next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
KustinMiller :: Tom

Tom -- The Kustin-Miller complex for Tom

The Kustin-Miller complex construction for the Tom example which can be found in Section 5.5 of

Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004) 249-268, http://arxiv.org/abs/math/0111195

Here we pass from a Pfaffian to codimension 4.

i1 : R=QQ[x_1..x_4,z_1..z_4]

o1 = R

o1 : PolynomialRing
i2 : b2=matrix {{   0,  x_1,  x_2, x_3, x_4},
           {-x_1,    0,    0, z_1, z_2},
           {-x_2,    0,    0, z_3, z_4},
           {-x_3, -z_1, -z_3,   0,   0},
           {-x_4, -z_2, -z_4,   0,   0}};

             5       5
o2 : Matrix R  <--- R
i3 : cI=resBE b2;
i4 : betti cI

            0 1 2 3
o4 = total: 1 5 5 1
         0: 1 . . .
         1: . 5 5 .
         2: . . . 1

o4 : BettiTally
i5 : J = ideal (z_1..z_4)

o5 = ideal (z , z , z , z )
             1   2   3   4

o5 : Ideal of R
i6 : cJ=res J

      1      4      6      4      1
o6 = R  <-- R  <-- R  <-- R  <-- R  <-- 0
                                         
     0      1      2      3      4      5

o6 : ChainComplex
i7 : betti cJ

            0 1 2 3 4
o7 = total: 1 4 6 4 1
         0: 1 4 6 4 1

o7 : BettiTally
i8 : cc=kustinMillerComplex(cI,cJ,QQ[T]);
i9 : S=ring cc

o9 = S

o9 : PolynomialRing
i10 : cc

       1      9      16      9      1
o10 = S  <-- S  <-- S   <-- S  <-- S
                                    
      0      1      2       3      4

o10 : ChainComplex
i11 : betti cc

             0 1  2 3 4
o11 = total: 1 9 16 9 1
          0: 1 .  . . .
          1: . 9 16 9 .
          2: . .  . . 1

o11 : BettiTally
i12 : isExactRes cc

o12 = true
i13 : print cc.dd_1
| z_2z_3-z_1z_4 -x_4z_3+x_3z_4 x_4z_1-x_3z_2 x_2z_2-x_1z_4 -x_2z_1+x_1z_3 -x_1x_3+Tz_1 -x_1x_4+Tz_2 -x_2x_3+Tz_3 -x_2x_4+Tz_4 |
i14 : print cc.dd_2
{2} | 0    x_1  x_2  x_3 x_4 0    0    0    0    0    0    T    0    0    0    0    |
{2} | -x_1 0    0    z_1 z_2 0    0    -x_1 0    0    x_2  0    T    0    0    0    |
{2} | -x_2 0    0    z_3 z_4 -x_1 0    0    -x_2 0    0    0    0    T    0    0    |
{2} | -x_3 -z_1 -z_3 0   0   0    0    -x_3 -x_3 -x_4 0    -x_3 0    0    T    0    |
{2} | -x_4 -z_2 -z_4 0   0   0    x_3  0    0    0    0    0    0    0    0    T    |
{2} | 0    0    0    0   0   z_2  z_3  0    z_4  0    0    z_4  0    -x_4 0    x_2  |
{2} | 0    0    0    0   0   -z_1 0    z_3  0    z_4  0    0    0    x_3  -x_2 0    |
{2} | 0    0    0    0   0   0    -z_1 -z_2 0    0    z_4  -z_2 x_4  0    0    -x_1 |
{2} | 0    0    0    0   0   0    0    0    -z_1 -z_2 -z_3 0    -x_3 0    x_1  0    |
i15 : print cc.dd_3
{3} | 0    -z_2 0    z_4  -T   0    0    x_3  0    |
{3} | x_3  x_4  0    0    0    -T   0    0    0    |
{3} | 0    0    -x_3 -x_4 0    0    -T   0    0    |
{3} | -x_1 0    x_2  0    0    0    0    -T   0    |
{3} | 0    -x_1 0    x_2  0    0    0    0    -T   |
{3} | -z_3 -z_4 0    0    0    x_2  0    0    0    |
{3} | z_2  0    -z_4 0    0    0    0    x_4  0    |
{3} | -z_1 0    0    -z_4 0    0    -x_2 -x_3 0    |
{3} | 0    z_2  z_3  0    0    -x_1 0    -x_3 0    |
{3} | 0    -z_1 0    z_3  0    0    0    0    -x_3 |
{3} | 0    0    -z_1 -z_2 0    0    -x_1 0    0    |
{3} | 0    0    0    0    0    x_1  x_2  x_3  x_4  |
{3} | 0    0    0    0    -x_1 0    0    z_1  z_2  |
{3} | 0    0    0    0    -x_2 0    0    z_3  z_4  |
{3} | 0    0    0    0    -x_3 -z_1 -z_3 0    0    |
{3} | 0    0    0    0    -x_4 -z_2 -z_4 0    0    |
i16 : print cc.dd_4
{4} | -x_2x_4+Tz_4   |
{4} | x_2x_3-Tz_3    |
{4} | -x_1x_4+Tz_2   |
{4} | x_1x_3-Tz_1    |
{4} | z_2z_3-z_1z_4  |
{4} | -x_4z_3+x_3z_4 |
{4} | x_4z_1-x_3z_2  |
{4} | x_2z_2-x_1z_4  |
{4} | -x_2z_1+x_1z_3 |

See also