General symbols

field of complex numbers
finite field with q elements
primitive square root of one in \mathbb{C}
identity map on the set M
image of the map f
kernel of the morphism φ
the natural numbers without 0
the natural numbers with 0
the prime numbers in \mathbb{Z}
field of rational numbers
field of real numbers
ring of integer numbers
$\{m \in \mathbb{Z} \mid m \geqslant a$ (resp. $m>a, m \geqslant a, m<a)\}$
cardinality of the set X
Kronecker's delta
union
disjoint union
intersection
summation symbol
cartesian product
direct sum
tensor product
empty set
for all
there exists
isomorphism
complex conjugate of $a \in \mathbb{C}$
a divides b, a does not divide b
restriction of the map f to the subset S

Group theory

A_{n}
C_{m}
$C_{G}(x)$
$C(G)$
$D_{2 n}$
$\operatorname{Fix}_{X}(g)$
alternating group on n letters
cyclic group of order m in multiplicative notation
centraliser of x in G
set of conjugacy classes of G
dihedral group of order $2 n$
set of fixed points of g on X
$[G, G]$ or G^{\prime}
G / N
$G L_{n}(K)$
$H \leqslant G, H<G$
$N \approx G$
$N_{G}(H)$
$P_{G} L_{n}(K)$
Q_{8}
S_{n}
$S_{n}(K)$
$S y l_{p}(G)$
$Z(G)$
$\mathbb{Z} / m \mathbb{Z}$
$|G|$
$|G: H|$
$[x]$
$[g, h]$
$\langle g\rangle$
$\left\langle g \mid g^{m}=1\right\rangle$

Rings and linear algebra
$R[X]$
R^{\times}
char (K)
det
dim_{K}
$\operatorname{End}_{k}(V)$
$\mathrm{GL}(V)$
$\left\langle x_{1}, \cdots, x_{n}\right\rangle_{K}$
$M_{n \times m}(K)$
$M_{n}(K)$
\bar{K}
Tr
$W \leqslant V$
$\left\{e_{1}, \cdots, e_{n}\right\}$
$\left(e_{1}, \cdots, e_{n}\right)$

Representations and characters

commutator subgroup of G
quotient group G modulo N
general linear group over K
H is a subgroup of G, resp. a proper subgroup
N is a normal subgroup G
normaliser of H in G
projective linear group over K
quaternion group of order 8
symmetric group on n letters
special linear group over K
set of Sylow p-subgroups of the group G
centre of the group G
cyclic group of order m in additive notation
order of the group G
index of H in G
conjugacy class of x
commutator of g and h
cyclic group generated by g
cyclic group of order m generated by g
ring of polynomials in an indeterminate X over the ring R
group of units of the ring R
characteristic of the field K
determinant of a matrix/linear transformation K-dimension
endomorphism ring of the K-vector space V set of invertible linear transformations of the vector space V
K-linear span of the set $\left\{x_{1}, \cdots, x_{n}\right\}$
ring of $n \times m$-matrices with coefficients in K ring of $n \times n$-matrices with coefficients in K algebraic closure of the field K
trace of a matrix/linear transformation
W is a K-subspace of V
a basis of K^{n}
an ordered basis of K^{n}
the conjugacy classes of G
the class sums of G
\mathbb{C}-vector space of class functions on G
inertia group of ψ in G
inflation from G / N to G
induction from H to G
set of irreducible characters
set of irreducible characters

$\operatorname{ker}(\chi)$	kernel of the characters of χ
$\mathcal{F}(G, K)$	space of K-valued functions of G
$K G$	group algebra of G over the field K
$\operatorname{Res}_{H}^{G}, \downarrow{ }_{H}^{G}$	restriction from G to H
$Z(K G)$	center of $K G$
$Z(\chi)$	center of the character χ
$\rho \sim \rho^{\prime}$	ρ is equivalent to ρ^{\prime}
$\rho_{\text {reg }}$	the regular representation of G
ρ_{V}	representation associated to the G-vector space V
$\chi_{\text {reg }}$	regular character of G
χ_{V}	character of the G-vector space V
$\omega_{1}, \ldots, \omega_{r}$	the central characters of G
$\langle-,-\rangle_{G}$	scalar product on $\mathcal{C} l(G)$
1_{G}	the trivial character of G

Greek Alphabet

lower-case letter	upper-case letter	name
α	A	alpha
β	B	beta
γ	Γ	gamma
δ	Δ	delta
ε, ϵ	E	epsilon
ζ	Z	zeta
η	H	eta
θ	Θ	theta
ι	I	iota
κ	K	kappa
λ	Λ	lambda
μ	M	mu
ν	N	nu
ξ	$\overline{\mathrm{O}}$	O
o	Π	xi
π, ω	P	omicron
ρ, ϱ	Σ	pi
σ, ς	T	rho
τ	Y	sigma
ν	Φ	tau
ϕ, φ	X	upsilon
χ	ψ	phi
ψ	Ω	chi
ω	psi	
		omega

