
Chapter 5. Integrality and Theorems of Burnside’s

The main aim of this chapter is to prove Burnside’s ���� theorem, which provides us with a solubility
criterion for finite groups of order ���� with �� � prime numbers, which is extremely hard to prove
by purely group theoretic methods. To reach this aim, we need to develop techniques involving the
integrality of character values and further results of Burnside’s on the vanishing of character values.

Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;

¨ K :“ C be the field of complex numbers;

¨ IrrpGq :“ tχ1� � � � � χ�u denote the set of pairwise distinct irreducible characters of G;

¨ C1 “ r�1s� � � � � C� “ r��s denote the conjugacy classes of G, where �1� � � � � �� is a fixed set of
representatives; and

¨ we use the convention that χ1 “ 1G and �1 “ 1 P G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces / modules over the group algebra considered are assumed to be finite-dimensional.

15 Algebraic Integers and Character Values

First we investigate the algebraic nature of character values.

Recall: (See Appendix D for details.)
An element � P C which is integral over Z is called an algebraic integer. In other words, � P C is an
algebraic integer if � is a root of monic polynomial � P ZrX s.
Algebraic integers have the following properties:

¨ The integers are clearly algebraic integers.

¨ Roots of unity are algebraic integers, as they are roots of polynomials of the form X�
´ 1 P ZrX s.

¨ The algebraic integers form a subring of C. In particular, sums and products of algebraic integers
are again algebraic integers.

¨ If � P Q is an algebraic integer, then � P Z. In other words t� P Q | � algebraic integeru “ Z.
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Corollary 15.1

Character values are algebraic integers.

Proof : By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are
sums of roots of unity. Hence the claim follows from Property 7.5(b).

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre
of the group algebra CG in order to obtain further results on character values, which we will use in the
next sections in order to prove Burnside’s ���� theorem.

Definition 16.1 (Class sums)

The elements pC� :“
∞

�PC�
� P CG (1 § � § �) are called the class sums of G.

Lemma 16.2

The class sums tpC� | 1 § � § �u form a C-basis of Z pCGq. In other words, Z pCGq “
À�

�“1 CpC� .

Proof : Notice that the class sums are clearly C-linearly independent because the group elements are.

’Ö’: @ 1 § � § � and @ � P G, we have

� ¨ pC� “ �p�´1 pC��q “ pC� ¨ � �

Extending by C-linearity, we get �¨pC� “ pC� ¨� @ 1 § � § � and @ � P CG. Thus
À�

�“1 CpC� Ñ Z pCGq.
’Ñ’: Let � P Z pCGq and write � “

∞
�PG λ�� with tλ�u�PG P C. Since � is central, for every � P G, we

have ÿ

�PG
λ�� “ � “ ���´1

“

ÿ

�PG
λ�p���´1

q �

Comparing coefficients yield λ� “ λ���´1 @ �� � P G. Namely, the coefficients λ� are constant on
the conjugacy classes of G, and hence

� “

�ÿ

�“1
λ��

pC� P

�à

�“1
CpC� �

Now, notice that by definition the class sums pC� (1 § � § �) are elements of the subring ZG of CG,
hence of the centre of ZG.

Corollary 16.3

(a) Z pZGq is finitely generated as a Z-module.

(b) The centre Z pZGq of the group ring ZG is integral over Z; in particular the class sums pC�
(1 § � § �) are algebraic integers.
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Proof :

(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums pC� (1 § � § �)
span Z pZGq as a Z-module.

(b) The centre Z pZGq is integral over Z by Theorem D.2 because it is finitely generated as a Z-module
by (a).

Notation 16.4 (Central characters)

If χ P IrrpGq, then we may consider a C-representation affording χ , say ρχ : G ›Ñ GLpC�pχq
q “

AutCpC�pχq
q with �pχq :“ χp1q. This group homomorphism extends by C-linearity to a C-algebra

homomorphism

rρχ : CG ›Ñ EndCpC�pχq
q

� “
∞

�PG λ�� fiÑ rρχ
p�q “

∞
�PG λ�ρχ

p�q �

Now, if � P Z pCGq, then for each � P G, we have

rρχ
p�qrρχ

p�q “ rρχ
p��q “ rρχ

p��q “ rρχ
p�qrρχ

p�q �

As we have already seen in Chapter 2 on Schur’s Lemma this means that rρχ
p�q is CG-linear. This

holds in particular if � is a class sum. Therefore, by Schur’s Lemma, for each 1 § � § � there exists
a scalar ωχppC�q P C such that

rρχ
ppC�q “ ωχppC�q ¨ I�pχq �

The functions defined by

ωχ : Z pCGq ›Ñ C
pC� fiÑ ωχppC�q

and extended by C-linearity to the whole of Z pCGq, where χ runs through IrrpGq, are called the
central characters of CG (or simply of G).

