Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

  • EN

Hauptnavigation / Main Navigation

Sekundärnavigation / Secondary navigation

Publications

Inhaltsbereich / Content

Recent publications

Here are the recent publications of the group. For earlier publications see the individual subpages of the members.

Preprints

  • M. Bačák, M. Montag, G. Steidl (2016).
    Convergence of Functions and their Moreau-Yosida Envelopes on Hadamard Spaces.
    Preprint, arXiv.
    [www] [BibTex]

  • J. H. Fitschen, K. Losch, G. Steidl (2017).
    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities.
    ArXiv Preprint 1702.02300.
    [www] [BibTex]

Accepted

  • F. Laus, J. Persch, G. Steidl (Accepted).
    A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics.
    SIAM Journal on Imaging Sciences. (ArXiv Preprint 1607.08481)
    [www] [BibTex]

  • R. Bergmann, J. H. Fitschen J. Persch, G. Steidl (Accepted).
    Iterative Multiplicative Filters for Data Labeling.
    International Journal of Computer Vision.
    [www] [BibTex]

2017

  • F. Pierre, J.-F. Aujol, A. Bugeau, S. Steidl, V.-R. Ta (2017).
    Variational Contrast Enhancement of RGB images.
    Journal of Mathematical Imaging and Vision. 57, (1), 99-116.
    [www] [BibTex]

  • M. Burger, A. Sawatzky and G. Steidl (2017).
    First Order Algorithms in Variational Image Processing.
    R. Glowinski, S. Osher and W. Yin (eds.) Operator Splittings and Alternating Direction Methods, Springer 2017.
    [pdf] [www] [BibTex]

  • S. Dahlke, F. De Mari, E. De Vito, D. Labate, G. Steidl, G. Teschke, S. Vigogna (2017).
    Coorbit spaces with voice in a Fréchet space.
    The Journal of Fourier Analysis and its Applications. 23, (1), 141-206.
    [pdf] [www] [BibTex]

  • B. Bauer, X. Cai, S. Peth, K. Schladitz and G. Steidl (2017).
    Variational-based Segmentation of biopores in tomographic images.
    Computers & Geosciences. 98, 1-8.
    [BibTex]

  • J. H. Fitschen and J. Ma and S. Schuff (2017).
    Removal of Curtaining Effects by a Variational Model with Directional Forward Differences.
    Computer Vision and Image Understanding. 155, 24-32.
    [doi] [www] [BibTex]

2016

  • R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, G. Steidl (2016).
    Restoration of Manifold-Valued Images by Half-Quadratic Minimization.
    Inverse Problems and Imaging. 10, (2), 281–304.
    [doi] [www] [BibTex]

  • M. Bačák, R. Bergmann, G. Steidl, A. Weinmann (2016).
    A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images.
    SIAM Journal on Scientific Computing. 38, (1), 567 - 597.
    [doi] [www] [BibTex]

  • R. Bergmann, J. Persch, G. Steidl (2016).
    A Parallel Douglas–Rachford Algorithm for Restoring Images with Values in Symmetric Hadamard Manifolds.
    SIAM Journal on Imaging Sciences. 9, (3), 901-937. ( )
    [doi] [www] [BibTex]

  • F. Pierre, J.F. Aujol, A. Bugeau, G. Steidl, V. T. Ta, (2016).
    Hue-Preserving Perceptual Contrast Enhancement.
    Proc. International Conference on Image Processing (ICIP) 2016. 1-5.
    [BibTex]

  • S. Dahlke, F. De Mari, E. De Vito, S. Häuser, G. Steidl, G. Teschke (2016).
    Different Faces of the Shearlet Group.
    The Journal of Geometric Analysis. 26, (3), 1693-1729.
    [pdf] [www] [BibTex]

  • J. H. Fitschen, F. Laus and G. Steidl (2016).
    Transport between RGB Images Motivated by Dynamic Optimal Transport.
    Journal of Mathematical Imaging and Vision. 56, (3), 409-429.
    [pdf] [www] [BibTex]

2015

  • S. Dahlke and S. Häuser and G. Steidl and G. Teschke (2015).
    Shearlet Coorbit Spaces: Traces and Embeddings in Higher Dimensions.
    Monatshefte für Mathematik. 169, (1), 15 - 32.
    [pdf] [doi] [BibTex]

  • X. Cai, J. H. Fitschen, M. Nikolova, G. Steidl, M. Storath (2015).
    Disparity and Optical Flow Partitioning Using Extended Potts Priors.
    IMA Journal of Information and Inference. 4, (1), 43-62.
    [doi] [www] [BibTex]

  • S. Dahlke, S. Häuser, G. Steidl and G. Teschke (2015).
    Shearlet Coorbit Theory.
    S. Dahlke, F. DeMari, P. Grohs, D. Labate (eds.) Harmonic and Applied Analysis. Birkhäuser: 83-147.
    [BibTex]

