Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation

Publikationen

Inhaltsbereich / Content

Publikationen von Martin Grothaus

Akzeptiert zur Publikation oder bereits erschienen in begutachteten Zeitschriften oder begutachteten Sammelbänden (Gesamtzahl: 54)

  • M. Grothaus; R. Voßhall (2017).
    Stochastic differential equations with sticky reflection and boundary diffusion.
    Electronic Journal of Probability. 22, (7), 37 pp.
    [doi] [BibTex]

  • M. Grothaus; Felix Riemann (2017).
    A fundamental solution to the Schrödinger equation with Doss potentials and its smoothness.
    Journal of Mathematical Physics. 58, (5), 25 pp.
    [doi] [BibTex]

  • M. Grothaus and R. Voßhall (2017).
    Strong Feller property of sticky reflected distorted Brownian motion.
    Zur Veröffentlichung akzeptiert in J. Theor. Probab.
    [doi] [BibTex]

  • B. Baur, M. Grothaus (2017).
    Skorokhod decomposition for a reflected $\cal L^p$-strong Feller diffusion with singular drift.
    Stochastics.
    [doi] [www] [BibTex]

  • T. Fattler; M. Grothaus; R. Voßhall (2016).
    Construction and analysis of a sticky reflected distorted Brownian motion.
    Annales de l’Institut Henri Poincaré. 52, (2), 735-762.
    [doi] [BibTex]

  • M. Grothaus; N. Marheineke (2016).
    On a nonlinear partial differential algebraic system arising in the technical textile industry: analysis and numerics.
    IMA Journal of Numerical Analysis. 36, (4), 1783-1803.
    [doi] [www] [BibTex]

  • M. Grothaus; F. Jahnert (2016).
    Mittag-Leffler analysis II: Application to the fractional heat equation.
    Journal of Functional Analysis. 270, (7), 2732-2768.
    [doi] [BibTex]

  • Butko, Y.A.; Grothaus, M., Smolyanov, O.G. (2016).
    Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions.
    Journal of Mathematical Physics. 57, (2), 023508, 22 pp.
    [doi] [BibTex]

  • M. Grothaus; P. Stilgenbauer (2016).
    Hilbert space hypocoercivity for the Langevin dynamics revisited.
    Methods of Functional Analysis and Topology. 22, (2), 152-168.
    [www] [BibTex]

  • M. Grothaus; F. Jahnert; F. Riemann; J. L. da Silva (2015).
    Mittag-Leffler analysis I: Construction and characterization.
    Journal of Functional Analysis. 268, (7), 1876-1903.
    [doi] [BibTex]

  • W. Bock; M. Grothaus (2015).
    The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distribution.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 18, (2), 1550010, 22 pp.
    [doi] [BibTex]

  • M. Grothaus; P. Stilgenbauer (2015).
    A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions.
    Integral Equations and Operator Theory. 83, (3), 331-379.
    [doi] [BibTex]

  • B. Baur; M. Grothaus (2014).
    Construction and strong Feller property of distorted elliptic diffusion with reflecting boundary.
    Potential Analysis. 40, (4), 391-425.
    [doi] [BibTex]

  • M. Grothaus; F. Riemann; H. P. Suryawan (2014).
    A White Noise approach to the Feynman integrand for electrons in random media.
    Journal of Mathematical Physics. 55, (1), 013507, 16 pp.
    [doi] [BibTex]

  • M. Grothaus; A. Klar; J. Maringer; P. Stilgenbauer; R. Wegener (2014).
    Application of a three-dimensional fiber lay-down model to non-woven production processes.
    Journal of Mathematics in Industry. 14, (4), Art. 4, 19 pp.
    [doi] [BibTex]

  • M. Grothaus; P. Stilgenbauer (2014).
    Hypocoercivity for Kolmogorov backward evolution equations and applications.
    Journal of Functional Analysis. 267, (10), 3515-3556.
    [doi] [BibTex]

  • Bock, W.; Götz, T.; Grothaus, M.; Liyanage, U.P. (2014).
    Parameter estimation from occupation times—a white noise approach.
    Communications on Stochastic Analysis. 8, (4), 489-499.
    [www] [BibTex]

  • F. Conrad; T. Fattler; M. Grothaus (2013).
    An invariance principle for the tagged particle process in continuum with singular interaction potential.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 16, (4), 1350032, 37 pp.
    [doi] [BibTex]

  • B. Baur; M. Grothaus; P. Stilgenbauer (2013).
    Construction of $L^p$-strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions.
    Potential Analysis. 38, (4), 1233-1258.
    [doi] [BibTex]

  • M. Grothaus; P. Stilgenbauer (2013).
    Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology.
    Stochastics and Dynamics. 13, (4), 135001, 34 pp.
    [doi] [BibTex]

