COMPLEMENTS ON Modules and Algebras

Character Theory of Finite Groups, SS 2022

Jun.-Prof. Dr. Caroline Lassueur
AG Algebra, Geometrie und Computeralgebra
Monday, the 2nd of May 2022

REFERENCE.

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American Mathematical Society (AMS), 2010.

REFERENCE.

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American Mathematical Society (AMS), 2010.

NOTATION.

Throughout we let $R=(R,+, \cdot)$ denote a unital associative ring, with multiplicative unit 1_{R} (or simply 1).

Definition. [Left R-module]
A left R-module is an ordered triple $(M,+, \cdot)$, where M is a set endowed with an internal composition law

$$
\begin{array}{cccc}
+: & M \times M & \longrightarrow & M \\
& \left(m_{1}, m_{2}\right) & \mapsto & m_{1}+m_{2}
\end{array}
$$

Definition. [Left R-module]

A left R-module is an ordered triple $(M,+, \cdot)$, where M is a set endowed with an internal composition law

$$
\begin{array}{cccc}
+: & M \times M & \longrightarrow & M \\
& \left(m_{1}, m_{2}\right) & \mapsto & m_{1}+m_{2}
\end{array}
$$

and an external composition law (or scalar multiplication)

$$
\begin{array}{llll}
\therefore: & R \times M & \longrightarrow & M \\
(r, m) & \mapsto & r \cdot m
\end{array}
$$

ApPENDIX A: MODULES - DEFINITION AND EXAMPLES

Definition. [Left R-module]

A left R-module is an ordered triple $(M,+, \cdot)$, where M is a set endowed with an internal composition law

$$
\begin{array}{cccc}
+: & M \times M & \longrightarrow & M \\
& \left(m_{1}, m_{2}\right) & \mapsto & m_{1}+m_{2}
\end{array}
$$

and an external composition law (or scalar multiplication)

$$
\begin{array}{llll}
\therefore: & R \times M & \longrightarrow & M \\
(r, m) & \mapsto & r \cdot m
\end{array}
$$

satisfying the following axioms:
(M1) $(M,+)$ is an abelian group;
(M2) $\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m$ for every $r_{1}, r_{2} \in R$ and every $m \in M$;
(M3) $r \cdot\left(m_{1}+m_{2}\right)=r \cdot m_{1}+r \cdot m_{2}$ for every $r \in R$ and every $m_{1}, m_{2} \in M$;
(M4) ($r s$) $\cdot m=r \cdot(s \cdot m$) for every $r, s \in R$ and every $m \in M$.
(M5) $1_{R} \cdot m=m$ for every $m \in M$.

Remarks / Conventions.

Appendix A: MODULES - DEFINITION AND EXAMPLES

Remarks / Conventions.
(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.

ApPENDIX A: MODULES - DEFINITION AND EXAMPLES

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.
(2) We always work with left modules. Hence we simply write " R-module" to mean "left R-module", and we simply denote R-modules by their underlying sets.

ApPENDIX A: MODULES - DEFINITION AND EXAMPLES

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.
(2) We always work with left modules. Hence we simply write " R-module" to mean "left R-module", and we simply denote R-modules by their underlying sets.
(3) We often write $r m$ instead of $r \cdot m$.

Appendix A: Modules - Definition and Examples

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.
(2) We always work with left modules. Hence we simply write " R-module" to mean "left R-module", and we simply denote R-modules by their underlying sets.
(3) We often write $r m$ instead of $r \cdot m$.

Examples.

(1) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:
Vector spaces over a field K are K-modules, and conversely.

Appendix A: Modules - Definition and Examples

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.
(2) We always work with left modules. Hence we simply write " R-module" to mean "left R-module", and we simply denote R-modules by their underlying sets.
(3) We often write $r m$ instead of $r \cdot m$.

Examples.