  • Z. Mortezapouraghdam, L. Haab, F.I. Corona-Strauss, G. Steidl and D.J. Strauss (2015).
    Assessment of Long-Term Habituation Correlates in Event-Related Potentials Using a von Mises Model.
    IEEE Transactions on Neural Systems & Rehabilitation Engineering. 363-373.
    [BibTex]

  • G. Moerkotte, M. Montag, A. Repetti, and G. Steidl (2015).
    Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization.
    Journal of Computational and Applied Mathematics. 285, 243-255.
    [pdf] [BibTex]

  • J. Fehrenbach and M. Nikolova and G. Steidl and P. Weiss (2015).
    Bilevel Image Denoising using Gaussianity Tests.
    Scale Space and Variational Methods in Computer Vision. Aujol, Jean-François and Nikolova, Mila and Papadakis, Nicolas (eds.) Lecture Notes in Computer Science 9087, 117-128.
    [doi] [www] [BibTex]
  • F. Balle and D. Eifler and J. H. Fitschen and S. Schuff and G. Steidl (2015).
    Computation and Visualization of Local Deformation for Multiphase Metallic Materials by Infimal Convolution of TV-type Functionals.
    Scale Space and Variational Methods in Computer Vision. Aujol, Jean-François and Nikolova, Mila and Papadakis, Nicolas (eds.) Lecture Notes in Computer Science 9087, 385-396.
    [doi] [www] [BibTex]
  • J. H. Fitschen and M. Nikolova and F. Pierre and G. Steidl (2015).
    A Variational Model for Color Assignment.
    Scale Space and Variational Methods in Computer Vision. Aujol, Jean-François and Nikolova, Mila and Papadakis, Nicolas (eds.) Lecture Notes in Computer Science 9087, 437-448.
    [doi] [www] [BibTex]
  • G. Steidl (2015).
    Combined first and second order variational approaches for image processing.
    Jahresbericht der Deutschen Mathematiker-Vereinigung 2015. 117, (2), 133-160.
    [pdf] [BibTex]

  • J. H. Fitschen and F. Laus and G. Steidl (2015).
    Dynamic Optimal Transport with Mixed Boundary Condition for Color Image Processing.
    International Conference on Sampling Theory and Applications (SampTA), 2015. 558-562.
    [doi] [www] [BibTex]

2014

  • Schubert, Gonzalez-Trejo, Retz, Rösler, Corona-Strauss, Steidl, Teuber, Strauss (2014).
    Dysfunctional Cortical Inhibition in Adult ADHD: Neural Correlates in Auditory Event-Related Potentials.
    Journal of Neuroscience Methods. (235), 181-188. doi: 10.1016/j.jneumeth.2014.06.025. Epub 2014 Jul 14.
    [BibTex]

  • S. Häuser, B. Heise, G. Steidl (2014).
    Linearized Riesz Transform and Quasi-Monogenic Shearlets.
    International Journal of Wavelets, Multiresolution and Information Processing. 12, (3), 1450027-1 – 1450027-25.
    [pdf] [doi] [www] [BibTex]

  • F. Baus and M. Nikolova, and G. Steidl (2014).
    Smooth objectives composed of asymptotically affine data-fidelity and regularization: Bounds for the minimizers and parameter choice.
    Journal of Mathematical Imaging and Vision. 48, (2), 295-307.
    [www] [BibTex]

  • A. Liebscher, J. Meinhardt, A. Rack, K. Schladitz, B. Shafei, G. Steidl, O. Wirjadi (2014).
    Microstructural Analysis of a C/SiC Ceramic Based on the Segmentation of 3D Image Data.
    International Journal of Materials Research. 105, (7), 702 - 708.
    [BibTex]

  • S. H. Kang and B. Shafei and G. Steidl (2014).
    Supervised and transductive multi-class segmentation using $p$-Laplacians and RKHS methods.
    J. Visual Communication and Image Representation. 25, (5), 1136-1148.
    [pdf] [BibTex]

  • M. Nikolova and G. Steidl (2014).
    Fast Ordering Algorithm for Exact Histogram Specification.
    IEEE Transactions on Image Processing. 23, (12), 5274 - 5283. (for software see www)
    [pdf] [doi] [www] [BibTex]

  • M. Nikolova and G. Steidl (2014).
    Fast Hue and Range Preserving Histogram Specification: Theory and New Algorithms for Color Image Enhancement.
    IEEE Transactions on Image Processing. 23, (9), 4087-4100. (for software see www)
    [pdf] [www] [BibTex]

  • R. Bergmann and F. Laus and G. Steidl and A. Weinmann (2014).
    Second order differences of cyclic data and applications in variational denoising.
    SIAM Journal on Imaging Sciences. 7, (4), 2916-2953.
    [pdf] [BibTex]

