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Appendix A: Modules

REFERENCE.
[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American
Mathematical Society (AMS), 2010.

NOTATION.
Throughout we let R = (R,+, ·) denote a unital associative ring,
with multiplicative unit 1R (or simply 1).
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Appendix A: Modules – Definition and Examples

Definition. [Left R-module]
A left R-module is an ordered triple (M,+, ·), where M is a set endowed with an
internal composition law

+ : M×M −→ M
(m1,m2) 7→ m1 +m2

and an external composition law (or scalar multiplication)

· : R×M −→ M
(r,m) 7→ r ·m

satisfying the following axioms:
(M1) (M,+) is an abelian group;
(M2) (r1 + r2) ·m = r1 ·m+ r2 ·m for every r1, r2 ∈ R and every m ∈ M;
(M3) r · (m1 +m2) = r ·m1 + r ·m2 for every r ∈ R and every m1,m2 ∈ M;
(M4) (rs) ·m = r · (s ·m) for every r, s ∈ R and every m ∈ M.
(M5) 1R ·m = m for every m ∈ M.
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Appendix A: Modules – Definition and Examples

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external
composition law · : M× R −→ R, (m, r) 7→ m · r .

(2) We always work with left modules. Hence we simply write "R-module" to
mean "left R-module", and we simply denote R-modules by their underlying
sets.

(3) We often write rm instead of r ·m.

Examples.

(1) Modules over rings satisfy the same axioms as vector spaces over fields.
Hence:
Vector spaces over a field K are K-modules, and conversely.

(2) Abelian groups are Z-modules, and conversely.
(3) If the ring R is commutative, then any right module can be made into a left

module via r ·m := m · r ∀ r ∈ R, ∀ m ∈ M, and conversely.
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Appendix A: Modules – Substructures

Definition. [R-submodule]
An R-submodule of an R-module M is a subgroup U ≤ M such that

r · u ∈ U ∀ r ∈ R, ∀u ∈ U .

Direct sum of R-submodules
If U1,U2 are R-submodules of an R-module M, then so is

U1 + U2 := {u1 + u2 | u1 ∈ U1,u2 ∈ U2} .

Such a sum U1 + U2 is called a direct sum if U1 ∩ U2 = {0} .
In this case we write U1 ⊕ U2.
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Appendix A: Modules – Substructures

Definition. [Irreducible/reducible/completely reducible module]
An R-module M is called:

(a) simple (or irreducible) if it has exactly two submodules, namely the zero
submodule 0 and itself;

(b) reducible if it admits a non-zero proper submodule 0 ( U ( M;
(c) semisimple (or completely reducible) if it admits a direct sum decomposition

into simple submodules.
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Appendix A: Modules – Morphisms

Definition. [Morphisms]
Let M,N be R-modules.

A (homo)morphism of R-modules (or an R-linear map, or
an R-homomorphism) is a map ϕ : M −→ N such that:

(i) ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) ∀ m1,m2 ∈ M; and
(ii) ϕ(r ·m) = r · ϕ(m) ∀ r ∈ R, ∀ m ∈ M.

An R-isomorphism is a bijective R-homomorphism. We write M ∼= N if there
exists an R-isomorphism between M and N.

A morphism from an R-module to itself is called an R-endomorphism and a
bijective endomorphism is called an R-automorphism.

Kernel / Image / Inverse

ker(ϕ) := {m ∈ M | ϕ(m) = 0N} is an R-submodule of M ;
im(ϕ) := ϕ(M) = {ϕ(m) | m ∈ M} is an R-submodule of N ;
if M = N and ϕ is invertible, then the set-theoretic inverse map ϕ−1 is also an
R-homomorphism.
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Appendix A: Modules – Morphisms

HomR(−,−) and EndR(−)

We write:

HomR(M,N) := {ϕ : M −→ N | ϕ is an R-homomorphism between M and N}.
This is an abelian group for the pointwise addition of maps:

+ : HomR(M,N)× HomR(M,N) −→ HomR(M,N)
(ϕ,ψ) 7→ ϕ+ ψ : M −→ N,m 7→ ϕ(m) + ψ(m) .

EndR(M) := HomR(M,M) .
This is a ring for the pointwise addition of maps and the usual composition
of maps.
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Appendix A: Modules – Quotients

Definition. [Quotients of modules]
Let U be an R-submodule of an R-module M. The quotient group M/U can be
endowed with the structure of an R-module in a natural way via the external
composition law:

R×M/U −→ M/U(
r,m+ U

)
7−→ r ·m+ U

The canonical map π : M −→ M/U,m 7→ m+ U is R-linear and we call it the
canonical (or natural) (homo)morphism or the quotient (homo)morphism.

Of course, the “usual” theorems on quotients hold:
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Appendix A: Modules – Quotients

Correspondence Theorem
If U is an R-submodule of an R-module M, then there is a bijection:

{R-submodules X of M | U ⊆ X} ∼←→ {R-submodules of M/U}
X 7→ X/U

π−1(Z) ←[ Z

Universal Property of the Quotient
Let ϕ : M −→ N be a homomorphism of R-modules. If U is an R-submodule of M
such that U ⊆ ker(ϕ), then there exists a unique R-module homomorphism
ϕ : M/U −→ N such that ϕ ◦ π = ϕ :

M N

M/U

π

ϕ

	

∃!ϕ

Concretely, ϕ(m+ U) = ϕ(m) ∀ m+ U ∈ M/U .
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Appendix A: Modules – Quotients

The Isomorphism Theorems
Let M be an R-module.

(a) 1st isomorphism theorem. With the notation of the UP, if U = ker(ϕ), then

ϕ : M/ ker(ϕ)
∼=−→ Im(ϕ)

is an isomorphism of R-modules.
(b) 2nd isomorphism theorem. If U1,U2 are R-submodules of M, then so are

U1 ∩ U2 and U1 + U2, and there is an isomorphism of R-modules

(U1 + U2)/U2 ∼= U1/(U1 ∩ U2) .

(c) 3rd isomorphism theorem. If U1 ⊆ U2 are R-submodules of M, then there is
an isomorphism of R-modules

(M/U1) / (U2/U1) ∼= M/U2 .
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Appendix B: Algebras

In this lecture we aim at studying modules over group algebras, which are specific
rings with a module structure!

Definition. [Algebra / Morphism of Algebras]
Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple (A,+, ·, ∗) such that the following

axioms hold:
(A1) (A,+, ·) is a ring;
(A2) (A,+, ∗) is a left R-module;
(A3) r ∗ (a · b) = (r ∗ a) · b = a · (r ∗ b) ∀ a,b ∈ A, ∀ r ∈ R.

(b) A map f : A→ B between two R-algebras is called an algebra homomorphism
i�:

(i) f is a homomorphism of R-modules;
(ii) f is a ring homomorphism.
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Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "·" and the external composition law "∗" coincide!]

(b) Mn(R) , with n ∈ Z≥1 and R a commutative ring, is an R-algebra for its usual
R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]

(c) If K is a field and V a finite-dimensional K-vector space, then EndK(V) is a
K-algebra.

(d) R and C are Q-algebras, C is an R-algebra, . . .
(e) Rings are Z-algebras.

Definition. [Centre]
The centre of an R-algebra (A,+, ·, ∗) is Z(A) := {a ∈ A | a · b = b · a ∀b ∈ A}.
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