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1 Introduction

Being asked to present the computer algebra system SINGULAR we face the problem to
make a choice which should explain at least part of the functionality of the system but,
at the same time, present some non-trivial mathematics. We decided to concentrate on
applications where SINGULAR has been used successfully to either solve a mathematical
problem or to find the correct statement of a theorem which then could be proved without
computer, or to construct interesting examples. These applications belong to algebraic
geometry and singularity theory, the main area of applications, but also to group theory,
general relativity, and one application outside mathematics.

In the first four sections we explain some of the basic notions and features of SINGULAR
while the last six sections are devoted to applications. The content of this article is as
follows:

Introduction
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Grébner Bases

Computing in Local Rings
Non—-Commutative GR-Algebras
Some Historical Remarks

A Theorem in Group Theory
Resolution of Singularities
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Curves and Surfaces with many Singularities
Applications outside Mathematics

HO OO O W

—_



2 General Overview

SINGULAR! is a Computer Algebra System for polynomial computations with special
emphasis on the needs of algebraic geometry, commutative algebra and singularity theory.

SINGULAR’s main computational objects are polynomials, ideals and modules over a
large variety of rings. SINGULAR features one of the fastest and most general implementa-
tions of various algorithms for computing standard resp. Grobner bases. Furthermore, it
provides multivariate polynomial factorization, resultant, characteristic set and gcd com-
putations, syzygy and free resolution computations, numerical root—finding, visualisation,
and many more related functionalities. SINGULAR version 3 and higher contains a kernel
extension for a large class of non—commutative algebras.

Based on an easy-to-use interactive shell and C-like programming language, SINGULAR’S
internal functionality is augmented and user-extendable by libraries written in the SINGU-
LAR programming language or in C++. A general and efficient implementation of links as
endpoints of communications allows SINGULAR to make its functionality available to and
be easily incorporated into other programmes.

The main goal of the SINGULAR-group is to further develop and implement advanced
algorithms to be used for mathematical research, in particular in commutative algebra, alge-
braic geometry and singularity theory. There exist already several libraries providing such
algorithms, including absolute primary decomposition for several ground fields, ring normal-
ization (integral closure), versal deformations of arbitrary isolated singularities, monodromy
and spectral numbers for hypersurface singularities, resolution of singularities, Hamburger—
Noether (Puiseux)—expansions of plane curve singularities and many more. Many of these
algorithms are not available in other systems.

Due to non—mathematical applications SINGULAR contains also a library for symbolic—
numerical polynomial solving. Although designed for supporting research in algebraic ge-
ometry and singularity theory SINGULAR has been used widely in many other mathematical
and non—mathematical fields. As a specialized system, SINGULAR’s aim is not to provide
all the functionality of a general purpose system. The main strength of the system, besides
the above mentioned functionality, is the speed of the important basic algorithms such as
Grdobner basis, syzygy, and free resolution computations for modules. It is impossible to
detail any of the algorithms, we rather refer to the literature, given in the references.

SINGULAR’s online help system is available in various formats where the HTML format
is especially user-friendly. Some reasons for the increasing popularity of SINGULAR are its
speed, its functionality, its user—friendliness and last but not least, because it is free of
charge.

Availability. SINGULAR is publicly available as a binary program for all common Unix
platforms including LINUX, for Windows, MacOs X and several other platforms. SINGULAR
is free software under the GNU General Public Licence. The current version number is
3.0.1; it can be downloaded by following the instructions given at SINGULAR’s homepage
http://www.singular.uni-k1.de where more and always up-to—date information can be
found.

In 2004 the SINGULAR team was awarded the first Richard D. Jenks Memorial Prize
for Excellence in Software Engineering for Computer Algebra at the ISSAC meeting in
Santander.

lhttp://www.singular.uni-k1.de
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3 Grobner bases

Most of the important algorithms implemented in SINGULAR are based on Grébner basis
computations and on multivariate polynomial factorization . For convenience of the reader
we will briefly explain the concept of Grobner bases?. Let M = {z* =z -...- 2% |a =
(a1,...,a,) € 2%} C Klz1,...,2,) be the set of monomials in the polynomial ring in
the variables 1, ...,z, over the field® K. On M we consider a well-ordering < which is
compatible with the semi-group structure, i.e. z* < zf implies 217 < z8+7. We assume
now all polynomials sorted with respect to <. For p € K[z1,,...,z,], p # 0, we write
p=C(pLp) + Y Csz? with C(p),Cs € K and L(p) € M. C(p) is called the leading

B<L(p)
coefficient, L(p) the leading monomial of p. We define C'(0) = 0 and L(0) = 1. We give the

following two examples for monomial orderings (which are the most important orderings in
applications): the lexicographical ordering (abbreviated lp in SINGULAR)

2% >1p 2P if o = B for j < k—1 and ay, > B,

and the degree—reverse—lexicographical ordering (denoted dp in SINGULAR)
% >4p zP if Zai > Z’Bi or Zai = Z’Bi and a; = B for j > k+1 and o < By

The following polynomial p = 7723 + 22122 + 732 + 521 + 372 + 1 is sorted with respect to
dp. With respect to Ip it has to be written as 2z;2 + 521 + 7723 + 22 + 325 + 1.

A basic notion in connection with Grébner bases is the normal form of a polynomial f
with respect to a set of polynomials G = {f1,..., fr}.

We give it in terms of an algorithm NF(f|G):

NF(f|G)
Input: f, G
Output: the normal form of f w.r.t. G
h:=f
while (3 monomial m, s.t. L(h) = mL(f;) for some %)
hi=h— Smf;
return (C(h)L(h) + NF (h — C(h)L(h)|Q).
k
Note that N(f|G) is the remainder of a ”division of f by G”,i.e. f = ¢:fi+ NF(f|G)

i=1
for some g; € K[z1 ..., %y).

2For more details cf. [10].

3The fields implemented in SINGULAR are the rational numbers, finite fields and finite transcendental
respectively algebraic extensions of them. For numerical calculations SINGULAR offers floating point real
and complex numbers.



As an example we see (with respect to dp)
NF(x3xy + x120 + .Z‘é | {mf + 1'3,$§ —13}) = T1%2 — T223 + 3.
The normal form can be use% to define Grébner bases:
Let I := (f1,...,fx) = {> hifi | hi € K[z1,...,z,]} be the ideal generated by

=1
fiyees e Aset G = {g1,...,9s} C I is called a Grobner basis of I if it has the fol-
lowing property:
feIif and only if NF(f|G) =0.

It follows that G generates 1.
As an example consider the linear polynomials

fi = mitaxa+az3—1
f2 = T1+2x—23+ 2.
In this case the Gauf} algorithm gives the Grobner basis
g = I + 3.733 -4
ge = To — 2x3 + 3.

Indeed, Buchberger’s algorithm [3] is a common generalisation of Gauf}’s algorithm and
Euklid’s algorithm to multivariate systems of polynomial equations. Unfortunately Buch-
berger’s algorithm to compute Grobner bases has worst-case double exponential complexity
with respect to the number of variables. Fortunately, in many cases of interest, this com-
plexity is not reached. Nevertheless Grébner bases can be rather complicated and it can
take a lot of time to compute them.

One important property of Grobner bases (which could be used as definition) is the
following;:

Let I C K[z1,...,2,) be an ideal and L(I) = ({L(f) | f € I}) the so—called leading
ideal. Then the leading monomials of a Grébner basis generate the leading ideal.

Since the leading ideal is generated by monomials many invariants of the leading ideal
can be computed efficiently by combinatorial algorithms. Since the ideal and the leading
ideal have several invariants in common, such as the dimension or the Hilbert function for
homogeneous ideals, these invariants can be computed if we know a Grobner basis.

