1 + ll � "p�1�lB2l(p� 1� l)! ����K(p�1�l)�12 � "B����� :(3.13)4 Error EstimatesBeyond the well-known errors appearing in the NFFT 
omputationswhi
h are dis
ussed for example in [20℄, our algorithm introdu
es theerrors jf(yj) � ~f(yj)j (j = 1; : : : ;M). By (2.4), (2.5) and (2.1), we ob-



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 15tain for jyj � 14 � "B2 that���f(y)� ~f(y)��� = ����� NXk=1�k � ~K(y � xk)� Tn( ~K)(y � xk)������� NXk=1 j�kj kKerrk1;wherekKerrk1 := maxjxj� 12 jKerr(x)j ; Kerr(x) := ~K(x)� Tn( ~K)(x): (4.1)Lemma 4.1 Let K be an even kernel and let ~K 2 Hp(T) be de�ned by(2.2). Then, for 2 � p� n, the following estimate holds true:kKerrk1 � C(p� 1)�pnp�1 12Z0 j ~K(p)(x)jdx:Proof. The proof follows by standard arguments. By Fourier expansionof ~K and (2.3) we obtain for x 2 [�12 ; 12 ℄ thatKerr(x) =Xk2Z
k( ~K) e2�ikx�Xl2I1n �lbl e2�ilx;where the Fourier 
oeÆ
ients 
k( ~K) are de�ned in (A.1). Further, itfollows by the aliasing formula (see Theorem Appendix A:.1) thatKerr(x) = Xk2I1n �kXr2Zr 6=0 
k+rn( ~K) e2�ikx(e2�irnx�1):Sin
e ~K is even, we 
an estimatekKerrk1 � 4 1Xk=n2 "k j
k( ~K)j:By 
onstru
tion we have that ~K 2 Hp(T) whi
h implies that
k( ~K) = (2�ik)�p 
k( ~K(p))



16 M. FENN AND G. STEIDLso that kKerrk1 � 40� 1Xk=n2 "k (2�k)�p1A 12Z� 12 j ~K(p)(x)jdx:For p � 2 the above sum 
an be estimated by an upper integralkKerrk1 � 2�1 + p�1n �(p� 1)�pnp�1 12Z� 12 j ~K(p)(x)jdx:Sin
e p� n, this implies the assertion with a 
onstant C � 4. 2Now we obtain by the de�nition of ~K that12Z0 j ~K(p)(x)jdx = "IZ0 jK(p)I (x)jdx+ 12�"BZ"I jK(p)(x)jdx+ 12Z12�"B jK(p)B (x)jdxand for the polynomials KI and KB in Corollary 3.5 by (3.10), (3.11)12Z0 j ~K(p)(x)jdx � p!�32�p �"1�pI 
I + "1�pB 
B� + 12�"BZ"I jK(p)(x)jdx:(4.2)It remains to estimate K(p) and the values 
I , 
B whi
h depend onK(j)("I) and K(j)(12 � "B), respe
tively. Therefore we have to estimatethe derivatives of K.For the kernels (1.2) and j 2 N we have���K(j)� (x)��� = (j + � � 1)!(� � 1)! jxj�(j+�) (x 6= 0;� 2 N0); (4.3)where we set (�1)! := 1 in 
ase � = 0.Theorem 4.2 For � 2 N0 , let K = K� be de�ned by (1.2) and ~K by(2.2) with KI and KB given by Corollary 3.5, where "I � minf"B ; 12 �"Bg. Then, for 2 � p� n, the error kKerrk1 in (4.1) 
an be estimatedby kKerrk1 � C� (p+ � � 2 + Æ0;�)!"p+��1I 3p�pnp�1 (4.4)with a 
onstant C� independent of p; n and "I .