  • G. Kutyniok, W. Lim, and G. Steidl (2014).
    Shearlets: Theory and Applications.
    GAMM-Mitteilungen. 1-2, (14), 259-280.
    [pdf] [BibTex]

2013

  • R. Ciak and B. Shafei and G. Steidl (2013).
    Homogeneous penalizers and constraints in convex image restoration.
    Journal of Mathematical Imaging and Vision. 47, (3), 210-230.
    [pdf] [doi] [BibTex]

  • D. J. Strauss and T. Teuber and G. Steidl and F. I. Corona-Strauss (2013).
    Exploiting the self-similarity in ERP images by nonlocal means for single-trial denoising.
    IEEE Transactions on Neural Systems and Rehabilitation Engineering. 21, (4), 576-583.
    [BibTex]

  • S. Setzer and G. Steidl and J. Morgenthaler (2013).
    A Cyclic Projected Gradient Method.
    Computational Optimization and Applications. 54, (2), 417-440.
    [pdf] [BibTex]

  • S. Häuser and G. Steidl (2013).
    Convex Multiclass Segmentation with Shearlet Regularization.
    International Journal of Computer Mathematics. 90, (1), 62-81.
    [pdf] [doi] [BibTex]

  • M. Fornasier, J. Haskovec and G. Steidl (2013).
    Consistency of variational continuous-domain quantization via kinetic theory.
    Applied Analysis. 92(6), 1283 - 1298.
    [pdf] [BibTex]

  • T. Teuber and G. Steidl and R. H. Chan (2013).
    Minimization and parameter estimation for seminorm regularization models with I-divergence constraints.
    Inverse Problems. 29, 1-28.
    [pdf] [BibTex]

  • S. Harizanov, J.-C. Pesquet and G. Steidl (2013).
    Epigraphical projection for solving least squares Anscombe transformed constrained optimization problems.
    A. Kuijper et al., (eds.) Scale-Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, Vol. 7893. SSVM 2013, LNCS 7893 Springer-Verlag: Berlin 125-136.
    [www] [BibTex]

  • X. Cai and G. Steidl (2013).
    Multiclass segmentation by iterated ROF thresholding.
    F. Kahl, A. Heyden, C. Olsson, M. Oskarsson, C.-C. Tai (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science. Springer: Berlin
    [pdf] [BibTex]

2012

  • M. Gräf and D. Potts and G. Steidl (2012).
    Quadrature rules, discrepancies and their relations to halftoning on the torus and the sphere.
    SIAM Journal on Scientific Computing. 34/5, 2760-2791.
    [pdf] [BibTex]

  • M. Gräf and D. Potts and G. Steidl (2012).
    Quadrature nodes meet stippling dots.
    A. M. Bruckstein, B. M. ter Haar Romney, A. M. Bronstein, M. M. Bronstein (eds.) Proceedings SSVM 2011. Springer: 568-580.
    [BibTex]

  • T. Teuber and S. Remmele and J. Hesser and G. Steidl (2012).
    Denoising by second order statistics.
    Signal Processing. 92, (12), 2837-2847.
    [pdf] [BibTex]

  • Y. He and B. Shafei and M. Y. Hussaini and J. Ma and G. Steidl (2012).
    A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data.
    Pattern Recognition. 45, 3436-3471.
    [www] [BibTex]

  • S. Setzer and G. Steidl and T. Teuber (2012).
    On vector and matrix median computation.
    Journal of Computational and Applied Mathematics. 236, 2200-2222.
    [pdf] [BibTex]

  • B. Shafei and G. Steidl (2012).
    Segmentation of images with separating layers by fuzzy c-means and convex optimization.
    J. Visual Communication and Image Representation. 23, 611-621.
    [pdf] [BibTex]

  • S. Dahlke, G. Steidl and G. Teschke (2012).
    Multivariate Shearlet Transform, Shearlet Coorbit Spaces and their Structural Properties.
    G. Kutyniok and D. Labate (eds.) Birkhäuser: 105-142.
    [BibTex]

2011

  • S. Dahlke and G. Steidl and G. Teschke (2011).
    Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings.
    The Journal of Fourier Analysis and its Applications. 17, (6), 1232-1255.
    [pdf] [BibTex]

  • T. Teuber and G. Steidl and P. Gwosdek and C. Schmaltz and J. Weickert (2011).
    Dithering by differences of convex functions.
    SIAM Journal on Imaging Science. 4, (1), 79-108.
    [pdf] [BibTex]

  • S. Setzer and G. Steidl and T. Teuber (2011).
    Infimal convolution regularizations with discrete l1-type functionals.
    Communications in Mathematical Sciences. 9, (3), 797-872.
    [pdf] [BibTex]

  • G. Steidl (2011).
    Supervised learning by support vector machines.
    O. Scherzer (eds.) Handbook of Mathematical Methods in Imaging. Springer: 959-1014.
    [BibTex]

