Character Theory of Finite Groups — Exercise Sheet 5	TU Kaiserslautern
JunProf. Dr. Caroline Lassueur	Bernhard Böhmler
Due date: Thursday, the 30th of June 2022, 14:00	SS 2022

Throughout this exercise sheet $K = \mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group, and V a finite-dimensional \mathbb{C} -vector space.

Exercise 15

Let *G* and *H* be two finite groups. Prove that:

- (a) if $\lambda, \chi \in Irr(G)$ and $\lambda(1) = 1$, then $\lambda \cdot \chi \in Irr(G)$;
- (b) the set { $\chi \in Irr(G) \mid \chi(1) = 1$ } of linear characters of *G* forms a group for the product of characters;
- (c) $\operatorname{Irr}(G \times H) = \{\chi \cdot \psi \mid \chi \in \operatorname{Irr}(G), \psi \in \operatorname{Irr}(H)\}.$

[Hint: Use Corollary 9.8(d) and the degree formula.]

Exercise 16

- (a) Let $N \trianglelefteq G$ and let $\rho : G/N \longrightarrow GL(V)$ be a \mathbb{C} -representation of G/N with character χ .
 - (i) Prove that if ρ is irreducible, then so is $\operatorname{Inf}_{G/N}^{G}(\rho)$.
 - (ii) Compute the kernel of $\text{Inf}_{G/N}^G(\rho)$ provided that ρ is faithful.
- (b) Let $\rho : G \longrightarrow GL(V)$ be a C-representation of G with character χ . Prove that

$$\ker(\chi) = \ker(\rho),$$

thus is a normal subgroup of *G*.

(c) Prove that if $N \trianglelefteq G$, then

$$N = \bigcap_{\substack{\chi \in \operatorname{Irr}(G) \\ N \subseteq \ker(\chi)}} \ker(\chi) \,.$$

(d) Prove that *G* is simple if and only if $\chi(g) \neq \chi(1)$ for each $g \in G \setminus \{1\}$ and each $\chi \in Irr(G) \setminus \{\mathbf{1}_G\}$.

EXERCISE 17 (Exercise to hand in / 8 points)

(a) Compute the character tables of the dihedral group D_8 of order 8 and of the quaternion group Q_8 .

[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]

(b) If $\rho : G \longrightarrow GL(V)$ is a C-representation of *G* and det : $GL(V) \longrightarrow \mathbb{C}^*$ denotes the determinant homomorphism, then we define a linear character of *G* through

$$\det_{\rho} := \det \circ \rho : G \longrightarrow \mathbb{C}^*$$

called the **determinant of** ρ . Prove that, although the finite groups D_8 and Q_8 have the "same" character table, they can be distinguished by considering the determinants of their irreducible C-representations.

EXERCISE 18 (This exercise can be handed in for bonus points / 4 points)

Compute the complex character table of the alternating group A_4 through the following steps:

- 1. Determine the conjugacy classes of *A*₄ (there are 4 of them) and the corresponding centraliser orders. [Justify your computations / arguments.]
- 2. Determine the degrees of the 4 irreducible characters of A_4 .
- 3. Determine the linear characters of A_4 .
- 4. Determine the non-linear character of A_4 using the 2nd Orthogonality Relations.