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 17Proof. We 
onsider the summands in (4.2). By (4.3) we obtain that12�"BZ"I jK(p)(x)jdx = (p+ � � 1)!(� � 1)! 12�"BZ"I jxj�(p+�) dx� (p+ � � 2)!(� � 1)! "�(p+��1)I :Sin
e "I � minf"B ; 12 � "Bg it follows by (3.12), (3.13) and (4.3) that
B"1�pB � 
I"1�pI . Thus it remains to estimate 
I"1�pI . By (3.12) and(4.3) we get
I"1�pI � 1"p�1+�I p�2Xl=0 �p� 1 + ll �(p� 2� l + �)! 2�l(� � 1)!(p � 1� l)!� 1"p�1+�I �p� 2 + �� � 1 � p�1Xl=0 �p� 1 + ll �2�l;where we set � n�1� := 1 in 
ase � = 0. Using y = 0 in (3.6) we see thatthe last sum equals 2p�1 so thatp! �32�p 
I"1�pI � p(p+ � � 2 + Æ0;�)! 3p2(� � 1)! "�(p+��1)I :Combining these estimates with (4.2) and Lemma 4.1 we obtain theassertion. 2Of 
ourse, for small 
, the derivatives of the generalized multiquadri
sK�(x; 
) behave similar to those of K�(x). The following lemma esti-mates the derivatives of the generalized multiquadri
s by taking 
 intoa

ount.Lemma 4.3 The derivatives ofK(x) = K�(x; 
) := (x2 + 
2)��2 (� 2 N; odd)
an be estimated by���K(j)� (x; 
)��� � 4q�(1 + 2
2x2 ) (j + � � 1)!p2j���2� (x2 + 
2) j+�2 :



18 M. FENN AND G. STEIDLProof. We use the well-known formula [22℄K�(x; 
) = 1
����2� 1Z0 e�t(x2=
2+1)t(��2)=2 dt:By di�erentiation we obtainK(j)� (x; 
) = 1
����2� 1Z0 djdxj he�tx2=
2i e�tt(��2)=2 dt:Using the Rodrigues formula of Hermite polynomials, i. e.Hj(x) = (�1)jex2 djdxj �e�x2�, we 
an rewrite this asK(j)� (x; 
) = 1
����2� 1Z0 (�1)je�tx2=
2Hj�xpt
 ��pt
 �j e�tt(��2)=2 dt:Now we substitute y = xpt
 and obtainK(j)� (x; 
) = 2(�1)j���2�xj+� 1Z0 e�y2Hj(y)e�y2
2=x2yj+��1 dy:Sin
e the integrand is even, this is equal toK(j)� (x; 
) = (�1)j���2�xj+� 1Z�1 e�y2Hj(y)e�y2
2=x2yj+��1 dy:By the Cau
hy-S
hwarz inequality we get���K(j)� (x; 
)��� � 1���2� jxjj+� 0� 1Z�1 e�y2H2j (y) dy1A 120� 1Z�1 e�y2(1+2
2=x2)y2(j+��1) dy1A12 :By the normalization of the Hermite polynomials, i. e.1Z�1 e�x2Hj(x)Hm(x) dy = (0 for j 6= m;2jj!p� for j = m;