Remark 16.5

If � P Z pGq, then r�s “ t�u and therefore the corresponding class sum is � itself. Therefore, we may
see the functions ωχ |ZpGq : Z pGq ›Ñ C as representations of Z pGq of degree 1, or equivalently as
linear characters of Z pGq.

Theorem 16.6 (Integrality Theorem)

The values ωχppC�q pχ P IrrpGq� 1 § � § �q of the central characters of G are algebraic integers.
Moreover,

ωχppC�q “
|C� |

χp1q
χp��q @ χ P IrrpGq� @ 1 § � § � �

Proof : Let χ P IrrpGq and 1 § � § �. By Corollary 16.3 the class sum pC� is an algebraic integer. Thus there
exist integers � P Z°0 and �0� � � � � ��´1 P Z such that pC�

� ` ��´1 pC�´1
� ` � � � ` �0 “ 0. Applying ωχ

yields ωχ ppC�q
�

` ��´1ωχ ppC�q
�´1

` � � � ` �0 “ ωχ p0q “ 0, so that ωχ ppC�q is also an algebraic integer.
Now, according to Notation 16.4 we have

χp1qωχ ppC�q “ Tr
`
rρχ

ppC�q
˘

“ Tr
` ÿ

�PC�

ρχ
p�q

˘
“

ÿ

�PC�

Tr
`
ρχ

p�q
˘

“

ÿ

�PC�

χp�q “ |C� |χp�q �
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where the last equality holds because characters are class functions. The claim follows.

Corollary 16.7

If χ P IrrpGq, then χp1q divides |G|.

Proof : By the 1st Orthogonality Relations we have

|G|

χp1q
“

|G|

χp1q
xχ� χyG “

1
χp1q

ÿ

�PG
χp�qχp�´1

q “
1

χp1q

�ÿ

�“1
|C� |χp��qχp�´1

� q “

�ÿ

�“1

|C� |

χp1q
χp��q

looooomooooon
ωχ ppC� q

χp�´1
� q �

Now, for each 1 § � § �, ωχ p��q is an algebraic integer by the Integrality Theorem and χp�´1
� q is an

algebraic integer by Corollary 15.1. Hence |G|{χp1q is an algebraic integer because these form a subring
of C. Moroever, clearly |G|{χp1q P Q. As the algebraic integers in Q are just the elements of Z, we
obtain that |G|{χp1q P Z, as claimed.

Example 8 (The degrees of the irreducible characters of GL3pF2q)

The group G :“ GL3pF2q is a simple group of oder

|G| “ # F2-bases of F3
2 “ p23

´ 1qp23
´ 2qp23

´ 22
q “ 168 “ 23

¨ 3 ¨ 7 �

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacy
classes.

Question: can we compute the degrees of the irreducible characters of GL3pF2q?

(1) By the above | IrrpGq| “ |CpGq| “ 6 and the degree formula yields:

1 `

6ÿ

�“2
χ�p1q

2
“ |G| “ 168 �

(2) Next, as G is simple non-abelian, G “ G1 and therfeore G has |G : G1
| “ 1 linear characters

by Corollary 14.8, namely
χ�p1q • 2 for each 2 § � § 6 �

Thus, at this stage, we would have the following possibilities for the degrees of the 6 irre-
ducible characters of G:

χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q

1 2 4 5 6 9
1 2 3 3 8 9
1 2 5 5 7 8
1 2 4 7 7 7
1 3 3 6 7 8

(3) By Corollary 16.7 we now know that χ�p1q | |G| for each 2 § � § 6. Therefore, as 5 - |G| and
9 - |G|, the first three rows can already be discarded:
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χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q

1 2 4 5 6 �A9
1 2 3 3 8 �A9
1 2 �A5 �A5 7 8
1 2 4 7 7 7
1 3 3 6 7 8

(4) In order to eliminate the last-but-one possibility, we apply [Exercise 21(b), Sheet 6] saying
that a simple group cannot have an irreducible character of degree 2. Hence

χ1p1q “ 1 � χ2p1q “ 3 � χ3p1q “ 3 � χ4p1q “ 6 � χ5p1q “ 7 � χ6p1q “ 8 �

Exercise 16.8 (Exercise 20, Sheet 6)

Let G be a finite group of odd order and, as usual, let � denote the number of conjugacy classes
of G. Use character theory to prove that

� ” |G| pmod 16q �

[Hint: Label the set IrrpGq of irreducible characters taking dual characters into account. Use the divisibility property of
Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character )

The centre of a character χ of G is Z pχq :“ t� P G | |χp�q| “ χp1qu.