(1) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:
Vector spaces over a field K are K-modules, and conversely.
(2) Abelian groups are \mathbb{Z}-modules, and conversely.

Appendix A: Modules - DEFINITION AND EXAMPLES

Remarks / Conventions.

(1) Right R-modules can be defined analogously using a right external composition law $\cdot: M \times R \longrightarrow R,(m, r) \mapsto m \cdot r$.
(2) We always work with left modules. Hence we simply write " R-module" to mean "left R-module", and we simply denote R-modules by their underlying sets.
(3) We often write $r m$ instead of $r \cdot m$.

Examples.

(1) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:
Vector spaces over a field K are K-modules, and conversely.
(2) Abelian groups are \mathbb{Z}-modules, and conversely.
(3) If the ring R is commutative, then any right module can be made into a left module via $r \cdot m:=m \cdot r \forall r \in R, \forall m \in M$, and conversely.

Appendix A: MODULES - SUBSTRUCTURES

Definition. [R-submodule]

An R-submodule of an R-module M is a subgroup $U \leq M$ such that

$$
r \cdot u \in U \quad \forall r \in R, \forall u \in U .
$$

Definition. [R-submodule]

An R-submodule of an R-module M is a subgroup $U \leq M$ such that

$$
r \cdot u \in U \quad \forall r \in R, \forall u \in U .
$$

Direct sum of R-submodules
If U_{1}, U_{2} are R-submodules of an R-module M, then so is

$$
U_{1}+U_{2}:=\left\{u_{1}+u_{2} \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\} .
$$

Appendix A: MODULES - SUBSTRUCTURES

Definition. [R-submodule]

An R-submodule of an R-module M is a subgroup $U \leq M$ such that

$$
r \cdot u \in U \quad \forall r \in R, \forall u \in U .
$$

Direct sum of R-submodules
If U_{1}, U_{2} are R-submodules of an R-module M, then so is

$$
U_{1}+U_{2}:=\left\{u_{1}+u_{2} \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\} .
$$

Such a sum $U_{1}+U_{2}$ is called a direct sum if $U_{1} \cap U_{2}=\{0\}$.

Appendix A: MODULES - SUBSTRUCTURES

Definition. [R-submodule]

An R-submodule of an R-module M is a subgroup $U \leq M$ such that

$$
r \cdot u \in U \quad \forall r \in R, \forall u \in U .
$$

Direct sum of R-submodules

If U_{1}, U_{2} are R-submodules of an R-module M, then so is

$$
U_{1}+U_{2}:=\left\{u_{1}+u_{2} \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\} .
$$

Such a sum $U_{1}+U_{2}$ is called a direct sum if $U_{1} \cap U_{2}=\{0\}$. In this case we write $U_{1} \oplus U_{2}$.

Definition. [Irreducible/reducible/completely reducible module]
An R-module M is called:

Definition. [Irreducible/reducible/completely reducible module]
An R-module M is called:
(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule o and itself;

Definition. [Irreducible/reducible/completely reducible module]
An R-module M is called:
(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule o and itself;
(b) reducible if it admits a non-zero proper submodule $o \subsetneq U \subsetneq M$;

Appendix A: MODULES - SUBSTRUCTURES

Definition. [Irreducible/reducible/completely reducible module]
An R-module M is called:
(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule O and itself;
(b) reducible if it admits a non-zero proper submodule $O \subsetneq U \subsetneq M$;
(c) semisimple (or completely reducible) if it admits a direct sum decomposition into simple submodules.

Definition. [Morphisms]
Let M, N be R-modules.

Definition. [Morphisms]

Let M, N be R-modules. A (homo) morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:

Definition. [Morphisms]

Let M, N be R-modules. A (homo) morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

APPENDIX A: MODULES - MORPHISMS

Definition. [Morphisms]

Let M, N be R-modules. A (homo) morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

- An R-isomorphism is a bijective R-homomorphism. We write $M \cong N$ if there exists an R-isomorphism between M and N.