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 19the �rst integral is equal to 2jj!p� . To evaluate the se
ond integral weset �2 := 1 + 2
2x2 and use that1Z�1 e��2y2y2(j+��1) dy = 1�2(j+�)�1�(j+�� 12) � 1�2(j+�)�1 (j+��1)! :Combining these estimates we arrive at���K(j)� (x; 
)��� � 4q�(1 + 2
2x2 ) �(j + � � 1)! j! 2j�1=2���2� (x2 + 2
2) j+�2 : 2Theorem 4.4 For odd � 2 N [ f�1g, let K = K�( � ; 
) be de�ned by(1.3) and ~K by (2.2) with KI and KB given by Corollary 3.5, where"I � minf"B ; 12 � "Bg. Further, let 0 < 
 � "I . Then the error kKerrk1in (4.1) 
an be estimated bykKerrk1 � C� (p+ � � 2 + 2Æ�1;�)!("2I + 
2) p+��12 (3p2)p�pnp�1with a 
onstant C� independent of p; n and "I .Proof. The proof follows the same lines as the proof of Theorem 4.2.First we obtain for � 2 N by Lemma 4.3 and sin
e 
2 � "2I that12�"BZ"I jK(p)(x)jdx � C (p+ � � 1)!p2 p���2� 12�"BZ"I (x2 + 
2)�(p+�)=2 dx� C (p+ � � 2)!p2 p+1���2� ("2I + 
2)�(p+��1)=2:Next we have for � 2 N by (3.12) and Lemma 4.3 that
I"1�pI � Cp2p�1���2�("2I + 
2)(p+��1)=2 �p�2Xl=0 �p� 1 + ll �(p� 2� l + �)!(p� 1� l)! 0�q"2I + 
22p2"I 1Al (4.5)



20 M. FENN AND G. STEIDLand sin
e 
2 � "2I further
I"1�pI � C� (p� 2 + �)! p2p�1(p� 1)! ("2I + 
2)(p+��1)=2 p�1Xl=0 �p� 1 + ll � 2�l� C� (p� 2 + �)! (2p2)p�1(p� 1)! ("2I + 
2)(p+��1)=2 :This results inp! �32�p 
I"1�pI � C� p (p+ � � 2)! (3p2)p2p2 ("2I + 
2)�(p+��1)=2 :Substituting of these estimates in (4.2) and applying Lemma 4.1 weobtain the assertion for � 2 N.The 
ase � = �1 follows similarly by using the fa
t that the Hardymultiquadri
 K�1(x; 
) = (x2 + 
2) 12 ful�llsK(j)�1(x; 
) = 
2K(j�2)3 (x; 
) (j = 2; 3; : : :) : 2Note that the right{hand side of (4.5) also 
onverges under theweaker 
ondition 
2 < 7"2I so that one 
an prove similar estimates withdp, d > 3p2, instead of (3p2)p assuming weaker 
onditions than 
2 < "2I .We will use the estimates in the Theorems 4.2 and 4.4 to spe
ify theparameters "I ; p and n of our algorithm. Sin
e both 
ases 
an be handledin the same way, we restri
t our attention to Theorem 4.2. Using theStirling formula p! � 1:1p2�p �pe�p we 
an rewrite our error estimate askKerrk1 � ~C� "��I � 3e� p� 1"I n �p�1 (p+ � � 2 + Æ0;�)!p2�(p� 1)(p� 1)! :Thus, 
hoosing "I su
h that 3(p�1)e� "In < 1, our error de
ays exponentiallyin p. In our numeri
al examples we 
hoose"I = pn: (4.6)While (4.6) steers the error, 
ondition (2.6) on "I is ne
essary to keepthe near �eld 
omputation linear in M . Now (4.6) and (2.6) togetherimply that n � 2Np� : (4.7)



FAST NFFT BASED SUMMATION OF RADIAL FUNCTIONS 21If M = N , then the near �eld 
omputation requires approximately�Nand the NFFT 
omputationsn log n+O(N) = 2Np� log�2Np� �+O(N)arithmeti
 operations. One should 
hoose � su
h that both operation
ounts are balan
ed. It seems that � � 2pp, respe
tively by (4.7),n � ppNis a good 
hoi
e.5 Fast Summation at Multidimensional KnotsIn this se
tion we brie
y explain how to extend our one-dimensionals
heme to higher dimensions d � 2 and rotation-invariant kernels K(x) =K(jxj). We fo
us on the fast 
omputation off(yj) := NXk=1�kK(yj � xk) = NXk=1�kK(jyj � xkj) (xk; yj 2 Rd) (5.1)for j = 1; : : : ;M . Similar as in Se
tion 3 we regularize K near 0 and nearthe boundary of [�12 ; 12)d to obtain a smooth periodi
 kernel ~K:~K(x) := 8>>>><>>>>:KI(jxj) if jxj � "I ;KB(jxj) if 12 � "B < jxj < 12 ;KB�12� if jxj � 12 ;K(jxj) otherwise:Here we 
hoose KI as in Corollary 3.3. But instead of (3.2) we requirethat the polynomial KB ful�lls the 
onditionsK(j)B �12 � "B� = K(j)�12 � "B� (j = 0; : : : ; p� 1);K(j)B �12� = Æ0;j K�12� ; (j = 0; : : : ; p� 1): (5.2)



