Character Theory of Finite Groups — Exercise Sheet 6	TU KAISERSLAUTERN
JUNPROF. DR. CAROLINE LASSUEUR	Bernhard Böhmler
Due date: Thursday, the 14th of July 2022, 14:00	SS 2022

Throughout this exercise sheet $K = \mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group, and V a finite-dimensional \mathbb{C} -vector space.

Exercise 19

Prove the following assertions:

- (a) If *G* is a non-abelian simple group (or more generally if *G* is perfect, i.e. G = [G, G]), then the image $\rho(G)$ of any representation $\rho : G \longrightarrow GL(V)$ is a subgroup of SL(V).
- (b) No simple group *G* has an irreducible character of degree 2. Assume that *G* is simple and $\rho : G \longrightarrow GL_2(\mathbb{C})$ is an irreducible matrix representation of *G* with character χ and proceed as follows:
 - 1. Prove that ρ is faithful and *G* is non-abelian.
 - 2. Determine the determinant det_{ρ} of ρ .
 - 3. Prove that |G| is even and *G* admits an element *x* of order 2.
 - 4. Prove that $\langle x \rangle \triangleleft G$ and conclude that assertion (b) holds. (Use the diagonalisation theorem and steps 1., 2. and 3.)

Exercise 20

Let *G* be a finite group of odd order and, as usual, let *r* denote the number of conjugacy classes of *G*. Use character theory to prove that

$$r \equiv |G| \pmod{16}.$$

[Hint: Label the set Irr(*G*) of irreducible characters taking dual characters into account.]

Exercise 21

Prove that if $\chi \in Irr(G)$, then $Z(G) \leq Z(\chi)$ and deduce that $\bigcap_{\chi \in Irr(G)} Z(\chi) = Z(G)$.

EXERCISE 22 (Exercise to hand in / 8 points)

- (a) Let $\rho : G \longrightarrow GL(V)$ be an irreducible faithful \mathbb{C} -representation with character χ . Let $m \in \mathbb{Z}_{\geq 1}$ and let $\rho^{\otimes m} := \rho \otimes \cdots \otimes \rho : G^m \longrightarrow GL(V^{\otimes m})$ be the *m*-fold tensor product of ρ with itself.
 - (i) Prove that $Z(\chi) = Z(G)$;
 - (ii) Prove that $H := \{(z_1, \ldots, z_m) \in Z(G^m) \mid z_1 \cdots z_m = 1\}$ is a normal subgroup of G^m such that $|H| = |Z(G)|^{m-1}$ and $H \le \ker(\rho^{\otimes m})$.
 - (iii) Prove that $\rho^{\otimes m}$ induces an irreducible \mathbb{C} -representation of G^m/H and deduce that $\chi(1)^m \mid \frac{|G|^m}{|Z(G)|^{m-1}}$.
 - (iv) Set $\alpha := \frac{\chi(1)}{\gcd(\chi(1),|G:Z(G)|)}$ and prove that $\alpha^m \le |Z(G)|$.
 - (v) Use (iv) to determine α and deduce that $\chi(1) \mid |G : Z(G)|$.
- (b) Deduce from (a) that $\chi(1) | |G : Z(\chi)|$ for every irreducible character $\chi \in Irr(G)$. (Hint: mod out by the kernel of χ .)