With the help of Grobner bases we can eliminate : If G is a Grébner basis of I with

respect to lp then the set G N K[zg,...,x,] is a Grobner basis and hence generates I N
K[zg,...,zp])- The computation of the ideal I N Klzy,...,x,] is called elimination of
Z1,-..,Tkp—1 from I. Geometrically this means that we can compute the ideal of the closure

of the image under the projection 7 : V(I) ¢ K™ — K" %+l Elimination is one of the
most fundamental applications of Grébner bases.

Another important application of Grobner bases is the pre—processing for solving 0-
dimensional systems of polynomial equations using triangular sets 4. It is numerically easy
and stable to compute the zero’s of a triangular set. For given fi,..., fm € K[z1,...,2,]
having only finitely many common zeroes (over the algebraic closure of K) one can compute
(using Grobner bases) triangular sets Ty, ..., T, such that the zero—set of fi,..., fn, is the

union of the zero—sets of the triangular sets T; : V(f1,..., fm) = .LTJIV(TZ-).
=

Consider the following example:

4Let hl(zl) € K[zl], hz(wl,.’;m) € K[ml,zg],...,hn(xl,... ,wn) € K[wl,...,xn] then T' = {hl,...,hn}
is a triangular set.



>ring A = 0, (x,y,2),1p;
>ideal I=x2+y+z-1, x+y2+z-1, x+y+z2-1;

>ideal J=groebner(I); J; // the Groebner basis of I
J[1]1=26-424+423-22

J[2]=2yz2+z4-z2

J[3]=y2-y-z2+z

J[4]=x+y+z2-1

>LIB"solve.lib"; // we load the library solve.lib
>triangL(J); // the triangular sets
[11: [2]:
_[1]1=z4-4z2+4z-1 _[1]1==z2
_[2]=2y+z2-1 _[2]=y2-y+z
_[3]=2x+z2-1 _[3]=x+y-1
>list L=solve(I,6); // we solve I directly; internally triangular sets are used

SINGULAR displays the 5 solutions and information on how to further use the solutions.

[11: [2]: [3]: [4]: [5]:
[1]: [1]: [1]: [1]: [1]:
-2.414214 0.414214 0 1 0
[2]: [2]: [2]: [2]: [2]:
-2.414214 0.414214 0 0 1
[3]: [3]: [3]: [3]: [3]:
-2.414214 0.414214 1 0 0

// ’solve’ created a ring, in which a list SOL of numbers (the complex
// solutions) is stored.
// To access the list of complex solutions, type (if the name R was assigned
// to the return value):
setring R; SOL;

4 Computing in local rings

The idea of Grébner bases can be found already in papers of Gordan (1899). They have
been used later by Macaulay and Grébner to study Hilbert functions of graded ideals. The
first algorithm to compute them in polynomial rings was given by Buchberger (1965) [3].
Buchberger’s algorithm had an important impact on the development of symbolic methods
in and outside mathemtics.

So far we considered Grébner bases and Buchberger’s algorithm for ideals in polynomial
rings. An analog concept has been developed for power series rings by Hironaka (1964) in
his famous proof for resolution of singularities (he called them standard bases) and, later
but independently, by Grauert (1972) to prove the existence of a semi—universal deformation
for isolated singularities. Mora (1982) introduced the tangent cone algorithm to compute
standard bases for ideals generated by polynomials in power series rings or localizations of
the polynomial ring in a maximal ideal with respect to degree orderings. This concept has
been generalized to arbitrary monomial orderings (including global and local orderings as
a special case) by the authors (cf. [10]). Standard bases for arbitrary monomial orderings



have been implemented in SINGULAR since the beginning of 1990. We use the same concept
as in section 3 but do not require that the ordering < is a well-ordering®. Of special interest
are local orderings, where < is called a local ordering if z; < 1 for all ¢. If an ordering is
neither global nor local it is called a mixed ordering. Now let > be a local ordering and let
Ss be the set of all polynomials u with L(u) = 1. Ss is multiplicatively closed and we define

K[zy,...,2,]> to be the localization of K[x1,...,z,] by Ss that is, we formally invert all
polynomials u € S-.. Note that K[z1,...,%n]> = K[21,...,Zn)(a:,....0,), the localisation of
the polynomial ring at the maximal ideal {(z1,...,z,).

Let us consider the following example for a local ordering: (ds) the local degree revers
lexicographical ordering

% >g¢ 2P if Za,- <ZB,- or Za,- :Zﬂi and 2% >4p zP.

For non—well-orderings the normal form algorithm of section 3 does not terminate and has
to be modified. Then the modified normal form algorithm (again called NF) can be used
as before to define standard basesS.

As before we may read informations of the ideal from the leading ideal, e.g.:

dim K[z]»/I = dimK][z]/Ls(I),
dimg K(z]s/I = dimg K[z]/Ls(I),

or we can compute the Hilbert—Samuel function using the leading ideal for a local degree—
ordering. Many applications in singularity theory are based on standard basis computations,
and computations of syzygies which can be found in the libraries of SINGULAR:

sing.1ib (computing invariants of singularities)

classify.1ib (Arnold’s classification of singularities)

mondromy.1ib (monodromy of isolated hypersurface singularities)

gmssing.1ib (invariants related to the GauB—Manin System of an isolated singularity)
hnoether.1lib (Hamburg—Noether resp. Puiseaux—expansion)

deform.1ib (miniversal deformation)

5 Non-Commutative GR-Algebras

SINGULAR allows us to compute Grobner bases and syzygies over a large class of non-commu-
tative algebras to which we refer as GR-algebras (here, GR stands for Grobner-ready). GR-
algebras are obtained from the free associative algebra on xy,...,z, by imposing specific
relations. We write K{(x) = K(x1,...,x,) for this free algebra. That is, K(x) is the
associative graded K -algebra with K-vector space basis the words in z1,...,z,,

B:{wilxiQ---inWEN, 1 < iy <nfor all £},

where multiplication and grading are defined in the obvious way. Moreover, we consider
the set of special words, also called standard monomials,

M:={z*=z}-...-28" |aeN"} C B.

51t is a well-ordering if and only if z; > 1 or all i. Such an ordering is also called a global ordering.

6A set of polynomials G = {g1,-..,9s} of the ideal I C K[x1,...,T5]> is called a standard basis if it
has the following property: f € I if and only if NF(f|G) = 0. This is equivalent to the property that L(I)
is generated by L(g1),...,L(gs). A standard basis is a K[z1,...,Zn]>—generating set of I.



Since M can be identified with the set of monomials in the commutative polynomial ring
K|z], each monomial order > on KJ[z] induces a total order on M which we again denote
by >. It, thus, makes sense to speak of the leading term L(h) = Ls(h) of a K-linear
combination h of words in M.

Definition 5.1. A G-algebra R is the quotient of K{x) by a two-sided ideal Jy generated
by elements of type

TjT; — CijTiTj _hij; 1<i<j<n, (1)
where the c;; are nonzero scalars in K, and where the h;; are K-linear combinations of
words in M. Further, we require that

(G1) circjrhijer — zrhij + cjrxjhin — cijhirx; + hjrx; — cijerzihjr =0
for all 1 <i < j <k <n, and that

(G2) there is a global monomial order > on K[z] such that z;x; > L(h;;) for all ¢ < j.

Each global monomial order on K[xz] satisfying (G2) is called an admissible monomial order
for R.

Note that the “rewriting relations” (1) together with (G2) imply that each element of
R can be represented by a K-linear combination of monomials. More precisely, M is a
K-vector space basis for R, also called a Poincaré-Birkhoff-Witt basis of R.

The latter observations allow us to extend the theory of Grébner bases for ideals and
modules over polynomial rings to a theory of left (right) Grébner bases for left (right)
ideals and modules over G-algebras. Also, division with remainder (normal forms) and
Buchberger’s algorithm can be extended to G-algebras. And, we may compute two-sided
(that is, left and right) Grobner bases for two-sided ideals, which allows us to implement
each quotient of a G-algebra by a two-sided ideal:

Definition 5.2. A GR-algebra A is the quotient A = R/J of a G-algebra R by a two-sided
ideal J C R.