2010

  • S. Setzer and G. Steidl and T. Teuber (2010).
    Deblurring Poissonian images by split Bregman techniques.
    Journal of Visual Communication and Image Representation. 21, 193 - 199.
    [pdf] [BibTex]

  • G. Steidl and T. Teuber (2010).
    Removing multiplicative noise by Douglas-Rachford splitting methods.
    Journal of Mathematical Imaging and Vision. 36, (2), 168-184.
    [pdf] [BibTex]

  • S. Didas and G. Steidl and J. Weickert (2010).
    Integrodifferential equations for multiscale wavelet shrinkage: The discrete case.
    International Journal of Electrical and Computer Engineering Systems. 1, (1), 5-21.
    [BibTex]

  • S. Setzer and G. Steidl and T. Teuber and G. Moerkotte (2010).
    Approximation related to quotient functionals.
    Journal of Approximation Theory. 162, (3), 545-558.
    [pdf] [BibTex]

  • S. Dahlke and G. Steidl and G. Teschke (2010).
    The continuous shearlet transform in arbitrary dimensions.
    The Journal of Fourier Analysis and ist Applications. 16, (3), 340-464.
    [pdf] [BibTex]

2009

  • S. Didas and G. Steidl and S. Setzer (2009).
    Combined $\ell_2$ data and gradient fitting in conjunction with $\ell_1$ regularization.
    Advances in Computational Mathematics. 30, (1), 79-99.
    [pdf] [BibTex]

  • S. Setzer and G. Steidl and B. Popilka and B. Burgeth (2009).
    Variational methods for denoising matrix fields.
    Visualization and Processing of Tensor Fields, Advances and Perspectives. D. H. Laidlaw and J. Weickert (eds.) Mathematics and Visualization 341-360.
    [pdf] [BibTex]
  • J. Yuan and C. Schnörr and G. Steidl (2009).
    Total-Variation Based Piecewise Affine Regularization.
    A. Lie and M. Lysaker and K. Morken and X.-C. Tai (eds.) Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Springer: 552-564.
    [BibTex]

  • G. Steidl and T. Teuber (2009).
    Anisotropic smoothing using double orientation.
    A. Lie and M. Lysaker and K. Morken and X.-C. Tai (eds.) Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Springer: 477-489.
    [pdf] [BibTex]

  • J. Yuan and Ch. Schnörr and G. Steidl (2009).
    Convex Hodge decomposition and regularization of image flows.
    Journal of Mathematical Imaging and Vision. 33, (2), 169-177.
    [pdf] [BibTex]

  • S. Dahlke and G. Kutyniok and G. Steidl and G. Teschke (2009).
    Shearlet Coorbit Spaces and associated Banach Frames.
    Applied and Computational Harmonic Analysis. 27, (2), 195-214.
    [BibTex]

  • G. Steidl and T. Teuber (2009).
    Diffusion tensors for denoising sheared and rotated rectangles.
    IEEE Transactions on Image Processing. 18, (12), 2640-2648.
    [pdf] [BibTex]

  • G. Moerkotte and T. Neumann and G. Steidl (2009).
    Preventing bad plans by bounding the impact of cardinality estimation errors.
    Proc. of the VLDB. 2, (1), 982-993.
    [pdf] [BibTex]

2008

  • R. H. Chan and S. Setzer and G. Steidl (2008).
    Inpainting by flexible Haar-wavelet shrinkage.
    SIAM Journal on Imaging Science. 1, 273-293.
    [pdf] [BibTex]

  • S. Dahlke and M. Fornasier and H. Rauhut and G. Steidl and G. Teschke (2008).
    Generalized coorbit theory, Banach frames and the relation to alpha-modulation spaces.
    Proc. London Mathematical Society. 6, (2), 464-506.
    [pdf] [BibTex]

  • S. Setzer and G. Steidl (2008).
    Variational methods with higher order derivatives in image processing.
    M. Neamtu and L. L. Schumaker (eds.) Approximation XII, San Antonio, USA. Nashboro Press, Brentwood: 360-386.
    [pdf] [BibTex]

  • S. Setzer and G. Steidl and T. Teuber (2008).
    Restoration of images with rotated shapes.
    Numerical Algorithms. (48), 49-66.
    [pdf] [BibTex]

  • M. Welk and G. Steidl and J. Weickert (2008).
    Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage.
    Applied and Computational Harmonic Analysis. 24, 195-224.
    [pdf] [BibTex]

  • R. Dahlhaus and J. Franke and J. Polzehl and V. Spokoiny and G. Steidl and J. Weickert and A. Berdychevski, S. Didas and S. Halim and P. Mrazek and S. Subba Rao and J. Tadjuidje (2008).
    Structural adaptive smoothing procedures.
    R. Dahlhaus and J. Kurths and P. Maass and J. Timmer (eds.) Mathematical Methods for Time Series Analysis and Digital Image Processing. Springer: Berlin 183-229.
    [BibTex]

