Character Theory of Finite Groups - Exercise Sheet 5
 Jun.-Prof. Dr. Caroline Lassueur

Throughout this exercise sheet $K=\mathbb{C}$ is the field of complex numbers, ($G, \cdot \cdot$) is a finite group, and V a finite-dimensional \mathbb{C}-vector space.

Exercise 15

Let G and H be two finite groups. Prove that:
(a) if $\lambda, \chi \in \operatorname{Irr}(G)$ and $\lambda(1)=1$, then $\lambda \cdot \chi \in \operatorname{Irr}(G)$;
(b) the set $\{\chi \in \operatorname{Irr}(G) \mid \chi(1)=1\}$ of linear characters of G forms a group for the product of characters;
(c) $\operatorname{Irr}(G \times H)=\{\chi \cdot \psi \mid \chi \in \operatorname{Irr}(G), \psi \in \operatorname{Irr}(H)\}$.
[Hint: Use Corollary 9.8(d) and the degree formula.]

Exercise 16

(a) Let $N \unlhd G$ and let $\rho: G / N \longrightarrow G L(V)$ be a \mathbb{C}-representation of G / N with character χ.
(i) Prove that if ρ is irreducible, then so is $\operatorname{Inf}_{G / N}^{G}(\rho)$.
(ii) Compute the kernel of $\operatorname{Inf}_{G / N}^{G}(\rho)$ provided that ρ is faithful.
(b) Let $\rho: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation of G with character χ. Prove that

$$
\operatorname{ker}(\chi)=\operatorname{ker}(\rho),
$$

thus is a normal subgroup of G.
(c) Prove that if $N \unlhd G$, then

$$
N=\bigcap_{\substack{\chi \in \operatorname{Irr}(G) \\ N \subseteq \operatorname{ker}(\chi)}} \operatorname{ker}(\chi)
$$

(d) Prove that G is simple if and only if $\chi(g) \neq \chi(1)$ for each $g \in G \backslash\{1\}$ and each $\chi \in \operatorname{Irr}(G) \backslash\left\{\mathbf{1}_{G}\right\}$.

Exercise 17 (Exercise to hand in / 8 points)

(a) Compute the character tables of the dihedral group D_{8} of order 8 and of the quaternion group Q_{8}.
[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]
(b) If $\rho: G \longrightarrow \mathrm{GL}(V)$ is a \mathbb{C}-representation of G and det: $\mathrm{GL}(V) \longrightarrow \mathbb{C}^{*}$ denotes the determinant homomorphism, then we define a linear character of G through

$$
\operatorname{det}_{\rho}:=\operatorname{det} \circ \rho: G \longrightarrow \mathbb{C}^{*},
$$

called the determinant of ρ. Prove that, although the finite groups D_{8} and Q_{8} have the "same" character table, they can be distinguished by considering the determinants of their irreducible \mathbb{C}-representations.

Exercise 18 (This exercise can be handed in for bonus points / 4 points)

Compute the complex character table of the alternating group A_{4} through the following steps:

1. Determine the conjugacy classes of A_{4} (there are 4 of them) and the corresponding centraliser orders. [Justify your computations / arguments.]
2. Determine the degrees of the 4 irreducible characters of A_{4}.
3. Determine the linear characters of A_{4}.
4. Determine the non-linear character of A_{4} using the 2nd Orthogonality Relations.