  • B. Baur; M. Grothaus; Mai T. T. (2013).
    Analytically weak solutions to linear SPDEs with unbounded time-dependent differential operators and an application.
    Communications on Stochastic Analysis. 7, (4), 551-571.
    [www] [BibTex]

  • M. Grothaus; L. Streit; A. Vogel (2012).
    The complex scaled Feynman-Kac formula for singular initial distributions.
    Stochastics. 84, (2-3), 347-366.
    [doi] [BibTex]

  • B. Baur; F. Conrad; M. Grothaus (2012).
    Smooth contractive embeddings and application to Feynman formula for parabolic equations on smooth bounded domains.
    Communications in Statistics - Theory and Methods. 40, (19-20), 3452-3464.
    [doi] [BibTex]

  • F. Conrad; M. Grothaus; J. Lierl; O. Wittich (2012).
    Convergence of Brownian motion with a scaled Dirac Delta potential.
    Proceedings of the Edinburgh Mathematical Society. 55, (2), 403-427.
    [doi] [BibTex]

  • W. Bock; M. Grothaus (2012).
    White noise approach to phase space Feynman path integrals.
    Theory Probab. Math. Stat.. 85, 7-22.
    [BibTex]

  • W. Bock; M. Grothaus; S. Jung (2012).
    The Feynman integrand for the charged particle in a constant magnetic field as White Noise distribution.
    Communications in Stochastic Analysis. 6, (4), 649-668.
    [www] [BibTex]

  • F. Conrad; M. Grothaus (2011).
    N/V-limit for Langevin dynamics in continuum.
    Reviews in Mathematical Physics. 23, (1), 1-51.
    [doi] [BibTex]

  • T. Fattler; M. Grothaus (2011).
    Tagged particle process in continuum with singular interactions.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 14, (1), 105-136.
    [doi] [BibTex]

  • M. Grothaus; M. J. Oliveira; J. L. da Silva; L. Streit (2011).
    Self-avoiding fractional Brownian motion - The Edwards model.
    Journal of Statistical Physics. 145, (6), 1513-1523.
    [doi] [BibTex]

  • F. Conrad; M. Grothaus (2010).
    Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials.
    Journal of Evolution Equations. 10, (3), 623-662.
    [doi] [BibTex]

  • Y. A. Butko; M. Grothaus; O. G. Smolyanov (2010).
    Lagrangian Feynman formulae for second order parabolic equations in bounded and unbounded domains.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 13, (3), 377-392.
    [doi] [BibTex]

  • M. Grothaus; T. Raskop (2010).
    Limit formulae and jump relations of potential theory in Sobolev spaces.
    GEM: International Journal on Geomathematics. 1, (1), 51-100.
    [doi] [BibTex]

  • M. Grothaus; T. Raskop (2009).
    The outer oblique boundary problem of potential theory.
    Numerical Functional Analysis and Optimization. 30, (7-8), 711-750.
    [doi] [BibTex]

  • M. Grothaus; L. Streit; A. Vogel (2009).
    Feynman integrals as Hida distributions: the case of non-perturbative potentials.
    SMF, Astérisque. 327, 55-68. (Dai, Xianzhe(ed.) et al., From probability to geometry I. Festschrift in honor of the 60th birthday of Jean-Michel Bismutth)
    [BibTex]

  • T. Fattler; M. Grothaus (2008).
    Construction of elliptic diffusions with reflecting boundary condition and an application to continuous N-particle systems with singular interactions.
    Proceedings of the Edinburgh Mathematical Society. Series II.. 51, (2), 337-362.
    [doi] [BibTex]

  • Y. A. Butko; M. Grothaus; O. G. Smolyanov (2008).
    Feynman formula for a class of second order parabolic equations in a bounded domain.
    Doklady Mathematics. 78, (1), 1-6.
    [doi] [BibTex]

  • M. Grothaus; A. Klar (2008).
    Ergodicity and rate of convergence for a non-sectorial fiber lay-down process.
    SIAM Journal on Mathematical Analysis. 40, (3), 968-983.
    [doi] [BibTex]

  • F. Conrad; M.Grothaus (2008).
    Construction of N-particle Langevin dynamics for $H^1,\infty$-potentials via generalized Dirichlet forms.
    Potential Analysis. 28, (3), 261-282.
    [doi] [BibTex]

  • T. Fattler; M. Grothaus (2007).
    Strong Feller properties for distorted Brownian motion with reflecting boundary condition and an application to continuous N-particle systems with singular interactions.
    Journal of Functional Analysis. 246, (2), 217-241.
    [doi] [BibTex]

  • Yu.G. Kondratiev; M. Grothaus; M. Röckner (2007).
    N/V-limit for stochastic dynamics in continuous particle systems.
    Probability Theory and Related Fields. 137, 121-160.
    [doi] [BibTex]

  • M. Grothaus (2006).
    Scaling limit of fluctuations for the equilibrium Glauber dynamics in continuum.
    Journal of Functional Analysis. 239, (2), 414-445.
    [doi] [BibTex]