2007

  • S. Dahlke and G. Steidl and G. Teschke (2007).
    Frames and coorbit theory on homogeneous spaces with a special guidance on the sphere.
    The Journal of Fourier Analysis and Applications. 13, (4), 387-403.
    [BibTex]

  • G. Steidl and S. Setzer and B. Popilka and B. Burgeth (2007).
    Restoration of matrix fields by second order cone programming.
    Computing. 81, 161-178.
    [pdf] [BibTex]

  • B. Popilka and S. Setzer and G. Steidl (2007).
    Signal recovery from incomplete measurements in the presence of outliers.
    Inverse Problems and Imaging. 1, (4), 661-672.
    [pdf] [BibTex]

  • J. Yuan, Ch. Schnörr and G. Steidl (2007).
    Simultaneous higher order optical flow estimation and decomposition.
    SIAM J. Sci. Comput.. 29, (6), 2283-2304.
    [pdf] [BibTex]

2006

  • M. Fenn and G. Steidl (2006).
    Robust local approximation of scattered data.
    Geometric Properties from Incomplete Data. R. Klette, R. Kozera, L. Noakes, J. Weickert (eds.) 317-334.
    [pdf] [BibTex]
  • S. Kunis and D. Potts and G. Steidl (2006).
    Fast Gauss transform with complex parameters.
    Journal of Numerical Mathematics. 14, (4), 247-318.
    [pdf] [BibTex]

  • G. Plonka and G. Steidl (2006).
    A Multiscale Wavelet-Inspired Scheme for Nonlinear Diffusion.
    International Journal of Wavelets, Multiresolution and Information Processing. 4, (1), 1-21.
    [BibTex]

  • G. Steidl (2006).
    A note on the dual treatment of higher order regularization functionals.
    Computing. 76, 135-148.
    [pdf] [BibTex]

  • G. Steidl and S. Didas and J. Neumann (2006).
    Splines in higher order TV regularization.
    International Journal of Computer Vision. 70, 241-255.
    [pdf] [BibTex]

  • M. Welk and J. Weickert and G. Steidl (2006).
    From tensor-driven diffusion to anisotropic wavelet shrinkage.
    Computer Vision - ECCV 2006. H. Bischof and A. Leonardis and A. Pinz (eds.) LNCS 3951, 391-403.
    [pdf] [BibTex]

2005

  • A. Kryvanos and J. Hesser and G. Steidl (2005).
    Nonlinear image restoration methods for marker extraction in 3D fluorescent microscopy.
    SPIE's 17th Annual Symposium EI05 - Electronic Imaging.
    [BibTex]
  • J. Neumann and C. Schnörr and G. Steidl Nov (2005).
    Efficient Wavelet Adaption for Hybrid Wavelet-Large Margin Classifiers.
    Pattern Recognition. 38, (11), 1815-1830.
    [pdf] [BibTex]

  • J. Neumann and C. Schnörr and G. Steidl (2005).
    Combined SVM-based feature selection and classification.
    Machine Learning. 61, 129-150.
    [pdf] [BibTex]

  • J. Neumann and G. Steidl (2005).
    Dual-tree complex wavelet transform in the frequency domain and an application to signal classification.
    International Journal of Wavelets, Multiresolution and Information Processing. 3, (1), 43-66.
    [pdf] [BibTex]

  • M. Welk and J. Weickert and G. Steidl (2005).
    A four-pixel scheme for singular differential equations.
    Scale-Space and PDE Methods in Computer Vision. R. Kimmel and N. Sochen and J. Weickert (eds.) 610-621.
    [pdf] [BibTex]
  • J. Yuan and Ch. Schnörr and G. Steidl and F. Becker (2005).
    A study of non-smooth convex flow decomposition.
    Proc. Variational, Geometric and Level Set Methods in Computer Vision. LNCS 3752, 1-12.
    [pdf] [BibTex]
  • P. Mrazek and J. Weickert and G. Steidl (2005).
    Diffusion-inspired shrinkage functions and stability results for wavelet shrinkage.
    International Journal of Computer Vision. 64, (2/3), 171-186.
    [pdf] [BibTex]

  • J. Weickert and G. Steidl and P. Mrazek and M. Welk and T. Brox (2005).
    Diffusion filters and wavelets: What can they learn from each other?.
    Handbook of Mathematical Models of Computer Vision. N. Paragios and Y. Chen and O. Faugeras (eds.) 3-16.
    [BibTex]
  • G. Steidl and S. Didas and J. Neumann (2005).
    Relations between higher order TV regularization and support vector regression.
    Scale-Space and PDE Methods in Computer Vision. R. Kimmel and N. Sochen and J. Weickert (eds.) LNCS 3459, 515-527.
    [pdf] [BibTex]

2004

  • D. Potts and G. Steidl and A. Nieslony (2004).
    Fast convolution with radial kernels at nonequispaced knots.
    Numerische Mathematik. 98, (2), 329-351.
    [www] [BibTex]