APPENDIX A: MODULES - MORPHISMS

Definition. [Morphisms]

Let M, N be R-modules. A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

- An R-isomorphism is a bijective R-homomorphism. We write $M \cong N$ if there exists an R-isomorphism between M and N.
- A morphism from an R-module to itself is called an R-endomorphism and a bijective endomorphism is called an R-automorphism.

APPENDIX A: MODULES - MORPHISMS

Definition. [Morphisms]

Let M, N be R-modules. A (homo) morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

- An R-isomorphism is a bijective R-homomorphism. We write $M \cong N$ if there exists an R-isomorphism between M and N.
- A morphism from an R-module to itself is called an R-endomorphism and a bijective endomorphism is called an R-automorphism.

Kernel / Image / Inverse

APPENDIX A: MODULES - MORPHISMS

Definition. [Morphisms]

Let M, N be R-modules. A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

- An R-isomorphism is a bijective R-homomorphism. We write $M \cong N$ if there exists an R-isomorphism between M and N.
- A morphism from an R-module to itself is called an R-endomorphism and a bijective endomorphism is called an R-automorphism.

Kernel / Image / Inverse

- $\operatorname{ker}(\varphi):=\left\{m \in M \mid \varphi(m)=O_{N}\right\}$ is an R-submodule of M;

■ $\operatorname{im}(\varphi):=\varphi(M)=\{\varphi(m) \mid m \in M\}$ is an R-submodule of N;

Appendix A: MODULES - MORPHISMS

Definition. [Morphisms]

Let M, N be R-modules. A (homo) morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map $\varphi: M \longrightarrow N$ such that:
(i) $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \forall m_{1}, m_{2} \in M$; and
(ii) $\varphi(r \cdot m)=r \cdot \varphi(m) \forall r \in R, \forall m \in M$.

- An R-isomorphism is a bijective R-homomorphism. We write $M \cong N$ if there exists an R-isomorphism between M and N.
- A morphism from an R-module to itself is called an R-endomorphism and a bijective endomorphism is called an R-automorphism.

Kernel / Image / Inverse

- $\operatorname{ker}(\varphi):=\left\{m \in M \mid \varphi(m)=O_{N}\right\}$ is an R-submodule of M;

■ $\operatorname{im}(\varphi):=\varphi(M)=\{\varphi(m) \mid m \in M\}$ is an R-submodule of N;
■ if $M=N$ and φ is invertible, then the set-theoretic inverse map φ^{-1} is also an R-homomorphism.
$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$
$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$
We write:

$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$

We write:
■ $\operatorname{Hom}_{R}(M, N):=\{\varphi: M \longrightarrow N \mid \varphi$ is an R-homomorphism between M and $N\}$.

Appendix A: MODULES - MORPHISMS

$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$

We write:

- $\operatorname{Hom}_{R}(M, N):=\{\varphi: M \longrightarrow N \mid \varphi$ is an R-homomorphism between M and $N\}$. This is an abelian group for the pointwise addition of maps:

$$
\begin{aligned}
+: \operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(M, N) & \longrightarrow \operatorname{Hom}_{R}(M, N) \\
(\varphi, \psi) & \mapsto
\end{aligned} \varphi+\psi: M \longrightarrow N, m \mapsto \varphi(m)+\psi(m) .
$$

Appendix A: MODULES - MORPHISMS

$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$

We write:

- $\operatorname{Hom}_{R}(M, N):=\{\varphi: M \longrightarrow N \mid \varphi$ is an R-homomorphism between M and $N\}$. This is an abelian group for the pointwise addition of maps:

$$
\begin{aligned}
+: \operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(M, N) & \longrightarrow \operatorname{Hom}_{R}(M, N) \\
(\varphi, \psi) & \mapsto \quad \varphi+\psi: M \longrightarrow N, m \mapsto \varphi(m)+\psi(m) .
\end{aligned}
$$

- $\operatorname{End}_{R}(M):=\operatorname{Hom}_{R}(M, M)$.