22 M. FENN AND G. STEIDLThe unique solution KB of (5.2) is given by Theorem 3.2, but now itdoes not have the symmetry of Corollary 3.3.Then we approximate ~K by the Fourier seriesTn( ~K)(x) :=Xl2Idn �lbl e2�ilx;where bl := 1nd Xj2Idn �j ~K�jn� e�2�ijl=n (l 2 Idn):Now we 
an de
ompose the original kernel asK = (K � ~K) + � ~K � Tn( ~K)�+ Tn( ~K)and, by negle
ting the summand in the middle, we approximate f by~f(x) := NXk=1�k(K � ~K)(x� xk) + NXk=1�kTn( ~K)(x� xk): (5.3)Instead of f we evaluate ~f at the knots yj 2 Rd (j = 1; : : : ;M) by thefollowing two steps:1) Near �eld 
omputation (�rst sum in (5.3))To a
hieve the desired 
omplexity of our algorithm we suppose thateither the N points xk or the M points yj are \suÆ
iently uniformlydistributed" in the ball with radius 12 � "B , i. e., we suppose that thereexists a small 
onstant � 2 N su
h that ea
h ball with radius "I 
ontainsat most � of the points xk or of the points yj, respe
tively. This impliesthat "I depends linearly on N�1=d, respe
tively M�1=d. In the followingwe restri
t our attention to the 
ase"I � 12 � �N �1=d : (5.4)Then, as in one dimension, the 
omputation of the �rst sum requiresonly � � M arithmeti
 operations.2) NFFT based summation (se
ond sum in (5.3))The evaluation of the se
ond sum in (5.3) is done exa
tly in the sameway as in one dimension, but with d-dimensional NFFTs of size n now,
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h really involve a multidimensional setting. This 
omputation partrequires O(nd log n+N +M) arithmeti
 operations.To obtain an exponential error de
ay in p, we have to 
hoose again"I � pn ; see (4.6). On the other hand, we have to ensure (5.4) for aneÆ
ient near �eld 
omputation. Thus,n � 2p�N� �1=d :To get a balan
ed arithmeti
 