  • S. Dahlke and G. Steidl and G. Teschke (2004).
    Coorbit spaces and Banach frames on homogeneous spaces.
    Advances in Computational Mathematics. 21, 147-180.
    [pdf] [BibTex]

  • S. Dahlke and G. Steidl and G. Teschke (2004).
    Weighted coorbit spaces and Banach frames on homogeneous spaces.
    The J. Fourier Anal. Appl. 10/5Advances in Computational Mathematics. 10, (5), 507-539.
    [pdf] [BibTex]

  • M. Fenn and G. Steidl (2004).
    Fast NFFT based summation of radial functions.
    Sampling Theory in Signal and Image Processing. 3, (1), 1-28.
    [pdf] [BibTex]

  • G. Steidl and J. Weickert and T. Brox and P. Mrázek and M. Welk (2004).
    On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs.
    SIAM Journal on Numerical Analysis. 42, (2), 686-713.
    [pdf] [BibTex]

  • D. J. Strauss and G. Steidl and U. Welzel (2004).
    Parameter detection of thin films from their X-ray reflectivity by support vector machines.
    Applied Numerical Mathematics. 48, 223-236.
    [pdf] [BibTex]

  • J. Neumann and C. Schnörr and Steidl (2004).
    SVM-based feature selection by direct objective minimisation.
    Pattern Recognition. C. E. Rasmussen and H. H. Bülthoff, M. A. Giese and B. Schölkopf (eds.) LNCS 3175, 212-219.
    [pdf] [BibTex]

2003

  • T. Brox and M. Welk and G. Steidl and J. Weickert (2003).
    Equivalence results for TV diffusion and TV regularisation.
    L. D. Griffin and M. Lillholm (eds.) Scale-Space Methods in Computer Vision. Springer: Berlin 86-100.
    [BibTex]

  • P. Mrázek and J. Weickert and G. Steidl (2003).
    Correspondences between wavelet shrinkage and nonlinear diffusion.
    L. D. Griffin and M. Lillholm (eds.) Scale-Space Methods in Computer Vision. Springer: Berlin 101-116.
    [BibTex]

  • P. Mrázek and J. Weickert and G. Steidl and M. Welk (2003).
    On iterations and scales of nonlinear filters.
    O. Drbohlav (eds.) Proc. Eighth Computer Vision Winter Workshop. Czech Pattern Recognition Society: Valtice, Czech Republic 61-66.
    [BibTex]

  • A. Nieslony and G. Steidl (2003).
    Sparse approximate factorization of nonuniform Fourier matrices.
    Linear Algebra and its Applications. 366, 337-351.
    [BibTex]

  • G. Nürnberger, G. Steidl and F. Zeilfelder (2003).
    Explicit estimates for bivariate hierarchical bases.
    Communications in Applied Analysis. 7, (1), 133-151.
    [BibTex]

  • D. Potts and G. Steidl (2003).
    Fast summation at nonequispaced knots by NFFTs.
    SIAM Journal on Scientific Computing. 24, 2013-2037.
    [BibTex]

  • D. Strauss and G. Steidl and W. Delb (2003).
    Feature extraction by shape-adapted local discriminant bases.
    Signal Processing 83. 83, 359-376.
    [BibTex]

  • J. Neumann and C. Schnörr and G. Steidl (2003).
    Feasible adaptation criteria for hybrid wavelet - large margin classifiers.
    N. Petkov and M. A. Westenberg (eds.) Computer Analysis of Images and Patterns. Springer: Berlin 588-599.
    [BibTex]

2002

  • M. Fenn and G. Steidl (2002).
    FMM and H-matrices: a short introduction to the basic idea,.
    Preprint, Univ. Mannheim.
    [BibTex]

  • D. Potts and G. Steidl, (2002).
    Rapid evaluation of radial functions by Fast Fast Fourier transform at nonequispaced knots: a users guide to a C-library, (software guide),.
    Preprint Univ. Lübeck.
    [BibTex]

  • D. Potts and G. Steidl and M. Tasche (2002).
    Numerical stability of fast trigonometric transforms - a worst case study.
    Journal of Concrete and Applied Mathematics. 1, 1-36.
    [BibTex]

  • M. Fenn and G. Steidl (2002).
    FMM and H-matrices: a short introduction to the basic idea (teaching material).
    Preprint Univ. Mannheim.
    [pdf] [BibTex]

  • G. Steidl and J. Weickert (2002).
    Relations between soft wavelet shrinkage and total variation denoising.
    Pattern Recognition. L. Van Gool (eds.) LNCS 2449, 198--205.
    [BibTex]
  • D. Potts and G. Steidl (2002).
    Rapid evaluation of radial functions by Fast Fast Fourier transform at nonequispaced knots: a users guide to a C-library.
    Software Guide, Preprint Univ. Lübeck.
    [BibTex]