Examples of G-algebras include quasi-commutative polynomial rings (for example, the quan-
tum plane with yz = ¢ - xy), universal enveloping algebras of finite dimensional Lie algebras,
positive (negative) parts of quantized enveloping algebras, some iterated Ore extensions,
some non-standard quantum deformations, Weyl algebras and quantizations of Weyl alge-
bras, Witten’s deformation of U (sl2), Smith algebras, conformal sl;—algebras, some diffusion
algebras and several others. Many of them are predefined in SINGULAR.

Among the GR-algebras, one finds exterior algebras’, Clifford algebras, finite dimen-
sional associative algebras given by structure constants, and many more.

The implementation in SINGULAR can compute left (resp. right) normal forms and
left (resp. right) Grobner bases for left (resp. right) ideals or modules. Left (resp. right)
syzygies and free resolutions can also be computed. This can be used to compute preimages
of ideals under ring maps, intersection and quotients of ideals or modules. For more details
see [13].

There are special libraries in SINGULAR for non—commutative applications:

e center.lib (central elements and centralizers of elements)

e ncdecomp.1lib (central character decomposition of a module)
e gkdim.1ib (Gelfand-Kirillov dimension).

"The library sheafcoh.lib contains procedures to compute the cohomology of coherent sheaves (in
commutative algebraic geometry) via free resolutions over the exterior algebra, i.e. using non-commutative
methods (algorithm of Eisenbud, Floystad and Schreyer).



6 Some historical remarks

The birth of SINGULAR can be dated back to about 1982, when we tried to generalize the
following theorem of K. Saito:

Let (X,0) be the germ of an isolated hypersurface singularity. The following conditions
are equivalent.

(1) (X,0) is quasi-homogeneous.®

(2) u(X,0) =7(X,0)°
(3) The Poincaré complex!® of (X, 0) is exact.

It was conjectured that a similar theorem should hold for complete intersections. If
(X,0) is the germ of a curve singularity we succeeded in proving the equivalence of (1) and
(2). To understand the relationship with (3) we first translated the question about exactness
of the Poincaré complex into a purely algebraic question (note that the differential is only
C-linear but not Ox ¢-linear). Then we tried to compute examples which turned out to
be rather difficult by hand. In those days there was no computer algebra system available
which could compute Milnor numbers and Tjurina numbers for non—trivial examples. Such
a system would have required the implementation of algorithms for computing standard
bases for ideals and modules over local rings. Let us consider the following example.'!

Let f =2y + 2,9 = 22 + y® + y2% and (X,0) C (C3,0) be defined by f = g = 0. In
this case we have the following formulas for the Milnor number and Tjurina number,

w(X,0)
7(X,0)

dimc(C [[w7yaz]]/<f7 M17M2> M3> - dimC C[[‘”a?]ad]/(%: g_g;: %)7
dim¢ (C[[:L.ayaz]]/<faga My, My, M3>7

where M1, Ms, M3 are the 2-minors of the Jacobian matrix of (f, g)-
In SINGULAR we can compute these numbers as follows:

> ring R = 0, (x,y,z), ds; // compute in the localisation Q[x,y,z]l_<x,y,z>
> poly f, g = xy+z4, xz+yb+yz2;

> ideal I = £, g;

> matrix J = jacob(I); // Jacobian matrix

> ideal Tjur = I, minor(J,2);

> vdim(std(Tjur)); // compute K-dimension of R/Tjur

12 // the Tjurina number is 12

Alternatively, we can use the built-in command tjurina from sing.1ib.

> LIB "sing.lib"; // load the library sing.lib
> tjurina(I);
12

8(X,0) is called quasi-homogeneous, if it is (analytically) isomorphic to the germ of the zero—set of a
weighted homogeneous polynomial.
9Tf (X,0) is defined by f = 0,f € C [z1,...,&s], then pu(X,0) = dimcq[xl,...,mn]]/(%,...,a—"‘;f;)

is the Milnor number (a topological invariant) and 7(X,0) = dim¢ ([[z1,...,zx]]/{f, (%Ll, e a—amf:) is the
Tjurina number (the dimension of the base space of the semi—universal deformation).

10The Poincaré complex is defined as 0 — C — Ox,0 — Q}{,o = ... = Q% 5 — 0, with Qfx,o the
holomorphic i—differential forms on X. The maps are given by the differentials.

1 This is one example of a non—quasihomogeneous singularity with exact Poincaré complex showing that

(3) = (1) fails for complete intersections. We discovered this with a forerunner of SINGULAR.



It is known that for quasihomogeneous complete intersections Tjurina and Milnor num-
ber coincide.
Computing the Milnor number we see that (X,0) is not quasihomogeneous:

> milnor(I); // from sing.lib
13 // the Milnor number is 13

However, the Poincaré complex is exact. To see this, we showed that it suffices to check
that u(X,0) = dime Q% ; — dime Q% 4. Note that dime Q% = 1. Moreover,

Q%0 =0 of ((f, 9)0% ot df A O ot dgA s 0)

is isomorphic to Oﬁ(’o /M, where M C Oﬁ(’o is generated by the six vectors

(3. 8£.0), (3.0.-39), (0.35.50). (82,52.0), (32.0.-5). (0.5, 3):

By’ 9z oz’ ’ dz? By oy’ 8z’ oz’ 0Oz oz’ By
> qring Q = std(I); // quotient ring Q=R/I
> poly f = imap(R,f); // map f from R to Q

> poly g = imap(R,g);

> module M = [diff(f,y),diff(f,z),0], [diff(f,x),0,-diff(f,z)],
[0,diff (f,x),diff(f,y)], [diff(g,y),diff(g,z),0],

. [diff(g,x),0,-diff(g,z)],[0,diff(g,x) ,diff(g,y)];

> vdim(std(M));

14

Thus we computed dime Q% o = 14 = u(X,0) + dime %  showing that the Poincaré com-
plex is exact.

The first version of a standard basis algorithm (called BuchMora) was implemented in
BASIC on a ZX-Spectrum by K.P. Neudendorf (born Schemmel) and the second author in
1983. This implementation allowed us to compute first examples. A serious development
started in 1984 with an implementation of Mora’s tangent cone algorithm in Modula-2 on
an Atari computer at the Humboldt-University in Berlin (by the second author and a group
of students, including Hans Schonemann). After a while, a list of counter-examples to the
above mentioned conjecture was produced (see [15]). At that time, the system could only
compute with coefficients in a small prime field F,,. However, the experiments showed which
examples are candidates for a counter-example and how the computations in characteristic
0 should look like. The proof was then given manually.

7 A theorem in group theory

While the previous application of SINGULAR was an early example of a nowadays standard
application of computer algebra, the following example is rather amazing. The problem
is formulated in purely group—theoretic terms. We first translated it into a problem in
algebraic respectively arithmetic geometry, where we had to show the existence of rational
points on explicitly given varieties defined over finite fields. To solve the problem we had to
apply the well-known Hasse—Weil formula but also sophisticated versions of the Lefschetz
trace formula applied to the (square root of the) Frobenius morphism, as conjectured by
Deligne and proved by Fujiwara. To apply the Hasse—Weil, respectively the Lefschetz trace
formula we had to study the geometric structure of certain algebraic varieties given by
explicit equations, find their irreducible components, their singular loci, etc. All this was



done by using SINGULAR as an indispensable tool. The hardest part was finally to show
that the varieties we ended up with were irreducible over the algebraic closure of given
finite fields. But SINGULAR was not only used for these computations it was also essential
in finding the correct formulation of the theorem.

As we shall see, parts of the theorem can now be proved without a computer while other
parts (in particular the Suzuki groups) still require SINGULAR computations. However, since
we give explicit solutions, the correctness of the statements can be verfied by simple (but
lengthy) computations either by hand or (better) by any other computer algebra system.

