Character Theory of Finite Groups - Exercise Sheet 6
 Jun.-Prof. Dr. Caroline Lassueur
 Due date: Thursday, the 14th of July 2022, 14:00
 Bernhard Böhmler
 SS 2022

 \section*{TU Kaiserslautern}

 \section*{TU Kaiserslautern}}

Throughout this exercise sheet $K=\mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group, and V a finite-dimensional \mathbb{C}-vector space.

Exercise 19

Prove the following assertions:
(a) If G is a non-abelian simple group (or more generally if G is perfect, i.e. $G=[G, G]$), then the image $\rho(G)$ of any representation $\rho: G \longrightarrow G L(V)$ is a subgroup of $\operatorname{SL}(V)$.
(b) No simple group G has an irreducible character of degree 2.

Assume that G is simple and $\rho: G \longrightarrow \mathrm{GL}_{2}(\mathbb{C})$ is an irreducible matrix representation of G with character χ and proceed as follows:

1. Prove that ρ is faithful and G is non-abelian.
2. Determine the determinant $\operatorname{det}_{\rho}$ of ρ.
3. Prove that $|G|$ is even and G admits an element x of order 2 .
4. Prove that $\langle x\rangle \triangleleft G$ and conclude that assertion (b) holds.
(Use the diagonalisation theorem and steps 1., 2. and 3.)

Exercise 20

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes of G. Use character theory to prove that

$$
r \equiv|G| \quad(\bmod 16) .
$$

[Hint: Label the set $\operatorname{Irr}(G)$ of irreducible characters taking dual characters into account.]

Exercise 21

Prove that if $\chi \in \operatorname{Irr}(G)$, then $Z(G) \leq Z(\chi)$ and deduce that $\bigcap_{\chi \in \operatorname{Irr}(G)} Z(\chi)=Z(G)$.

Exercise 22 (Exercise to hand in / 8 points)

(a) Let $\rho: G \longrightarrow \mathrm{GL}(V)$ be an irreducible faithful \mathbb{C}-representation with character χ. Let $m \in \mathbb{Z}_{\geq 1}$ and let $\rho^{\otimes m}:=\rho \otimes \cdots \otimes \rho: G^{m} \longrightarrow \mathrm{GL}\left(V^{\otimes m}\right)$ be the m-fold tensor product of ρ with itself.
(i) Prove that $Z(\chi)=Z(G)$;
(ii) Prove that $H:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in Z\left(G^{m}\right) \mid z_{1} \cdots z_{m}=1\right\}$ is a normal subgroup of G^{m} such that $|H|=|Z(G)|^{m-1}$ and $H \leq \operatorname{ker}\left(\rho^{\otimes m}\right)$.
(iii) Prove that $\rho^{\otimes m}$ induces an irreducible \mathbb{C}-representation of G^{m} / H and deduce that $\chi(1)^{m} \left\lvert\, \frac{\mid G G^{m}}{\mid Z(G))^{m-1}}\right.$.
(iv) Set $\alpha:=\frac{\chi(1)}{\operatorname{gcd}(\chi(1), G: Z(G))}$ and prove that $\alpha^{m} \leq|Z(G)|$.
(v) Use (iv) to determine α and deduce that $\chi(1)||G: Z(G)|$.
(b) Deduce from (a) that $\chi(1)||G: Z(\chi)|$ for every irreducible character $\chi \in \operatorname{Irr}(G)$. (Hint: mod out by the kernel of χ.)