  • D. Potts and G. Steidl (2002).
    Fourier reconstruction of functions from their nonstandard sampled Radon transform.
    The Journal of Fourier Analysis and its Applications. 8, 513-533.
    [pdf] [BibTex]

  • D. Strauss and G. Steidl (2002).
    Hybrid wavelet-support vector classifiers of waveforms.
    Journal of Computational and Applied Mathematics. 148, 375-400.
    [pdf] [BibTex]

2001

  • Daniel Potts and Gabriele Steidl and Manfred Tasche (2001).
    Fast Fourier transforms for nonequispaced data: A tutorial.
    Benedetto, John. J. and Ferreira, Paulo J. S. G. (eds.) Modern Sampling Theory: Mathematics and Applications. Birkhäuser: Boston 247-270.
    [pdf] [BibTex]

  • R. H. Chan and D. Potts and G. Steidl (2001).
    Preconditioners for non-Hermitian Toeplitz systems.
    Numerical Linear Algebra and Applications. 8, (2), 83-98.
    [BibTex]

  • Potts, D. and Steidl, G. (2001).
    A new linogram algorithm for computerized tomography.
    IMA Journal on Numerical Analysis. 21, 769-782.
    [pdf] [BibTex]

  • Potts, D. and Steidl, G. (2001).
    Preconditioners for ill-conditioned Toeplitz matrices constructed from positive kernels.
    SIAM Journal on Scientific Computing. 22, (5), 1741-1761.
    [pdf] [BibTex]

  • Daniel Potts and Gabriele Steidl (2001).
    Preconditioning of Hermitian block-Toeplitz-Toeplitz-block matrices by level-1 preconditioners.
    V. Olshevsky (eds.) Structured Matrices in Mathematics, Computer Science, and Engineering II. AMS: Providence 193-212.
    [pdf] [BibTex]

  • D. Strauss and G. Steidl and J. Jung (2001).
    Arrhythmia detection using signal adapted wavelet preprocessing for support vector machines.
    IEEE Computers in Cardiology. 28, 497-501.
    [BibTex]

2000

  • B. Trebels and G. Steidl (2000).
    Riesz bounds of Wilson bases generated by B-splines.
    The Journal of Fourier Analysis and its Applications. 6, (2), 159-172.
    [BibTex]

  • R. H. Chan and D. Potts and G. Steidl (2000).
    Preconditioners for nondefinite Hermitian Toeplitz systems.
    SIAM Journal on Matrix Analysis and Applications. 22, 647-665.
    [pdf] [BibTex]

  • D. Potts and G. Steidl (2000).
    New Fourier reconstruction algorithms for computerized tomography.
    A. Aldroubi and A. F. Laine and M. A. Unser (eds.) Wavelet Applications in Signal and Iamge Processing VIII. San Diego 13-23.
    [BibTex]

before 2000

  • A. Gottscheber and G. Steidl (1999).
    On a family of orthogonal wavelets on the quincunx grid.
    In: Advances in Multivariate Approximation. W. Haussmann, K. Jetter and M. Reimer: Wiley-VCH, Berlin 175 - 184.
    [BibTex]

  • D. Potts and G. Steidl (1999).
    Preconditioners for ill-conditioned Toeplitz matrices.
    BIT. 39/3, 513 - 533.
    [BibTex]

  • D. Potts, G. Steidl and M. Tasche (1998).
    Fast and stable algorithms for discrete spherical Fourier transforms.
    Linear Algebra Appl.. 275 - 276, 433 - 450.
    [BibTex]

  • D. Potts and G. Steidl (1998).
    Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems.
    Linear Algebra Appl.. 281, 265 - 292.
    [BibTex]

  • D. Potts, G. Steidl and M. Tasche (1998).
    Fast algorithms for discrete polynomial transforms.
    Math. Comp.. 67, 1577 - 1590.
    [BibTex]

  • G. Steidl (1998).
    A note on fast Fourier transforms for nonequispaced grids.
    Adv. Comput. Math.. 9, 337 - 353.
    [BibTex]

  • G. Steidl and M. Tasche (1998).
    Elemente der Fourier-Analysis.
    In: Lehrbriefe Fernuniversität Hagen.
    [BibTex]
  • A. Elbel and G. Steidl (1998).
    Fast Fourier transforms for nonequispaced data.
    C.K. Chui and L.L. Schumaker (eds.) In: Approximation Theory IX,. Vanderbuilt University Press, 39 -46.
    [BibTex]

  • D. Potts, G. Steidl and M. Tasche (1997).
    Trigonometric preconditioners for block Toeplitz systems.
    In: Multivariate Approximation and Splines. G. Nürnberger, J. W. Schmidt and G. Walz: Birkhäuser- Verlag Basel, 219 - 234.
    [BibTex]