The diversity of the methods required the collaboration of six authors from different
fields (cf. [1]). The final proof may be considered as an example of the unity of mathematics
in our more and more specializing discipline.

The problem in group theory was to characterize the finite solvable groups by two—
variable identities (like zy = yx for abelian groups) as we explain now.
If G is a group and z, y € G, we inductively define
ei(z,y) =22y w, ent1(z,y) = [zen(z,y)z ™" yen (e, y)y ']
where the commutator of g, h € G is defined by [g, h] := ghg=th=1.
The following theorem was proved by T. Bandman, F. Grunewald, B. Kunyavski, E.
Plotkin and the authors [1]:

Theorem 7.1. A finite Group G is solvable if and only if there is an n € N such that
en(z,y) =1 for allz,y € G.

We start with the classification of the minimal finite non—solvable groups G (that is, all
subgroups of G are solvable) by J. Thompson in 1968:

L

PSL(2,p), p a prime number, p=>5or p > 5 and p = £2 mod 5.
PSL(
PSL(

(

P
,2™), n > 2, a prime number.

L(2,3™), n odd, a prime number.
PSL(3, 3).

Sz(2™), n odd.

2
2
2
3

ANl

Since it is easy to see that the finite solvable groups satisfy the proposed identity it is
enough to show that for each group G in Thompson’s list we have z,y € G with ey (z,y) =
ea(z,y) and y # z~!. By the structure of the sequence e, this implies 1 # e;(z,y) =
en(z,y) for all n.

We shall give an idea on how to prove the theorem for the group PSL(2,q).!? The case
PSL(3,3) is easy but the case of the Suzuki groups Sz(2") is much more difficult and we

refer to the paper [1].

Proposition 7.2. If ¢ = p* for a prime p and q # 2,3, then there are x,y in PSL(2,F,)
with y # 71 and e1(x,y) = ex(z,y).

The proof will use some explicit computations with the following matrices. Let R = Z
or IF, and define

o(t) = G ‘01), y(b, ¢) = (i . f bc) € SL(2, R)

12pSL(2,F,) = SL(2,Fy)/ ({3 2) |a? = 1}, PSL(2,F5) = PSL(2,F4) = As.

10



for t,b,c € R.
Let I C ZIb, ¢, t] be the ideal generated by the four entries of the matrix e; (z,y)—ez2(z, y).
Using SINGULAR we can obtain I as follows:

>LIB"linalg.1lib";
>ring R = 0, (b,c,t),dp;

>matrix X[2][2] = t, -1,
1, 0;
>matrix Y[2][2] = 1, b,
c, 1+bc;

>matrix iX = inverse(X);

>matrix iY = inverse(Y);

>matrix M=iX*Y*iX*iVYxX*X-Y*xiX*iX*xiY*X*iY;

>ideal I=flatten(M); I;

I[11=b3c2t2+b2c2t3-b2c2t2-bc2t3-b3ct+b2c2t+b2ct2+2bc2t2+bct3
+b2c2+b2ct+bc2t-bct2-c2t2-ct3-b2t+bct+c2t+ct2+2bc+c2+bt
+2ct+c+l;

I[2]=-b3ct2-b2ct3+b2c2t+bc2t2+b3t-b2ct-2bct2-b2c+bct+c2t+ct2
-bt-ct-b-c-1;

I[3]1=b3c3t2+b2c3t3-b2c2t3-bc2t4-b3c2t+b2c3t+2b2c2t2+2bc3t2
+2bc2t3+b2c2t+2b2ct2+bc2t2-c2t3-ct4-2b2ct+bc2t+c3t+bct2
+2c2t2+ct3-b2c-b2t+bct+c2t +bt2+3ct2+bc-bt-b-c+1;

I[4]=-b3c2t2-b2c2t3+b2c2t2+bc2t3+b3ct-b2c2t-b2ct2-2bc2t2-bct3
-2b2ct+c2t2+ct3+b2t-bct-c2t-ct2+b2-bt-2ct-b-t+1;

To prove the Proposition above, it is enough to prove the following

Lemma 7.3. Let q be as in the Proposition, then the variety V9 = V (IF,[b,c,t]) C ]Fq3
defined by setting the four generators of I to zero is not empty.

We apply the theorem of Hasse-Weil as generalised by Aubry and Perret to singular

curves and use the fact that the affine curve C' has, at most, deg(C) rational points less
than the projective closure C:

Theorem 7.4. Let C' C A™ be an absolutely irreducible affine curve defined over the finite
field ¥y and C' C P" the projective closure, then the number of F, —rational points of C is
at least ¢ + 1 — 2p,/q — d with d the degree and p, the arithmetic genus of C.

Note that the Hilbert function of C, H(t) = dt — p, + 1, can be computed from the
homogeneous ideal I, of C, hence we can compute d and p, without any knowledge about
the singularities of C.

Let L be the algebraic closure of F,. To apply the proposition, we have to prove that
C' is absolutely irreducible, that is, that IL[b, ¢, t] is a prime ideal. This is already hard to
compute. It turned out that the computation over the function field L(t) was easier.

Lemma 7.5. IL(t)[b,c] = (f1, f2) with

fi = 20 =3t —2)b° + (—t° + 3t* — 23 + 2¢ + 1)b?

+2(12 =2t = 1)(t —2)b+ (2 — 2t — 1)?

t(t? =2t — Ve + 120% + (=t +2t3)0% + (> + 3t* =263 + 2t + 1)b
+(t5 — 4t* + 383 + 2t%).

Moreover, we have IL[b,c,t] = (fi, fa) : h?, h = t(t> =2t — 1).

f2
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This can be tested in SINGULAR as follows

>ring S=(0,t),(c,b),1lp;
>ideal I=imap(R,I);
>ideal J=std(I); J;
J[1]1=(£2) *b4+(-t4+2t3) *b3+ (-t5+3t4-2t3+2t+1) *b2+ (t5-4t4+3t3+2t2)
*b+ (t4-4t3+2t2+4t+1)
J[2]=(t3-2t2-t) *c+(t2) *b3+ (-t4+2t3) *b2+ (-t5+3t4-2t3+2t+1)
*b+ (t5-4t4+3t3+2t2)

Now IL(t)[b,c] N L[b,c,t] = (f1, f2) : h? = IL[b,c,t]. Therefore, it is enough to prove
that IL(t)[b, c] is a prime ideal which is equivalent to prove that f; is irreducible in L(t)[b].
By the lemma of Gaufl we have to prove that f; is irreducible in L[, b].

Let P(z) := t?fi(x/t), then

Pz) = 2=t —-2)2 + (> +3t* =288 + 2t + )22 + 3t —2)(#2 — 2t — 1)z
+t2(12 — 2t — 1)2.
Clearly it suffices to prove that P € L[z, ] is irreducible.
To show that P is not divisible by any factor of degree 2 in z we make the following
” Ansatz”:
p=(2* +azx +b) (2° + gz + d), *)

a,b,g,d polynomials in ¢ with indeterminates a(i), b(i), g(i), d(i) as coefficient. It
is easy to see that we can assume

deg(b) < 5,deg(a) < 3,deg(d) < 3,deg(g) < 2.

Then a decomposition (*) with a(i), b(i), g(i), d(i) € F, does not exist if and only
if the ideal C of the coefficients in z,t of P — (z? + ax + b)(2? + gz + d) has no solution in
F,. By our characterization of Grobner bases this is equivalent to the fact that a Grébner
basis of C contains 1 € F,.

