Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation

PhD-Theses

Inhaltsbereich / Content

PhD-Theses

  1. C. Blick (2015) Multiscale Potential Methods in Geothermal Research: Decorrelation reflected Post-Processing and Locally Based Inversion.
  2. M. Augustin (2015) A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs.
    Referenten: W. Freeden (TU Kaiserslautern), T. Sonar (TU Braunschweig).
  3. S. Eberle (2014) Forest Fire Determination: Theory and Numerical Aspects.
    Referenten: W. Freeden (TU Kaiserslautern), L. Ferragut (Salamanca).
  4. M. Klug (2014) Integral Formulas and Discrepancy Estimates Using the Fundamental Solution to the Beltrami Operator on Regular Surfaces.
    Referenten: W. Freeden (TU Kaiserslautern), E. Grafarend (Stuttgart).
  5. S. Möhringer (2014) Decorrelation of Gravimetric Data.
    Referenten: W. Freeden (TU Kaiserslautern), J. Kusche (Bonn).
  6. E. Kotevska (2011) Real Earth Oriented Gravitational Potential Determination.
    Referenten: W. Freeden (TU Kaiserslautern), H. Schaeben (Freiberg).
  7. M. Ilyasov (2011) A Tree Algorithm for Helmholtz Potential Wavelets on Non-smooth Surfaces: Theoretical Background and Application to Seismic Data Processing.
    Referenten: W. Freeden (TU Kaiserslautern), M.M. Popov (St. Petersburg).
  8. I. Ostermann (2011) Modeling heat transport in deep geothermal systems by radial basis functions.
    Referenten: W. Freeden (TU Kaiserslautern), R. Helmig (Stuttgart).
  9. C. Gerhards (2011) Spherical Multiscale Methods in Terms of Locally Supported Wavelets: Theory and Application to Geomagnetic Modeling.
    Referenten: W. Freeden (TU Kaiserslautern), N. Olsen (Kopenhagen).
  10. A. Kohlhaas (2010) Multisclae Methods on Regular Surfaces and their Application to Physical Geodesy.
    Referenten: W. Freeden (TU Kaiserslautern), E. Groten (Darmstadt).
  11. K. Wolf (2009) Multiscale Modeling of Classical Boundary Value Problems in Physical Geodesy by Locally Supported Wavelets.
    Referenten: W. Freeden (TU Kaiserslautern), R. Rummel (München).
  12. T. Fehlinger (2009) Multiscale Formulations for the Disturbing Potential and the Deflections of the Vertical in Locally Reflected Physical Geodesy
    Referenten: W. Freeden (TU Kaiserslautern), P. Holota (Prag).
  13. O. Schulte (2009) Euler Summation Oriented Spline Interpolation.
    Referenten: W. Freeden (TU Kaiserslautern), E.W. Grafarend (Stuttgart).
  14. Ali Moghiseh (2007) Fast Wavelet Transform by Biorthogonal Locally Supported Radial Bases Functions on Fixed Spherical Grids.
    Referenten: W. Freeden (TU Kaiserslautern), M. Schreiner (Buchs).
  15. Martin Gutting (2007) Fast Multipole Methods for Oblique Derivative Problems.
    Referenten: W. Freeden (TU Kaiserslautern), O.Steinbach.
  16. A. Luther (2007) Vector Field Approximation on Regular Surfaces in Terms of Outer Harmonic Representations.
    Referenten: W. Freeden (Kaiserslautern), G. Schüler (Kaiserslautern)
  17. S. Gramsch (2006) Integralformeln und Wavelets auf regulären Gebieten der Sphäre.
    Referenten: W. Freeden (Kaiserslautern), M. Schreiner (Buchs)
  18. A. Amirbekyan (submitted 2006, accepted 2007) The Application of Reproducing Kernel Based Spline Approximation to Seismic Surface and Body Wave Tomography: Theoretical Aspects and Numerical Results.
    Referenten: Prof. Dr. Frederik J. Simons (Princeton) and HDoz. Dr. V. Michel (TU Kaiserslautern).
  19. D. Michel (2006) Framelet Based Multiscale Operator Decomposition.
    Referenten: Prof. Dr. Peter Maaß (Bremen) and HDoz. Dr. V. Michel (TU Kaiserslautern).