APPENDIX A: MODULES - MORPHISMS

$\operatorname{Hom}_{R}(-,-)$ and $E n d_{R}(-)$

We write:

- $\operatorname{Hom}_{R}(M, N):=\{\varphi: M \longrightarrow N \mid \varphi$ is an R-homomorphism between M and $N\}$. This is an abelian group for the pointwise addition of maps:

$$
\begin{aligned}
+: \operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(M, N) & \longrightarrow \operatorname{Hom}_{R}(M, N) \\
(\varphi, \psi) & \mapsto
\end{aligned} \varphi+\psi: M \longrightarrow N, m \mapsto \varphi(m)+\psi(m) .
$$

- $\operatorname{End}_{R}(M):=\operatorname{Hom}_{R}(M, M)$.

This is a ring for the pointwise addition of maps and the usual composition of maps.

APPENDIX A: MODULES - QUOTIENTS

Definition. [Quotients of modules]

Let U be an R-submodule of an R-module M. The quotient group M / U can be endowed with the structure of an R-module in a natural way

APPENDIX A: MODULES - QUOTIENTS

Definition. [Quotients of modules]

Let U be an R-submodule of an R-module M. The quotient group M / U can be endowed with the structure of an R-module in a natural way via the external composition law:

$$
\begin{aligned}
R \times M / U & \longrightarrow M / U \\
(r, m+U) & \longmapsto r \cdot m+U
\end{aligned}
$$

APPENDIX A: MODULES - QUOTIENTS

Definition. [Quotients of modules]

Let U be an R-submodule of an R-module M. The quotient group M / U can be endowed with the structure of an R-module in a natural way via the external composition law:

$$
\begin{aligned}
R \times M / U & \longrightarrow M / U \\
(r, m+U) & \longmapsto r \cdot m+U
\end{aligned}
$$

The canonical map $\pi: M \longrightarrow M / U, m \mapsto m+U$

APPENDIX A: MODULES - QUOTIENTS

Definition. [Quotients of modules]

Let U be an R-submodule of an R-module M. The quotient group M / U can be endowed with the structure of an R-module in a natural way via the external composition law:

$$
\begin{aligned}
R \times M / U & \longrightarrow M / U \\
(r, m+U) & \longmapsto r \cdot m+U
\end{aligned}
$$

The canonical map $\pi: M \longrightarrow M / U, m \mapsto m+U$ is R-linear and we call it the canonical (or natural) (homo)morphism or the quotient (homo)morphism.

APPENDIX A: MODULES - QUOTIENTS

Definition. [Quotients of modules]

Let U be an R-submodule of an R-module M. The quotient group M / U can be endowed with the structure of an R-module in a natural way via the external composition law:

$$
\begin{aligned}
R \times M / U & \longrightarrow M / U \\
(r, m+U) & \longmapsto r \cdot m+U
\end{aligned}
$$

The canonical map $\pi: M \longrightarrow M / U, m \mapsto m+U$ is R-linear and we call it the canonical (or natural) (homo)morphism or the quotient (homo)morphism.

Of course, the "usual" theorems on quotients hold:

Appendix A: Modules - Quotients

Correspondence Theorem

If U is an R-submodule of an R-module M, then there is a bijection:

$\{R$-submodules X of $M \mid U \subseteq X\}$	$\stackrel{\sim}{\longleftrightarrow}$	$\{R$-submodules of $M / U\}$
X	\mapsto	X / U
$\pi^{-1}(Z)$	\uplus	Z

APPENDIX A: MODULES - QUOTIENTS

Correspondence Theorem

If U is an R-submodule of an R-module M, then there is a bijection:

$$
\begin{array}{ccl}
\{R \text {-submodules } X \text { of } M \mid U \subseteq X\} & \stackrel{\sim}{\longleftrightarrow} & \{R \text {-submodules of } M / U\} \\
X & \mapsto & X / U \\
\pi^{-1}(Z) & \longleftrightarrow Z
\end{array}
$$