  • M. Grothaus; T. Raskop (2006).
    On the oblique boundary problem with a stochastic inhomogeneity.
    Stochastics. 78, (4), 233-257.
    [doi] [BibTex]

  • M. Grothaus; L. Gross (2005).
    Reverse hypercontractivity for subharmonic functions.
    Canadian Journal of Mathematics. 57, (3), 506-534.
    [doi] [BibTex]

  • M. Grothaus; Yu.G. Kondratiev; E. Lytvynov; M. Röckner (2003).
    Scaling limit of stochastic dynamics in classical continuous systems.
    Annals of Probability. 31, (3), 1494-1532.
    [doi] [BibTex]

  • S. Albeverio; M. Grothaus; Yu.G. Kondratiev; M. Röckner (2001).
    Stochastic dynamics of fluctuations in classical continuous systems.
    Journal of Functional Analysis. 185, (1), 129-154.
    [doi] [BibTex]

  • M. Grothaus; L. Streit (2000).
    On regular generalized functions in white noise analysis and their applications.
    Methods of Functional Analysis and Topology. 6, (1), 14-27.
    [BibTex]

  • M. Grothaus; Yu.G. Kondratiev; L. Streit (2000).
    Scaling limits for the solution of Wick type Burgers equation.
    Random Operators and Stochastic Equations. 8, (1), 1-26.
    [doi] [BibTex]

  • M. Grothaus; L. Streit; I.V. Volovich (1999).
    Knots, Feynman diagrams and matrix models.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2, (3), 359-380.
    [doi] [BibTex]

  • M. Grothaus; L. Streit (1999).
    Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis.
    Reports on Mathematical Physics. 44, (3), 381-405.
    [doi] [BibTex]

  • M. Grothaus; L. Streit (1999).
    Construction of relativistic quantum fields in the framework of white noise analysis.
    Journal of Mathematical Physics. 40, (11), 5387-5405.
    [doi] [BibTex]

  • M. Grothaus; Yu.G. Kondratiev; G.F. Us (1999).
    Wick calculus for regular generalized stochastic functions.
    Random Operators and Stochastic Equations. 7, (3), 301-328.
    [doi] [BibTex]

  • M. Grothaus; Yu.G. Kondratiev; L. Streit (1999).
    Regular generalized functions in Gaussian analysis.
    Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2, (1), 1-25.
    [doi] [BibTex]

  • M. Grothaus; D.C. Khandekar; J.L. Silva; L. Streit (1997).
    The Feynman integral for time dependent anharmonic oscillators.
    Journal of Mathematical Physics. 38, (6), 3278-3299.
    [doi] [BibTex]

  • M. Grothaus; Yu.G. Kondratiev; L. Streit (1997).
    Complex Gaussian analysis and the Bargmann-Segal space.
    Methods of Functional Analysis and Topology. 3, (2), 46-64.
    [BibTex]

Bücher (Gesamtzahl: 1)

  • Bernido, Christopher C. (ed.); Carpio-Bernido, Maria Victoria (ed.); Grothaus, Martin (ed.); Kuna, Tobias (ed.); Oliveira, Maria João (ed.); da Silva, José Luís (ed.) (2016).
    Stochastic and infinite dimensional analysis. 300 p.
    Birkhäuser/Springer, Basel:
    978-3-319-07244-9 [BibTex]

Erschienen in Sammelbänden (Gesamtzahl: 6)

  • M. Grothaus; P. Stilgenbauer (2014).
    Hypocoercivity for degenerate Kolmogorov equations and applications to the Langevin dynamics.
    P. Steinmann and G. Leugering (eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014. 999-1000.
    [doi] [BibTex]

  • M. Grothaus; P. Stilgenbauer (2014).
    A hypocoercivity related ergodicity method for Kolmogorov equations.
    P. Steinmann and G. Leugering (eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014. 1009-1010.
    [doi] [BibTex]

  • M. Grothaus; A. Klar; J. Maringer; P. Stilgenbauer (2012).
    The Analysis of stochastic fiber lay-down models: Geometry and convergence to equilibrium of the basic model.
    Proceedings in Applied Mathematics and Mechanics, Vol. 12. 611-612.
    [doi] [BibTex]
  • M. Grothaus; T. Raskop (2010).
    Oblique Stochastic Boundary-Value Problem.
    Handbook of Geomathematics. Willi Freeden et al. (eds.) 1049-1076.
    [doi] [BibTex]
  • M. Grothaus; A. Vogel (2008).
    The Feynman integrand as a white noise distribution beyond perturbation theory.
    Stochastics and quantum dynamics in biomolecular systems. Bernido, Christopher C. et al. (eds.) 25-33.
    [doi] [BibTex]
  • M. Grothaus (2004).
    Dirichlet Forms and (Stochastic) Partial Differential Equations.
    Oberwolfach Reports, 1(2). 1431-1432.
    [doi] [BibTex]