  20. M. J. Fengler (2005) Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incompressible Navier-Stokes Equation on the Sphere.
    Referenten: W. Freeden (TU Kaiserslautern), T. Sonar (Braunschweig).
  21. F. Bauer (2004) An Alternative Approach to the Oblique Derivative Problem in Potential Theory.
    Referenten: W. Freeden (TU Kaiserslautern), S. Pereverzev (Linz).
  22. C. Mayer (2003) Wavelet Modelling of Ionospheric Currents and Induced Magnetic Fields From Satellite Data.
    Referenten: W. Freeden (TU Kaiserslautern), H. Löhr (Potsdam).
  23. M.K. Abeyratne (2003) Cauchy-Navier Wavelet Solvers and Their Application in Deformation Analysis.
    Referenten: W. Freeden (TU Kaiserslautern), E. Groten (Darmstadt).
  24. K. Hesse (2003) Domain Decomposition Methods in Multiscale Geopotential Determination from SST and SGG.
    Referenten: W. Freeden (TU Kaiserslautern), E. Groten (Darmstadt), I. Sloan (Sydney).
  25. T. Maier (2002) Multiscale Geomagnetic Field Modelling From Satellite Data: Theoretical Aspects and Numerical Applications.
    Referenten: W. Freeden (TU Kaiserslautern), N. Olsen (DSRI, Copenhagen).
  26. R. Litzenberger (2001) Pyramid Schemes for Harmonic Wavelets in Boundary--Value Problems.
    Referenten: W. Freeden (TU Kaiserslautern), E. Schock (TU Kaiserslautern).
  27. H. Nutz (2001) A Unified Setup of Gravitational Field Observables.
    Referenten: W. Freeden (TU Kaiserslautern), J. Prestin (Lübeck), R. Rummel (München).
  28. O. Glockner (2001) On Numerical Aspects of Gravitational Field Modelling from SST and SGG by Harmonic Splines and Wavelets (With Application to CHAMP Data).
    Referenten: W. Freeden (TU Kaiserslautern), J. Kusche (Delft), H. Sönkel (Graz).
  29. S. Beth (2000) Multiscale Approximation by Vector Radial Basis Functions on the Sphere.
    Referenten: W. Freeden (TU Kaiserslautern), J. Mason (Huddersfield), B. Witte (Bonn).
  30. M. Bayer (1999) Geomagnetic Field Modelling From Satellite Data by First and Second Generation Wavelets.
    Referenten: W. Freeden (TU Kaiserslautern), H. Löhr (Potsdam), S.L. Svensson (Lund).
  31. V. Michel (1999) A Multiscale Method for the Gravimetry Problem: Theoretical and Numerical Aspects of Harmonic and Anharmonic Modelling:
    Referenten: W. Freeden (Kaiserlautern), E. Groten (Darmstadt) , E. Schock (TU Kaiserslautern).
  32. F. Schneider (1997) Inverse Problems in Satellite Geodesy and Their Approximate Solution by Splines and Wavelets.
    Referenten: W. Freeden (TU Kaiserslautern), E. Schock (TU Kaiserslautern).
  33. M. Tücks (1996) Navier-Splines und ihre Anwendung in der Deformationanalyse.
    Referenten: W. Freeden (TU Kaiserslautern), E. Groten (Darmstadt), S.L. Svensson (Lund).
  34. U. Windheuser (1995) Sphärische Wavelets: Theorie und Anwendungen in der Physikalischen Geodäsie.
    Referenten: W. Freeden (TU Kaiserslautern), P. Maaß (Potsdam).
  35. J. Cui (1995) Finite Pointset Methods on the Sphere and Their Application in Physical Geodesy.
    Referenten: W. Freeden (TU Kaiserslautern), H. Sünkel (Graz).
  36. M. Schreiner (1994) Tensor Spherical Harmonics and Their Application in Satellite Gradiometry.
    Referenten: W. Freeden (TU Kaiserslautern), R. Rummel (München).
  37. H. Schaffeld (1988) Finite-Elemente-Methoden und ihre Anwendung zur Erstellung von Digitalen Geländemodellen
    Referenten: W. Freeden (RWTH Aachen), B. Witte (RWTH Aachen), H. Esser (RWTH Aachen). 
  38. R.Reuter (1982) Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen.
    Referenten: W. Freeden (RWTH Aachen), F. Reuter (RWTH Aachen).