Universal Property of the Quotient

Let $\varphi: M \longrightarrow N$ be a homomorphism of R-modules. If U is an R-submodule of M such that $U \subseteq \operatorname{ker}(\varphi)$, then there exists a unique R-module homomorphism $\bar{\varphi}: M / U \longrightarrow N$ such that $\bar{\varphi} \circ \pi=\varphi:$

APPENDIX A: MODULES - QUOTIENTS

Correspondence Theorem

If U is an R-submodule of an R-module M, then there is a bijection:

$$
\begin{array}{ccl}
\{R \text {-submodules } X \text { of } M \mid U \subseteq X\} & \stackrel{\sim}{\longleftrightarrow} & \{R \text {-submodules of } M / U\} \\
X & \mapsto & X / U \\
\pi^{-1}(Z) & \longmapsto Z
\end{array}
$$

Universal Property of the Quotient

Let $\varphi: M \longrightarrow N$ be a homomorphism of R-modules. If U is an R-submodule of M such that $U \subseteq \operatorname{ker}(\varphi)$, then there exists a unique R-module homomorphism $\bar{\varphi}: M / U \longrightarrow N$ such that $\bar{\varphi} \circ \pi=\varphi:$

Concretely, $\bar{\varphi}(m+U)=\varphi(m) \forall m+U \in M / U$.

APPENDIX A: MODULES - QUOTIENTS

The Isomorphism Theorems
Let M be an R-module.

Appendix A: Modules - Quotients

The Isomorphism Theorems

Let M be an R-module.
(a) 1st isomorphism theorem. With the notation of the UP, if $U=\operatorname{ker}(\varphi)$, then

$$
\bar{\varphi}: M / \operatorname{ker}(\varphi) \xrightarrow{\cong} \operatorname{Im}(\varphi)
$$

is an isomorphism of R-modules.

APPENDIX A: MODULES - QUOTIENTS

The Isomorphism Theorems

Let M be an R-module.
(a) 1st isomorphism theorem. With the notation of the $U P$, if $U=\operatorname{ker}(\varphi)$, then

$$
\bar{\varphi}: M / \operatorname{ker}(\varphi) \xrightarrow{\cong} \operatorname{Im}(\varphi)
$$

is an isomorphism of R-modules.
(b) 2nd isomorphism theorem. If U_{1}, U_{2} are R-submodules of M, then so are $U_{1} \cap U_{2}$ and $U_{1}+U_{2}$, and there is an isomorphism of R-modules

$$
\left(U_{1}+U_{2}\right) / U_{2} \cong U_{1} /\left(U_{1} \cap U_{2}\right)
$$

APPENDIX A: MODULES - QUOTIENTS

The Isomorphism Theorems

Let M be an R-module.
(a) 1st isomorphism theorem. With the notation of the $U P$, if $U=\operatorname{ker}(\varphi)$, then

$$
\bar{\varphi}: M / \operatorname{ker}(\varphi) \xrightarrow{\cong} \operatorname{Im}(\varphi)
$$

is an isomorphism of R-modules.
(b) 2nd isomorphism theorem. If U_{1}, U_{2} are R-submodules of M, then so are $U_{1} \cap U_{2}$ and $U_{1}+U_{2}$, and there is an isomorphism of R-modules

$$
\left(U_{1}+U_{2}\right) / U_{2} \cong U_{1} /\left(U_{1} \cap U_{2}\right)
$$

(c) 3rd isomorphism theorem. If $U_{1} \subseteq U_{2}$ are R-submodules of M, then there is an isomorphism of R-modules

$$
\left(M / U_{1}\right) /\left(U_{2} / U_{1}\right) \cong M / U_{2} .
$$

ApPENDIX B: ALGEBRAS

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Appendix B: Algebras

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.