Note: Recall that in contrast, χp�q “ χp1q ô � P kerpχq.

Example 9

Recall from Example 5 that the character table of G “ S3 is

Id p12q p123q

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Hence Z pχ1q “ Z pχ2q “ G and Z pχ3q “ tIdu.

Lemma 17.2

If ρ : G ›Ñ GLpV q is a C-representation with character χ and � P G, then:

|χp�q| “ χp1q ñ ρp�q P Cˆ IdV �

In other words Z pχq “ ρ´1`
Cˆ IdV

˘
.
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Proof : Let � :“ χp1q. Recall that we can find a C-basis B of V such that pρp�qqB is a diagonal matrix
with diagonal entries ε1� � � � � ε� which are �p�q-th roots of unity. Hence ε1� � � � � ε� are the eigenvalues
of ρp�q. Applying the Cauchy-Schwarz inequality to the vectors � :“ pε1� � � � � ε�q and � :“ p1� � � � � 1q in
C� yields

|χp�q| “ |ε1 ` � � � ` ε�| “ |x�� �y| § ||� || ¨ ||�|| “
?

�
?

� “ � “ χp1q

and equality implies that � and � are C-linearly dependent so that ε1 “ � � � “ ε� “: ε . Therefore
ρp�q P Cˆ IdV . Conversely, if ρp�q P Cˆ IdV , then there exists λ P Cˆ such that ρp�q “ λ IdV . Therefore
the eigenvalues of ρp�q are all equal to λ, i.e. λ “ ε1 “ � � � “ ε� and therefore

|χp�q| “ |�λ| “ �|λ| “ � ¨ 1 “ � �

Proposition 17.3

Let χ be a character of G. Then:

(a) Z pχq E G;

(b) kerpχq E Z pχq and Z pχq{ kerpχq is a cyclic group;

(c) if χ is irreducible, then Z pχq{ kerpχq “ Z pG{ kerpχqq.

Proof : Let ρ : G ›Ñ GLpV q be a C-representation affording χ and set � :“ χp1q.

(a) Clearly Cˆ IdV § Z pGLpV qq and hence Cˆ IdV EGLpV q. Therefore, by Lemma 17.2,

Z pχq “ ρ´1`
Cˆ IdV

˘
E G

as the pre-image under a group homomorphism of a normal subgroup.
(b) By the definitions of the kernel and of the centre of a character, we have kerpχq Ñ Z pχq. Therefore

kerpχq E Z pχq by (a). By Lemma 17.2 restriction to Z pχq yields a group homomorphism

ρ|Zpχq : Z pχq Cˆ IdV

with kernel kerpχq. Therefore, by the 1st ismomorphism theorem, Z pχq{ kerpχq is isomorphic to a
finite subgroup of Cˆ IdV – Cˆ, hence is cyclic (C.f. e.g. EZT).

(c) By the arguments of (a) and (b) we have

Z pχq{ kerpχq – ρ
`
Z pχq

˘
§ Z

`
ρpGq

˘
�

Applying again the first isomorphism theorem we have ρpGq – G{ kerpρq, hence

Z
`
ρpGq

˘
– Z

`
G{ kerpρq

˘
“ Z

`
G{ kerpχq

˘
�

Now let � kerpχq P Z pG{ kerpχqq with � P G. As χ is irreducible, ρp�q “ λ IdV for some λ P Cˆ by
Schur’s Lemma. Thus � P Z pχq and it follows that

Z
`
G{ kerpχq

˘
§ Z pχq{ kerpχq �

Exercise 17.4 (Exercise 21, Sheet 6)

Prove that if χ P IrrpGq, then Z pGq § Z pχq. Deduce that
ì

χPIrrpGq Z pχq “ Z pGq.
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Remark 17.5 (See [Exercise 22, Sheet 6])
Prove that, if χ P IrrpGq, then χp1q | |G : Z pχq|. Deduce that χp1q | |G : Z pGq|.

