Throughout this exercise sheet $K = \mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group, and V a finite-dimensional \mathbb{C} -vector space.

Exercise 23

Let $H \leq J \leq G$. Prove the following assertions:

- (a) $\varphi \in Cl(H) \implies (\varphi \uparrow_{H}^{J}) \uparrow_{I}^{G} = \varphi \uparrow_{H}^{G}$ (transitivity of induction);
- (b) $\psi \in Cl(G) \implies (\psi \downarrow_I^G) \downarrow_H^J = \psi \downarrow_H^G$ (transitivity of restriction);
- (c) $\varphi \in Cl(H)$ and $\psi \in Cl(G) \implies \psi \cdot \varphi \uparrow_{H}^{G} = (\psi \downarrow_{H}^{G} \cdot \varphi) \uparrow_{H}^{G}$ (Frobenius formula);
- (d) the map $\operatorname{Ind}_{H}^{G} : Cl(H) \longrightarrow Cl(G), \varphi \mapsto \varphi \uparrow_{H}^{G}$ is \mathbb{C} -linear.

EXERCISE 24 (Exercise to hand in / 8 points)

With the notation of Definition 20.1, prove that:

- (a) ${}^{g}\!\varphi$ is a class function on gHg^{-1} ;
- (b) $I_G(\varphi) \leq G$ and $H \leq I_G(\varphi) \leq N_G(H)$;
- (c) for $g, h \in G$ we have ${}^{g}\!\varphi = {}^{h}\!\varphi \iff h^{-1}g \in I_{G}(\varphi) \iff gI_{G}(\varphi) = hI_{G}(\varphi);$
- (d) if $\rho : H \longrightarrow GL(V)$ is a C-representation of *H* with character χ , then

$${}^{g}\rho: gHg^{-1} \longrightarrow \operatorname{GL}(V), x \mapsto \rho(g^{-1}xg)$$

is a C-representation of gHg^{-1} with character ${}^{g}\chi$ and ${}^{g}\chi(1) = \chi(1)$;

(e) if
$$J \leq H$$
 then $\mathscr{E}(\varphi \downarrow_J^H) = (\mathscr{E}\varphi) \downarrow_{gJg^{-1}}^{gHg^{-1}}$.

Exercise 25

Let $A \leq G$ be an abelian subgroup of G and let $\chi \in Irr(G)$. Prove that $\chi(1) \leq |G : A|$.

Exercise 26

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$. Prove that

$$\chi \downarrow_N^G \uparrow_N^G = \operatorname{Inf}_{G/N}^G(\chi_{\operatorname{reg}}) \cdot \chi$$
,

where χ_{reg} is the regular character of *G*/*N*.