The ideal C of coefficients from our Ansatz:

C[11=-b(5)*d(3)

C[21=-b(5) *g(2)

C[31=-b(4)*d(3)-b(5)*d(2)

C[4]1=-b(4)*g(2)-b(5) *g(1)-d(3)-1
C[5]=-b(3)*d(3)-b(4)*d(2)-b(5) *d (1) +1
CL61=-b(5)-g(2)-1

C[71=a(0)*b(5)-a(2)*d(3)-b(3) *g(2)-b(4) *g(1)-d(2) +4

C[24]1=-a(0) ~2%b(0) +b(0) "2-b(0)

For a given prime p it is easy to compute the Grobner basis of C' and to verify that
1 € C. However, we cannot check infinitely many primes. What we do is to use that the
polynomials generating C' have integer coefficients. Hence, if we can express some integer
m as a polynomial combination of the generators of C' where all polynomials have integer
coefficients, then for any prime p, ptm,1 € F, is contained in C' (mod p).

We use the 1ift command of SINGULAR to show that (over Z) m =4 € C:

12



>matrix M=1ift(C,4); M;
M[1,1]=-a(0)+8*b(0) *b(3) -8*b(0) *¥b(4) -16%b (0) *g (1) *g(2)-. ..
M[2,1]=-a(0) "2+6*a(0) *b(3)-30*a (0) *b(5) *d (1) +200*a(0) *b(5) *d(2)-. ..
M[3,1]1=-8%b(0) *g (1) -8*b(0) *g(2) +8+b (1) *g(2) +8*b(1)-. ..
M[4,1]1=-16%b(0) *g(2) *d (3) -18%b (0) *g (2) +8*b (0) #*d (2) -8*b(0) *d (3)-. ..
M[5,1]=8*a(2)*b(0)+142*a(2)*d (1) *d(3)+41*a(2)*d(1)-...

M[6,11=a(0) ~2xg(2)+8%a(0) *b(0) *d (3) -6*a (0) *b (3) *g (2) +5*a(0) *b(3) +. ..
M[7,1]=8%b(0)*d(3)+5*b(3) -15%b(5) *d (1) +100*b(5) *d (2)-. ..

M[24,1]1=0

The computation shows that
* 24 . .
(%) 4=3%" M[i,1]- C[i].

Note that it is difficult to find the polynomials M[i, j] but once they are found it is easy
to check that the relation (%) holds.

The relation () implies that over F,, p # 2, the polynomial P has no quadratic factor.
Similarly, one can show that it has no linear factor. This implies that P is absolutely
irreducible in F, [t, z] for all p # 2. The case p = 2 can be treated by a direct computation
over IF,.

Now we can apply the theorem of Hasse—Weil to prove Lemma 7.3.

We compute the Hilbert polynomial H(t) of the projective curve corresponding to I.
We obtain H (t) = 10t — 11. The corresponding SINGULAR session is:

>ring $=0,(b,c,t,w),dp;

>option(contentSB) ;

>ideal I=imap(R,I);

>ideal J=std(I); J;

J[1]=bct-t2+2t+1
J[2]=bt3-ct3+t4-b2t+bct-c2t-2bt2+2ct2-3t3+bc+t2+t+1
J[3]=b2c2-b2ct+bc2t-bct2+b2+2bc+c2-b+c-t+2
J[4]=c2t3-ct4+c3t-2c2t2+3ct3-t4-bc2+bt2-2ct2+413-2bt+ct-3t2-b-2t

It can easily be seen that J induces a Grébner basis in Fy[b,c,t,w] for all p, because
option(contentSB) forces SINGULAR to avoid division by integers.

We homogenise J with respect to w and obtain again a Grobner basis, cf. [10], with
respect to the degree reverse lexicographical ordering. Since the leading coefficients of J
have all coefficient 1 and since J and the leading ideal of J have the same Hilbert polynomial,
the Hilbert polynomial is the same in any characteristic.

J=homog(J,w) ;
hilbPoly(J);
-11,10

From the the result we see that the degree d = 10 and the arithmetic genus p, = 12.
Using theorem 7.4, we obtain:

#V@ > g4 1-24,/g—10.

This implies that V(9 is not empty if ¢ > 593.
For the remaining prime powers g, we check directly by computer that V(9 is not empty.
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8 Resolution of singularities

Resolution of singularities of algebaric varieties is considered to be one of the deepest
theorems in algebraic geometry. It is classical for curves, has been proved by Abhyankar
for surfaces (in any characteristic) and by Hironaka in general (in characteristic 0). The
case of positive characteristic is, in general, still open.

Let V. = V(f1,---,fm) € K™ be an affine algebraic variety and assume the ideal
(f1,---, fm) is radical. The Zariski-tangent space Ty, of V at p is the affine subspace
at p defined by the vector space

Ofi .
{y=(1,...,yn) €C" | z&f(p)yj = 0 for all 4}.
j

Regular points of V' are points with maximal rank of the Jacobian matrix (g% (p)), ie.

points where the tangent space has the dimension of the variety V. Let us denote by
Sing(V) the set of singular points. In case of a hypersurface V = V(f) with squarefree f,
we have Sing(V) =V (f, %,...,g&).

The problem of resolution of singularities can be formulated as follows. Given a reduced
algebraic variety X construct a non-singular variety X' and a proper!® birational'* map
7 : X' = X such that 7 induces an isomorphism X' \ 7~ !(Sing(X)) = X \ Sing(X).
The first proof that the resolution of singularities in characteristic zero is always possible
was given by Hironaka in 1964. Some years ago Villamayor and Encinas and independently
Bierstone and Milman gave constructive proofs for this theorem leading to algorithms which
we implemented in SINGULAR. With these algorithms one can compute the so—called em-
bedded resolution. We start with a variety X embedded in a smooth n—dimensional variety
W . The idea of the resolution process is to use a sequence of blowing ups.!®

The choice of the centers in this sequence of blowing ups is the crucial point in the
resolution process. The center has to be chosen in such a way that after the blowing up the
singularity of the strict transform together with the configuration of exceptional divisors!®
improves. The intersection of the exceptional divisors in the process of blowing ups should
be as simple as possible.”

The picture shows the blowing up of
K? at 0. The result is the variety
X ={z,y;u:v) € K> xP' | zv = yu}
with the canonical projection = : X —
K? 7(z,y;u : v) = (2,y). On the sur-
face X we can see the strict transform
of the curve defined by > — z2(x + 1)
and the exceptional divisor intersecting

it in two points.

131n the classical topology proper means that the preimages of compact sets are compact again.

4 The map is locally defined by rational functions and has an inverse of this type.

15Blowing ups are special birational maps replacing the points of a smooth subvariety (the center of the
blowing up) by projective spaces. If the dimension of the variety is n and the dimension of the center is d
then its points will be replaced by P»—4—1,

161f 7 : W’ — W is the blowing up with center C C X C W then 7~1(C) is the exceptional divisor. The
closure of 7~1(X \ C) in W' is called the strict transform of X.

7The exceptional divisors should have normal crossings and should also have normal crossings with the
resolved variety.
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The center should be contained in the singular locus of X. The choice of the center for
the next blowing up in the resolution process is guided by an invariant which is a vector of
integers and locally defined at each point. The invariants at the points can be compared
lexicographically and the center has to be choosen as the set of points with maximal value
of the invariant. There are several possibilities to define such an invariant and every choice
leads to different algorithms. The definition of such an invariant is rather complicated
and includes the knowledge about the ”history”of the resolution process. The invariant
has values in a well-ordered set and its maximals value decreases under blowing up in
the correct center which guarantees termination of the resolution process. For details and
improvements see [6], [7].