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let χ P IrrpGq and let C “ r�s be a conjugacy class of G such that gcdpχp1q� |C |q “ 1. Then
χp�q “ 0 or � P Z pχq.

Proof : As gcdpχp1q� |C |q “ 1, there exist �� � P Z such that �χp1q ` � |C | “ 1 Set α :“ χp�q
χp1q . Then

α “
χp�q

χp1q
¨ 1 “

χp�q

χp1q

`
�χp1q ` � |C |

˘
“ �χp�q ` � |C |χp�q

χp1q
“ �χp�q ` �ωχ pCq

is an algebraic integer because both χp�q and ωχ pCq are. Now, set � :“ |x�y| and let ζ� :“ � 2π�
� . As

χp�q is a sum of �-th roots of unity, certainly χp�q P Qpζ�q. Let � be the Galois group of the Galois
extension Q Ñ Qpζ�q. Then for each field automorphism σ P �, σpαq is also an algebraic integer because
α and σpαq are roots of the same monic integral polynomial. Hence β :“

±
σP� σpαq is also an algebaric

integer and because σpβq “ β for every σ P �, β is an element of the fixed field of �, namely β P Q
(Galois theory). Therefore β P Z.
If � P Z pχq, then there is nothing to do. Thus we may assume that � R Z pχq. Then |χp�q| ‰ χp1q, so
that by Property 7.5(c) we must have |χp�q| † χp1q and hence |α| † 1. Now, again by Property 7.5(b),
χp�q “ ε1 ` � � � ` ε� with � “ χp1q and ε1� � � � � ε� �-th roots of unity. Therefore, for each σ P �ztIdu,
we have σpχp�qq “ σpε1q ` � � � ` σpε�q with σpε1q� � � � � σpε�q �-th roots of unity, because ε1� � � � � ε�
are. It follows that

|σpχp�qq| “ |σpε1q ` � � � ` σpε�q| § |σpε1q| ` � � � ` |σpε�q| “ � “ χp1q

and hence
|σpαq| “

1
χp1q

|σpχp�qq| §
χp1q

χp1q
“ 1 �

Thus
|β| “ |

π

σP�
σpαq| “ |α|loomoon

†1

¨

π

σP�ztIdu
|σpαq|loomoon

§1

† 1 �

The only way an integer satisfies this inequality is β “ 0. Thus α “ 0 as well, which implies that
χp�q “ 0.

Corollary 17.7

Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assume
moreover that χp1q ° 1 and C ‰ t1u, then it is always the case that χp�q “ 0.

Proof : We see that then either χp�q “ 0 or Z pχq is a non-trivial proper normal subgroup of G. Indeed, if
χp�q ‰ 0, then Theorem 17.6 implies that � P Z pχq, so Z pχq ‰ 1. Now, as G is non-abelian simple we
have Z pχq “ G. On the other hand, the fact that G is simple also tells us that kerpχq “ 1 (if it were G,
then χ would be reducible). Then it follows from Proposition 17.3 that

G “ Z pχq{ kerpχq “ Z pG{ kerpχqq “ Z pGq “ 1 �

A contradiction.
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18 Burnside’s ����
-Theorem

Character theory has many possible applications to the to the structure of finite groups. We consider
in this section on of the most famous of these: the proof of Burnside’s ���� theorem.

Example 10

To begin with we consider two possible minor applications of character theory to finite groups. Both
are results of the Einfürung in die Algebra, for which you have already seen purely group-theoretic
proofs.

(a) G finite group such that |G| “ �2 for some prime number � ùñ G is abelian.

¨ Proof using character theory. By Corollary 16.7 we have χp1q | |G| for each χ P IrrpGq.
Thus

χp1q P t1� �� �2
u �

Therefore the degree formula reads

�2
“ |G| “

ÿ

χPIrrpGq
χp1q

2
“ 1Gp1q

2
loomoon

“1

`

ÿ

χPIrrpGq
χ‰1G

χp1q
2 �

which implies that it is not possible that the degree of an irreducible character of G is
� or �2. In other words, all the irreducible characters of G are linear, and thus G is
abelian by Corollary 14.8.

(b) G is a non-trivial �-group ùñ G is soluble.