ApPENDIX B: ALGEBRAS

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple $(A,+, \cdot, *)$ such that the following axioms hold:

ApPENDIX B: ALGEBRAS

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple $(A,+, \cdot, *)$ such that the following axioms hold:
(A1) $(A,+, \cdot)$ is a ring;

Appendix B: Algebras

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple $(A,+, \cdot, *)$ such that the following axioms hold:
(A1) $(A,+, \cdot)$ is a ring;
(A2) $(A,+, *)$ is a left R-module;

Appendix B: Algebras

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple $(A,+, \cdot, *)$ such that the following axioms hold:
(A1) $(A,+, \cdot)$ is a ring;
(A2) $(A,+, *)$ is a left R-module;
(A3) $r *(a \cdot b)=(r * a) \cdot b=a \cdot(r * b) \forall a, b \in A, \forall r \in R$.

ApPENDIX B: ALGEBRAS

In this lecture we aim at studying modules over group algebras, which are specific rings with a module structure!

Definition. [Algebra / Morphism of Algebras]

Let R be a commutative ring.
(a) An R-algebra is an ordered quadruple $(A,+, \cdot, *)$ such that the following axioms hold:
(A1) $(A,+, \cdot)$ is a ring;
(A2) $(A,+, *)$ is a left R-module;
(A3) $r *(a \cdot b)=(r * a) \cdot b=a \cdot(r * b) \forall a, b \in A, \forall r \in R$.
(b) A map $f: A \rightarrow B$ between two R-algebras is called an algebra homomorphism iff:
(i) f is a homomorphism of R-modules;
(ii) f is a ring homomorphism.

Appendix B: Algebras

Examples.

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.

APPENDIX B: ALGEBRAS

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.

ApPENDIX B: ALGEBRAS

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]
(c) If K is a field and V a finite-dimensional K-vector space, then End ${ }_{K}(V)$ is a K-algebra.

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]
(c) If K is a field and V a finite-dimensional K-vector space, then $E n d_{K}(V)$ is a K-algebra.
(d) \mathbb{R} and \mathbb{C} are \mathbb{Q}-algebras, \mathbb{C} is an \mathbb{R}-algebra, \ldots

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]
(c) If K is a field and V a finite-dimensional K-vector space, then End ${ }_{K}(V)$ is a K-algebra.
(d) \mathbb{R} and \mathbb{C} are \mathbb{Q}-algebras, \mathbb{C} is an \mathbb{R}-algebra, \ldots
(e) Rings are \mathbb{Z}-algebras.

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]
(c) If K is a field and V a finite-dimensional K-vector space, then End ${ }_{K}(V)$ is a K-algebra.
(d) \mathbb{R} and \mathbb{C} are \mathbb{Q}-algebras, \mathbb{C} is an \mathbb{R}-algebra, \ldots
(e) Rings are \mathbb{Z}-algebras.

Appendix B: Algebras

Examples.

(a) A commutative ring R itself is an R-algebra.
[The internal composition law "." and the external composition law "*" coincide!]
(b) $M_{n}(R)$, with $n \in \mathbb{Z}_{\geq 1}$ and R a commutative ring, is an R-algebra for its usual R-module and ring structures.
[In particular R-algebras need not be commutative rings in general!]
(c) If K is a field and V a finite-dimensional K-vector space, then $E n d_{K}(V)$ is a K-algebra.
(d) \mathbb{R} and \mathbb{C} are \mathbb{Q}-algebras, \mathbb{C} is an \mathbb{R}-algebra, ...
(e) Rings are \mathbb{Z}-algebras.

Definition. [Centre]

The centre of an R-algebra $(A,+, \cdot, *)$ is $Z(A):=\{a \in A \mid a \cdot b=b \cdot a \forall b \in A\}$.