As an example we compute the resolution of an isolated surface singularity:

>LIB"resolve.lib"; // load the resolution algorithm
>LIB"reszeta.lib"; // load its application algorithms
>LIB"resgraph.lib"; // load the graphical output routines
>ring R=0, (x,y,z) ,dp; // define the ring Qlx,y,z]

>ideal I=x7+y2-z2; // an A6 surface singularity

>list L=resolve(I); // compute the resolution
>size(L[1]); size(L[2]);

7

13

The list L consists of two list of L[1] and L[2] which both contain a list of 7 resp. 13
rings. The first list of rings collects all information on the resolution in the 7 final charts
(where the singularity is resolved). The second list collects all information on intermediate
results of the resolution process. To display the tree of all the 13 charts considered in the
resolution process, we may use the Restree command (from resgraph.1lib). Instead, we
compute the intersection form and the genera of the exceptional divisors. We do not print
the intersection matrix. Instead, we use InterDiv from resgraph.lib to get a graphic
visualization:

>list iD=intersectionDiv(L); // compute intersection properties
>iD[2]; // genera of exceptional divisors
0,0,0,0,0,0

>InterDiv(iD[1]); // draw dual graph of resolution

In the diagram, each filled circle corresponds to an exceptional divisor with self intersection
—2. Otherwise, the self intersection is displayed. The circles are joined by a line iff the
corresponding exceptional divisors meet.
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Next, we compute the Denef-Loeser zeta function, which codes a lot of information of
the resolution:

>zetaDL(L,1);
[1]:
(s+8) /(7s2+15s+8)

9 SINGULAR and general relativity

Let us now describe an application of SINGULAR to a problem in general realtivity.

We are interested in constructing stationary axisymmetric solutions to the Einstein
equations for a vacuum gravitational field.

A standard method proceeds by reducing them to a two dimensional nonlinear equation,
the Ernst equation (cf. [4])

1
(Re€)(E,pp + E ¢ + ;g’p) = 5,29 + “”724 (1)

for the complex valued function & (p, ¢) = f(p, () +ib(p, (), with f = Ref the real part and
b = Im¢& the imaginary part of £, and commas denoting partial derivation.
Equation (1) can be rewritten as

fAf = |Df]>—|Dbf?

fAb = 2(Df,Db) @

Here A is the Laplace operator of the flat metric g = dp? + p>dyp? + d(? where p,( and ¢
are cylindrical coordinates on R® and the above functions are independent of . Similarly
(,) denotes the g—sealer product and | | the g-norm.

Equations (2) are singular at

Ef ={(p,Q) | f(p,¢) =0,p >0}

which is called the £-ergosurface!®.

Assuming smoothness of f and b in a neighbourhood of Ey, the problem arises whether
the solution of (2) produces a smooth space—time metric. Since examples are known where
the metric is singular there and others where it is smooth, one would like to derive necessary
and sufficent conditions of smoothness of the space-time metric near Ej.

In [4] the following is proved:

Theorem 9.1. Consider a smooth solution f+ib of (1) such that f has no zeroes of infinite
order at Ey. Then there is a neighbourhood of Ef on which the space-time metric obtained
by solving (2) is smooth and has Lorentzian signature.

Let us explain how SINGULAR came into play in proving this result.

It was shown before by Chrusciel, Meinel and Szybka that first or second order zeroes
of f at (po,{o) € Ey always lead to a smooth space-time metric. This would prove the
theorem, provided that higher order zeroes of f do not exist.

18Because (1) degenerates at E ¢ there is no reason to expect smoothness of f there itself. However, large
classes of explicit solutions are known, where f can be extended analytically across Ey and the discussions
here is concerned with these solutions.
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The reason why this might be true is the following. Consider the Taylor expansion of £
at (po,Cp) and assume without loss of generality that £(po, (o) = 0. Let & be the tangent
cone of £ at (pg, (o), that is, the homogeneous polynomial in (p — pg,( — (o) of degree k
consisting of the non—vanishing terms of lowest order of the Taylor expansion of £ at (po, o)-
Since & is homogeneous of degree k in 2 variables its real resp. imaginary part f resp. b
depend both on k + 1 free parameters. If one inserts & in (1) and truncates the resulting
equation at the lowest non-vanishing order one obtains a homogeneous polynomial W}, of
degree 2k — 2 whose vanishing is a necessary condition for £ to solve (1). The real and
imaginary part of Wy, are a linear combination of 2k — 1 monomials'® and their vanishing
imposes hence 2(2k — 1) quadratic condition on the 2(2k + 1) free parameters of &y.

For k£ > 3 we have more equations than variables and the optimistic guess was that this
system has no (non-trivial) solutions. This would imply the non—existence of higher order
zeroes of f and hence the theorem.

The first insight, provided by SINGULAR was to show that the equations W} = 0 are not
independent for k = 3,4, 5.

During the Oberwolfach meeting ”Mathematical Aspects of General Relativity”, Jan-
uary 8-14, 2006, Piotr Chrusciel mentioned the problem to the first author of this article.
He also mentioned that they had been able to find solutions of Wj, = 0 for k = 2 using
Maple. But they were unable to settle the case £ = 3 or higher using the widely available
commercial computer algebra programmes; the problem was too complicated to be handled
by those systems via direct implementations.

Of course, this was a challenge for SINGULAR. Taylorizing f and b at py + i(yp up to
order k, we get with x = p — po,y =( — (o

k
f ::ZE:(”xk_jyia b =:j£:bimk—iyﬂ
=0

i=0

where a;, b; are indeterminates.

It is now easy to set up the truncated equations for (2) and to create, for a given k, the
system of 4k — 2 equations W}, = 0, depending on the variables ay, ..., ag, bo, - . ., b, coded
in the ideal W:

>int k=3;
>ring R = 0,(a(0..k),b(0..k),y,x),dp;

>poly f,b;

>int i;

>for (i=0; i<=k; i++)

>{

> f = f + a(i)*x~ (k-i)*y~(i);

> b
>}

b + b(i)*x~ (k-i)*y~(i);

>poly Lf = diff(diff(f,x),x)+diff(diff(f,y),y); //Laplacian of f
>poly Lb = diff(diff(b,x),x)+diff (diff(b,y),y);

>poly Df = diff(f,x)"2 + diff(f,y)"2;

>poly Db = diff(b,x)"2 + diff(b,y)"2;

>poly fb = diff(f,x)*diff(b,x)+ diff(f,y)*diff(b,y);

19Note, that the complex valued function £(p,¢) depends on the two real variables p,(, i.e. Wy is a
homogeneous polynomial in two variables of degree 2k — 2.
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fxLf - Df + Db; //truncated equations (2) to solve
f*Lb - 2x*fb;

>poly Eql
>poly Eq2

>matrix co = coef (Eql,xy);

>ideal W = co[2,1..2%k-1];

>co = coef (Eq2,xy);

>W = W, ideal(co[2,1..2%k-1]); //conditions on the coefficients of (2)

>ring S = 0,(a(0..k),b(0..k)),dp;
>ideal W = imap(R,W);
>dim (groebner(W));

For k = 3, the command dim(groebner (W)); returns 2, hence there is a 1-dimensional
projective variety of nontrivial complex solutions of W}, = 0. As a; resp. b; are the coefficient
of the real resp. the imaginary part of {, we are looking for real solutions of Wy = 0
which are not all zero. The Grébner basis itself consists of 46 generators for £k = 3 and
does not give any insight in the structure on the solution set. Since the solution set has
positive dimension numerical solving is not appropriate - we need ”symbolic solving”. The
breakthrough came by decomposing Wj = 0 into irreducible components. The SINGULAR
command primdecGTZ (W), returned (in a few seconds) for k = 3,4 ideals of the different
components of Wy = 0 which could be interpreted easily.