[Recall from the Einfürung in die Algebra that a finite group G is soluble if it admits a chain
of subgroups

1 “ G0 † G1 † � � � † G� “ G
such that for 1 § � § �, G�´1CG� and G�{G�´1 is cyclic of prime order. Moreover, we have the
following very useful solubility criterion, sometimes coined "the sandwich principle": if H EG
is a normal subgroup, then the group G is soluble if and only if both G and G{H are soluble.]

¨ Proof using character theory. By induction on |G| “: �� (� P Z°0). If |G| “ � or
|G| “ �2, then G is abelian (cyclic in the former case). Finite abelian groups are clearly
soluble because they are products of cyclic groups of prime power order.
Therefore, we may assume that |G| • �3. As in (a) Corollary 16.7 implies that

χp1q P t1� �� �2� � � � � ��
u for each χ P IrrpGq �

Now, again the degree formula yields

��
“ |G| “ 1 `

ÿ

χPIrrpGq
χ‰1G

χp1q
2 �

and for this equality to hold, there must be at least � linear characters of G (including
the trivial character). Thus it follows from Corollary 14.8 that G1

¨ G. Hence both
G1 and G{G1 are soluble by the induction hypothesis ñ G is soluble by the sandwich
principle.
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Theorem 18.1 (Burnside)

Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that |C | “ �� with
� prime and � P Z•0, then C “ t1u.

Proof : Assume ab absurdo that C ‰ t1u and choose � P C . In particular � ‰ 1. Since G is non-abelian
simple G “ G1 and it follows from Corollary 14.8 that the unique linear character of G is the trivial
character. Hence for each χ P IrrpGqzt1Gu we have either � | χp1q or gcdpχp1q� |C |q “ 1. Thus χp�q “ 0
if � - χp1q and χ ‰ 1G by Corollary 17.7. Therefore the Second Orthogonality Relations read

0 “ 1 `

ÿ

χPIrrpGq
χ‰1G

χp�qloomoon
“0 if

�-χp1q

χp1qloomoon
“χp1q

“ 1 `

ÿ

χPIrrpGq
�|χp1q

χp�qχp1q

and dividing by � yields
ÿ

χPIrrpGq
�|χp1q

χp1q

�loomoon
PZ

χp�qloomoon
algebraic
integerlooooooooooomooooooooooon

algebraic integer

“ ´
1
� P QzZ �

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that
� “ 1 is the only possibility and hence C “ t1u.

As a consequence, we obtain Burnside’s ���� theorem, which can be found in the literature under two
different forms. The first version provides us with a "non-simplicity" criterion and the second version
with a solubility criterion, which is extremely hard to prove by purely group theoretic methods.

Theorem 18.2 (Burnside’s ���� Theorem, "simple" version)

Let �� � be prime numbers and let �� � P Z•0 be integers such that � ` � • 2. If G is a finite group
of order ����, then G is not simple.

Proof : First assume that � “ 0 or � “ 0. Then G is a �-group with �2
| |G|, resp. a �-group with �2

| |G|.
Therefore the centre of G is non-trivial (Einfürung in die Algebra), thus of non-trivial prime power order.
Therefore there exists an element � P Z pGq of order � (resp. �) and 1 ‰ x�y C G is a proper non-trivial
normal subgroup. Hence G is not simple.
We may now assume that � ‰ 0 ‰ �. Let Q P Syl�pGq be a Sylow �-subgroup of G (i.e. |Q| “ ��).
Again, as Q is a �-group, we have Z pQq ‰ t1u and we can choose � P Z pQqzt1u. Then

Q § CGp�q

and therefore the Orbit-Stabiliser Theorem yields

|r�s| “ |G : CGp�q| “ ��

for some non-negative integer � § �. If � “ 0, then ��
“ 1 and G “ CGp�q, so that � P Z pGq. Hence

Z pGq ‰ t1u and G is not simple by the same argument as above. If ��
° 1, then G cannot be simple by

Theorem 18.1.

Theorem 18.3 (Burnside’s ���� Theorem, "soluble" version)

Let �� � be prime numbers and �� � P Z•0. Then any finite group of order ���� is soluble.

Proof : Let G be a finite group of order ����. We proceed by induction on � ` �.

¨ � ` � P t0� 1u ùñ G is either trivial or cyclic of prime order, hence clearly soluble.
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¨ � ` � • 2 ùñ G is not simple by the "simple" version of Burnside’s ���� theorem. Hence there
exists a proper non-trivial normal subgroup H in G and both |H|� |G{H| † ����. Therefore both H
and G{H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.