  • D. Potts, G. Steidl and M. Tasche (1996).
    Kernels of spherical harmonics and spherical frames.
    F. Fontanella, K. Jetter and P. J. Laurent, (eds.) In: Advanced Topics in Multivariate Approximation. World Scientific Publishing Co., Verlag Basel 287 - 301.
    [BibTex]

  • M. Konik, R. Schneider and G. Steidl (1995).
    Matrix sparsification by discrete multiscale methods.
    C.K. Chui and L.L. Schumaker, (eds.) In: Approximation and Decomposition. World Scientific Publishing Co. 225 - 234.
    [BibTex]

  • B. Glaser, M. Konik and G. Steidl, (1995).
    Multiskalenanalyse des Ankerstroms eines permanetmagneterregten Gleichstrommotors.
    In: Proc. Internat. Conf. on Wavelet-Approximation and Applications. Lübeck
    [BibTex]

  • G. Steidl (1995).
    On multivariate attenuation factors.
    Numer. Algorithms. 9, 245 - 261.
    [BibTex]

  • G. Steidl (1994).
    Wavelets over R, Z, R/NZ and Z/NZ.
    C. K. Chui, L. Montefusco and L. Puccio (eds.) In: Wavelets: Theory, Algorithms and Applications. Academic Press 155 - 179.
    [BibTex]

  • G. Steidl (1992).
    Fast radix-p discrete cosine transform.
    Appl. Algebra Engrg. Comm. Comput.. 3, 39 - 46.
    [BibTex]

  • G. Steidl (1992).
    Chebyshev polynomial derivation of composite-length DCT algorithms.
    Signal Processing. 29, 17 - 27.
    [BibTex]

  • G. Steidl und M. Tasche (1991).
    Polynomial approach to fast algorithms for discrete Fourier-cosine- and Fourier-sine-transforms.
    Math. Comp.. 56, 282 - 296.
    [BibTex]

  • G. Steidl, M. Tasche und R. Creutzburg (1991).
    Number-theoretic transforms and a theorem of Sylvester-Kronecker-Zsygmondy.
    A. Pethö, M. Pohst, H. C. Williams und H. G. Zimmer (eds.) Computational Number Theory. de Gruyter Berlin - New York 45 - 50.
    [BibTex]

  • G. Steidl (1990).
    On normal bases for finite commutative rings.
    Math. Nachr.. 145, 131 - 148.
    [BibTex]

  • G. Steidl (1990).
    Generalization of the algebraic discrete Fourier transform with application to fast convolutions.
    Linear Algebra Appl.. 139, 181 - 206.
    [BibTex]

  • G. Steidl (1990).
    Existence and construction of self-complementary normal bases.
    J. Inf. Process. Cybern.. EIK-26, 643 - 651.
    [BibTex]

  • G. Steidl und M. Tasche (1990).
    Fast algorithms for one-and twodimensional discrete cosine transforms.
    W. Haussmann und K. Jetter, (eds.) In: Multivariate Approximation and Interpolation. ISNM 94, Birkhäuser - Verlag Basel, 285 - 298.
    [BibTex]

  • G. Steidl und M. Tasche, (1989).
    On a number-theoretic result of Kronecker-Sylvester-Zsigmondy.
    Math. Nachr.. 140, 233 - 247.
    [BibTex]

  • G. Steidl, M. Hänler und M. Tasche, (1989).
    On a number-theoretic result of Zsigmondy in domains of quadratic integers.
    Arch. Math.. 53, 30 - 39.
    [BibTex]

  • G. Steidl und M. Tasche, (1989).
    Index transforms for multidimensional discrete Fourier transforms.
    C. K. Chui, W. Schempp und K. Zeller (Eds.), ISNM 90 (eds.) In: Multivariate Approximation Theory IV. Birkhäuser - Verlag Basel 321 - 328.
    [BibTex]

  • G. Steidl und M. Tasche (1989).
    Index transforms for multidimensional DFT's and convolutions.
    Numer. Math.. 56, 513 - 528.
    [BibTex]

  • G. Steidl (1989).
    On symmetric radix-representation of Gaussian integers.
    BIT. 29, 563 - 571.
    [BibTex]

  • G. Steidl und M. Tasche (1988).
    Exact deconvolution using number-theoretic transforms.
    Comput. Math. Appl.. 15, 757 - 768.
    [BibTex]

  • G. Steidl und R. Creutzburg, (1988).
    Number-theoretic transforms in rings of cyclotomic integers.
    J. Inf. Process. Cybern.. EIK-24, 573 - 584.
    [BibTex]

  • G. Steidl (1988).
    Algebraic discrete Fourier transforms and fast convolution algorithms.
    Proc. IMYCS'88, Smolenice: 219 - 225.
    [BibTex]

  • G. Steidl und M. Tasche (1987).
    Prime factorization for values of cyclotomic polynomials in Z [i].
    Arch. Math.. 49, 292 - 300.
    [BibTex]