>LIB "primdec.lib";
>list mpr = minAssGTZ(W);

>mpr;

[1]1: [2]:
_[1]1=a(2)"2+a(3)"2 _[11=b(2) ~2+9%b(3) "2
_[2]1=b(3) _[2]1=b(1)+3*b(3)
_[31=b(2) _[31=3*b(0)+b(2)
_[41=b(1) _[41=-a(3)*b(2)+a(2)*b(3)
_[51=b(0) _[51=a(2) *b(2) +9*a (3) *b(3)
_[61=a(1)-a(3) _[6]=a(2)~2+9*a(3) "2
_[71=a(0)-a(2) _[71=a(1)+3*a(3)

_[8]=3*a(0)+a(2)

[3]: [4]:
_[11=3*a(3)+b(2) _[11=3*a(3)-b(2)
_[2]=a(2)-3%b(3) _[2]1=a(2)+3%b(3)
_[31=b(1)+3*b(3) _[31=b(1)+3%b(3)
_[4]1=3*b(0)+b(2) _[4]1=3*b(0)+b(2)
_[51=a(1)+3*a(3) _[51=a(1)+3*a(3)
_[61=3*a(0)+a(2) _[6]1=3*a(0)+a(2)

We see that the equations [1] and [2] have only trivial real solutions. However, [4] resp.
[3] provide non—trivial real solutions. These are of the form

f+ib=aw® resp. f +ib = aw®

with a = ag + ibg, w = x + iy, as can be easily checked.
The solutions & of the equations W}, found by SINGULAR belong to the general family

& = a(z — %)k, (5)
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where o € C, with z = p + ¢ (or to the complex conjugate family). It is straightforward,
using the Cauchy-Riemann equations, to check that functions of this form satisfy (2) and
hence (1), for all k¥ € N. Thus, this second insight provided by SINGULAR led us to discover
a solution of the leading order equations for all k. Moreover SINGULAR showed that (5) and
its complex conjugate are all solutions with b # 0 for small ¥ which could then be proved
analytically for all k.

One can show that higher order zeros of £ with a leading order Taylor polynomial (3)
do lead to a space-time metric which is indeed smooth across Ey, thus proving the theorem.

10 Curves and Surfaces with many Singularities

We describe now a typical example how SINGULAR was used to support research in algebraic
geometry by creating interesting examples.

Let X C Pg be a projective hypersurface being the zero set of f(zo,...,2n) €
Clzo,---,2n], a homogeneous polynomial of degree d > 0. It follows from Bezout’s the-
orem that X cannot have too complicated or too many singularities with respect to d,
thus combining local and global properties. Bezout’s theorem says that if the intersection
of n hypersurfaces in P™ consist of finitely many points then the number of intersection
points (counted with appropriate multiplicities) is equal to the product of the degrees of
the hypersurfaces.

In particular, if p is a singular point of X and if L is a line in general position then the
intersection number of X and L at p is equal to the multiplicity mult (X, p), the order of
the Taylor expansion of f at p. In particular X cannot have any singularity of multiplicity
bigger than its degree, which shows that each individual singularity on X cannot be too
complicated. To get an estimate for the number of singularities we can use another local
invariant, the Milnor number u(X,p) = dim¢ C [[z1, . .., Z5]] /(3%%, e, 8—‘1%) ifxq,...,2,
are local coordiantes with center p and f = 0 a local analytic equation of X at p. If we
assume that X has only isolated singularities, then u(X,p) < oo for all p € X and, by
choosing general projective coordinates, we may assume that no singularity of X lies on
{20 = 0}. Considering the intersection of the hypersurfaces g—i =0,7=1,...,n, we obtain
from Bezout’s theorem

d-1"> > uX,p). (%)

pESing(X)

Since u(X,p) = 0 if p is nonsingular and u(X,p) = 1 iff p is a node?® we get that the
number of singularities of X is bounded by d” 4+ O(d"~!) and that the number of non-nodes
is bounded by 1d™ 4+ O(d""'). Of course, this bound is very coarse and better bounds have
been given, e.g. by using the semi—continuity of the singularity spectrum by Varchenko.
These bounds concern the coefficient of d” but not the asymptotic O(d™) if d goes to infinity.

20An Ay-singularity has the local analytic equation z2 +- - -—|—w7’§+1 = 0. A;-singularities are calles nodes,
Ag-singularities cusps.
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Figure 1: A 4-nodal plane curve of degree Figure 2: A plane curve of degree 5 with 5

5, with equation z° — %mB + l%x - iys + cusps, the maximal possible number. The
%y = 0, which is a deformation of Eg : equation is %x‘ly - %xzysg—;gﬁ — 20z —
z® —y® =0. %w2y2%y4 —122%y + 7—83;1;3 + 3222 = 0.

On the other hand, from the very beginning of algebraic geometry, the existence of
hypersurfaces with many singularities has been a problem of constant importance and
interest, from Descartes, Pascal, Newton over Pliicker and Severi to Zariski and Harris
until nowadays. Except for the simplest case, the number of nodes on a plane curve settled
by Severi in 1921, no general answer is known. The problem turned out to be extremely
hard and the partial results so far suggest that a generel condition for the existence of
singularities of a given type which is necessary and sufficient at the same time cannot be
expected for more complicated singularities than nodes.

Two directions of research have been established in this connection: (I) to find sufficient
existence conditions which are proper (i.e. have the asymptotic ad™ + O(d"~!) with a
constant « which is not necesarily optimal) or (II) to find necessary and sufficient conditions
for small d and the simplest singularities like nodes and cusps®°(cf. Fig. 1 and Fig. 2).

Let us first consider (I). The first general asymptotic proper conditions for the existence
were found only in 1989 in [8] in the case of plane curves. The coefficient o has been im-
proved subsequently (cf. the forthcoming book [9]) in particular if we ask for the maximum
u such that a plane curve of degree d has a single singularity with Milnor number u. The
precise answer to this question is still unknown but we know (cf.[9]) that pu > d?/2 + O(d).

This result is just an existence statement, the proof gives no hint how to produce any
equation. Having a method for constructing curves of low degree with many singularities,
Lossen was able to produce explicit equations. In order to check his construction and
improve the results, he made extensive use of SINGULAR to compute standard bases for
global as well as for local orderings. One of his examples is the following:

Example: The irreducible curve C' with affine equation f(z,y) =0,

1 1 1 5 7
2 10 9 2 8 4 7 6 6 8 5 10
=922 - -z - - —
flz,y)=y y(z™" + 58 Y —3TY T g% Y ~19g% Y T gt Y
21 4 12 33 3,14 _ 429 2 16 + 715 18

T 10247 Y T2048" Y T 32768 Y T 6553677
2431 20 20 19_2
ae21aa? ) tE Ty

has degree 21 and an Agsg—singularity (z2 — y?2° = 0) as its only singularity.
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In order to verify this, one may proceed, using SINGULAR, as follows:

>ring s = 0,(x,y),ds;

>poly f = y2-2x10y-x9y3+1/4x8y5-1/8x7y7+5/64x6y9-7/128x5y11+21/512x4y13
-33/1024x3y15+429/16384x2y17+x20-715/32768xy19+x19y2+2431/131072y21;

>matrix Hess = jacob(jacob(f)); //the Hessian matrix of f

>print (subst (subst (Hess,x,0),y,0)); //the Hessian matrix for x=y=0

0,0,

0,2

>vdim(std(jacob(£))); //the Milnor number of f

228

Since the rank of the Hessian at 0 is 1, f has an Ay singularity at 0; it is an Agag
singularity since the Milnor number is 228. To show that the projective curve C' defined
by f has no other singularities, we have to show that C' has no further singularities in the
affine part and no singularity at infinity. The second assertion is easy, the first follows from

dime (K[, yl(z,y)/ (Jacob(f), f) = dime(K]z, y]/(jacob(f), f),

confirmed by SINGULAR:

>vdim(std(jacob(£)+£));

228 //multiplicity of Sing(C) at 0 (local ordering)
>ring r = 0,(x,y),dp;

>poly f = fetch(s,f);

>vdim(std(jacob(£)+f));

228 //total multiplicity of Sing(C) (global ordering)

The existence problem (II) for hypersurfaces in P? of low degree with specific singularities
(such as nodes) has attracted attention of many researchers. Let m(d) denote the maximum
number of nodes on a surface X of degree d in PZ. It is known that m(d) = 1,4, 16,31, 65
for d = 2,3,4,5,6 but for d > 7 we only know 2d* < m(d) < $d® up to O(d?), but the
exact value of m(d) is unknown. Note that the lower bounds are obtained in each case by a
specific construction, due to Schléifli, Kummer, Togliatti, Chmutov and Barth. In 2004 O.
Labs constructed a surface of degree 7 with 99 nodes which is the current world record for
surfaces of degree 7 (but which is still smaller than the known upper bound 104).