omplexity of both parts of our algorithmone may 
hoose n � ppN1=d if N =M .6 Numeri
al ExamplesOur algorithms were implemented in C using double pre
ision arithmeti
and tested on an AMD Athlon(tm) XP 1800+, 512MB RAM, SuSe-Linux8.2.Throughout our experiments we apply the NFFT/NFFTT pa
kage[16℄ with Kaiser-Bessel fun
tions and oversampling fa
tor � = 2.For simpli
ity we have 
hosen M = N in our summation algorithmand randomly distributed knots yj = xj (j = 1 : : : ; N) in fx j jxj � 732g,i. e. "B = 116 . The 
oeÆ
ients �k were randomly distributed in [0; 1℄.Moreover, we set "I = pn .We are interested in the errorE := maxj=1;:::;N jf(xj)� ~f(xj)jjf(xj)j : (6.1)Figure 2 shows the behaviour of E in 2D for various kernels in (1.2)and (1.3) with spline regularization (left) and regularization by algebrai
polynomials (right). Here we have 
hosen N = 5122 points, n = pNand 
 = 1=pN as parameter of the generalized multiquadri
s. Furtherwe use the trun
ation parameter m = 8 in the NFFT 
omputations.First we observe that the error E with spline regularization is slightlybetter than the error with regularization by algebrai
 polynomials. Fur-ther, the results 
on�rm the exponential error de
ay with in
reasing pproved in the Theorems 4.2 and 4.4. In the following we will always useregularization by polynomial interpolation.
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Figure 2: Error E in dependen
e on p for various kernels in 2D withN = 5122, n = 512; regularization by spline interpolation (left) and bypolynomial interpolation (right).Figure 3 presents the 1D error E in dependen
e on p for the Hardymultiquadri
 (left) and the inverse Hardy multiquadri
 (right) with var-ious s
aling parameters 
. Here we took n = N = 1024. Further weuse the trun
ation parameter m = 8 in the NFFT 
omputations. Asexpe
ted, for de
reasing 
, the error in
reases until 
 = 1N , where it isapproximately the same as for 
 = 0 in both 
ases. For 
 = 1, the erroris about the same for both multiquadri
s. In this 
ase, we 
an also applythe algorithm without inner regularization, i. e. without near �eld 
om-putation. The 
orresponding 
urve is drawn with symbol M. Note thatwithout inner regularization n does not depend on N and the 
omplexityof our algorithm be
omes linear in N .Figure 4 
ompares the 
omputational time in dependen
e on thenumber N of two-dimensional points for the dire
t 
omputation of (5.1)and for our algorithm. As kernel fun
tion we have used K(x) = log jxj.The parameters for our algorithm were n = 2pN and p = 4 to a
hievean a

ura
y of E � 10�6. Further we use the trun
ation parameterm = 4 in the NFFT 
omputations. Note that the 
omputation time forthe near �eld 
omputation in
ludes the time for the sear
h of all pointsin the near �eld whi
h requires O(logN). The dire
t 
omputation forN = 220 was only estimated based on the 
omputational time and errorfor the �rst 1000 points, sin
e the dire
t 
omputation would take about66 hours. Comparing this time with about 1:6 minutes required by our
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Figure 3: Error E in dependen
e on p for the Hardy multiquadri
 (left)and the inverse multiquadri
 (right) in 1D with various parameters 
 andn = N = 1024. Here 
 = 1� denotes the algorithm without near �eld
omputation.
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fastFigure 4: Computational time versus the number N of points in 2D forthe dire
t summation and our algorithm with n = 2pN and K(x) =log jxj.algorithm, the time saving for large problem sizes N be
omes 
lear.Finally, Table 1 
ompares the 
omputational times required by ouralgorithm and by the algorithm proposed by Beatson et al. in [5℄. Inorder to a
hieve an error E � 10�6 in our algorithm, we have 
hosenm = 4 and p = 3. Further we have adapted the length n � ppN ofour NFFT su
h that the in
orporated FFTs show a good performan
e.



26 M. FENN AND G. STEIDLour algorithm Beatson et al.N n dire
t fast dire
t fast2000 96 2:70 � 10�1 6:0� 10�2 2:97� 10�1 7:8� 10�24000 144 1:02 � 10+0 1:50 � 10�1 1:19� 10+0 2:03 � 10�18000 180 4:48 � 10+0 3:10 � 10�1 4:75� 10+0 4:84 � 10�116000 216 2:32 � 10+1 7:20 � 10�1 2:50� 10+1 9:84 � 10�132000 288 9:33 � 10+1 1:83 � 10+0 1:10� 10+2 2:23 � 10+0Table 1: Computational times (in se
onds) of the algorithm of Beatsonet al. in [5℄ and of our algorithm for K(x) = px2 + 
2 in R2 .As in [5℄ the multiquadri
 parameter was 
 = 1pN and the 
oeÆ
ientswere �k = 1 for all k = 1; : : : ; N . The 
omputational times for theBeatson algorithm were taken fron Table 9.1 in [5℄. Note that a di�erenthardware was used for both algorithms so that the time for the dire
t
omputation may serve as a measure for 
omparison.Referen
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