The construction of Labs is a very instructive example on how geometric reasoning
with computer experiments over finite fields of small characteristic can be used to support
research in algebraic geometry.

The arguments of Labs can be roughly summarized as follows. Inspired by previous
work of Barth and Endraf, Labs considers a 6-parameter family S,, . ., € Z[z,y, 2] of
homogeneous polynomials of degree 7, and the aim was to construct explicit algebraic num-
bers ay, . ..,as such that S,, .. ., defines a nodal surface having more than the previously
known 93 nodes. Computer experiments with SINGULAR over small prime fields suggested
that the maximum number of nodes on Sy, ... q; is 99 and that such examples should exist
for ag = 1. Using the symmetry of the family S =S, . a5,1, it is sufficient to consider the
plane curve defined by Sy := S|,—¢ and find parameters a4, ..., as such that S, has many
nodes (from which the number of nodes on S can be computed).

Of course, to work in the plane y = 0 allows much faster computations. By running
SINGULAR computations over all possible parameter combinations for small prime fields
F,(11 < p < 53) he finds some 99-nodal surfaces over these fields. To find conditions
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for the parameters, Labs used geometric properties of the plane curve S, together with
extensive SINGULAR computations such as elimination and factorization (for details see
[12]). He ended up with ay,...,as being polynomial expression in a € C, 7a® +7a+1 =0,
such that the resulting polynomial S, defines a surface with exactly 99 nodes over several
prime fields.

It turns out that the same conditions give a 99-—nodal septic surface in characteristic
0 which can be proved by a straightforward computations with SINGULAR. The following
surface in P3(C) of degree 7 with equation S, = P — U, has exactly 99 nodes and no other
singularities, where

P: = gz [28-3Ta%?+ 5722y — 7-y°)
+7-z-[(:1:2 + y2)3 — 2322 (2% + y"’)2 + 2424 (2% + y2)] — 2627
Us: = (z4asw) ((z +w)(@® +y?) + a12® + a22’w + agzw? + a4w3)2 ,
ag = -2a2-38q-8 g = -3+ %a-8
as = —%oﬂ + %a — 4, as = 49a% — 7a + 50.
a3 = —4a’+Za -4,

Note that 7a® + 7a + 1 = 0 has one real solution &~ —0, 14010685 and for this value all 99
nodes of S, are real, which allows to draw a nice picture of S, (Fig. 3).

Figure 3: Lab’s 99-nodal septic

The following SINGULAR code verifies that Lab’s septic has indeed 99 nodes and no
other singularities.

>LIB "all.lib";

>ring r = (0,alpha), (x,y,w,z), dp;
>minpoly = 7*alpha”3 + 7*alpha + 1;
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>poly a(1) = -12/7*alpha”2 - 384/49*alpha - 8/7;

>poly a(2) = -32/7*alpha”2 + 24/49xalpha - 4;
>poly a(3) = -4*xalpha”2 + 24/49xalpha - 4;
>poly a(4) = -8/7*alpha”2 + 8/49xalpha - 8/7;
>poly a(b) = 49xalpha”2 - T7*alpha + 50;

>poly P = x*(X"6-3*T*x 4%y ~2+5xT*x" 2%y 4-T*y 6)
+ T*z*x ((x72+y72) "3-2"3%z 2% (x"2+y"2) "2+274*z " 4x (x"2+y"2)) - 276%xz"7;

>poly C = a(1)*z"3+a(2)*z " 2*w+a(3) xz*w"2+a(4) *w” 3+ (z+w) * (x"2+y~2) ;
>poly U = (z+a(b)*w)*C"2;
>poly S = P-U;

The following computation verifies that the total Tjurina number of S, is 99 and that
all singularities are ordinary double points, using the Hessian criterion. We check the total
Tjurina number of the projective surface:

>ideal sl = jacob(S); //the singular locus of S

>ideal newsl = groebner(sl); //a groebner basis

>dim(newsl)-1; //dimension of the projective variety.
2

>mult (newsl) ; //total tjurina number

99

Check now that all singularities are ordinary double points:

>matrix mHS = jacob(jacob(S));

>ideal nonnodes = minor (mHS,2), sl; //the ideal of non-nodes
>nonnodes = groebner (nonnodes) ;

>dim(nonnodes) ;

0

Since the dimension is zero, the projective dimension of nonnodes is —1, that is, there
are no non-nodes.

11 Applications outside Mathematics

Grdobner basis techniques and multivariate factorization methods can be applied whenever a
problem can be expressed in terms of polynomial equalities and inequalities and SINGULAR
has been used to solve a variety of such problems from outside mathematics. It should
be stressed, however, that quite often the hardes part is not the computation but the
“modelling”, that is, the proper formulation which makes the computation possible.

First we want to describe an application which came from robotics resp. chemistry and
was communicated to us by Levelt in 1996.
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Consider the picture above of the heptagon in 3-space. Let a; = P;P;y; for ¢ < 6 and

a7 = P;P;. Assume that all vectors have length 1 and that the angels between them are
the same. This can be expressed by the following equations (where ¢ is a parameter):

(1) (a1,a2) = (az,a3) = ... = (ar,a1) = ¢ = cos(a)
(2) (a1,a1) = (az,a2) =... = (ar,a7) =1

(3) ar+as+...+a7y=0.

Different values of ¢ lead to different applications. For ¢ = 0 the equations describe the
configuration space of a robot and for ¢ = % the configuration space of a molecule. The
question was to find out the degree of freedom of the heptagon. Can it move in 3-space (ay
fixed)? For ¢ = % one obtains after several simplifications the following system of equations:

>ring R=0,(v,w,x,y,2,t),dp;

>ideal I= 81y2z2-54wyz+54y2z+54yz2-72w2+198wy-207y2+198wz-226yz-20722+114w-141y-1412+10,

81w2x2+54w2x+54wx2-54wxz-207w2-225wx-207x2+198wz+198xz-72z2-141w-141x+114z+10,

324vw2x+432vw2+540vwx+432w2x-432uxy-432vwz+324uyz+180vw+846w2-576vx+180wx-306wy+144xy
+144vz-306wz-36yz+12v+585w+12x-318y-318z-79,

81v2w2+54v2w+54vw2-54vwy-207v2-225vw-207w2+198vy+198wy-72y2-141v-141w+114y+10;

Computing a Grobner basis it is easy to see that the equations describe a curve in 5—space.
One question (of Levelt) was to compute the projection to the w, z—plane. The result is the
following polynomial of degree 36:

13343098629642274643741505w20x16+18458805154059402163602552w20x15
+12528539096440613433050772w19x16-307469543636682571308498792w20x14
-308745089273555811810514188w19x15-335770469789305978523636514w18x16

-57603722394732542788396875000w2x-56209703485755917382271875000wx2
-29459059311819369252628125000x3-3456386878638867977468750000w2
-388065077492910629437500000wx-3500955605594366547468750000x2
+1264097844032306972500000000w+1126578705265908772500000000x
+240658492841196850000000000
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Several years ago it was a difficult task to compute the elimination and took several

hours. If we plot (using surf.1ib) the result, we see the curve of possible w, z—coordinates
of the molecule in 5-space. In particular, the heptagon can move and the configuration

spa

ce has at least two connected components:

We just want to mention some other applications:?!

e sizing analog electronic circuits

e formal verifications of digital electronic circuits?2

e coding theory (AG—Codes which use algebraic curves over finite fields and vector
spaces given by divisors on these curves for coding)??

e glass melting

e modelling in economy (here, as quite often, the problem is to find all positive real
roots of a given system of polynomial equations).

e medicine
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