OKLAHOMA STATE UNIVERSITY
Department of Mathematics

MATH 2144 (Calculus I)
Instructor: Dr. Mathias Schulze

MIDTERM 1
September 17, 2008

Duration: 50 minutes

No aids allowed.

This examination paper consists of 7 pages and 6 questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 of 6 questions.

To obtain credit, you must give arguments to support your answers.

For graders’ use:

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(10)</td>
</tr>
<tr>
<td>2</td>
<td>(10)</td>
</tr>
<tr>
<td>3</td>
<td>(10)</td>
</tr>
<tr>
<td>4</td>
<td>(10)</td>
</tr>
<tr>
<td>5</td>
<td>(10)</td>
</tr>
<tr>
<td>6</td>
<td>(10)</td>
</tr>
<tr>
<td>Total</td>
<td>(60)</td>
</tr>
</tbody>
</table>
1. [10] True or False? Write a “T” (for true) or an “F” (for false) for each statement.

(a) \(\lim_{x \to 4} \left(\frac{2x}{x-4} - \frac{8}{x-4} \right) = \lim_{x \to 4} \frac{2x}{x-4} - \lim_{x \to 4} \frac{8}{x-4} \)

(b) If \(p \) is a polynomial, then \(\lim_{x \to 1} p(x) = p(1) \).

(c) If \(\lim_{x \to a} [f(x)g(x)] \) exists, then it must be equal to \(f(a)g(a) \).

(d) If \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = -\infty \), then \(\lim_{x \to a} [f(x) + g(x)] = 0 \).

(e) If \(x = 1 \) is a vertical asymptote of \(y = f(x) \) then \(f \) is not defined at \(1 \).

(f) If \(f \) is continuous at \(a \), then \(f \) is differentiable at \(a \).

(g) If \(f(x) > 1 \) for all \(x > 0 \) and \(\lim_{x \to 0^+} f(x) \) exists, then \(\lim_{x \to 0^+} f(x) > 1 \).

(h) If \(f'(r) \) exists, then \(\lim_{x \to r} f(x) = f(r) \).

(i) The equation \(x^{10} - 10x^2 + 5 = 0 \) has a root in the interval \((0, 2)\).

(j) A rational function can have two different horizontal asymptotes.

Solution: (a) F (limit law does not apply to infinite limits)

(b) T (polynomials are continuous)

(c) F (example: \(f(x) = x, g(x) = x^{-1}, a = 0 \))

(d) F (example: \(f(x) = x^{-2}, g(x) = -x^{-4}, a = 0 \))

(e) F (limits in the definition of the vertical asymptote “ignore” \(f(1) \))

(f) F (example: \(f(x) = |x| \))

(g) F (example: \(f(x) = x + 1 \))

(h) T (differentiable implies continous)

(i) T (apply Intermediate Value Theorem to \([0, 1]\))
2. [10] Give a simple example or write “N/A” if there is no such example.

(a) A polynomial that is a power function.
(b) A polynomial that is not a rational function.
(c) A rational function that is not a polynomial.
(d) An inverse trigonometric function that is not an algebraic function.
(e) A continuous function without horizontal and vertical asymptotes.
(f) A function with 3 vertical asymptotes.
(g) A root function whose domain does not include -1.
(h) An algebraic function with domain $(-1, 1)$.
(i) A function with infinitely many discontinuities.
(j) A continuous but not differentiable function.

Solution:

(a) $f(x) = 1 \ (= x^0)$
(b) N/A (by definition any polynomial is a rational function)
(c) $f(x) = \frac{1}{x}$
(d) \sin^{-1} (essentially any inverse trigonometric function works)
(e) $f(x) = x$
(f) $f(x) = \frac{1}{x^3-x} \ (= \frac{1}{(x-(-1))(x-0)(x-1)})$
(g) $f(x) = \sqrt{x}$
(h) $f(x) = 1/\sqrt{1-x^2}$
(i) $f(x) = \lfloor x \rfloor$ (discontinuous at all integers)
(j) $f(x) = |x|$
3. [10]

(a) For \(f(x) = \frac{2x^2 - 18}{x^2 + 2x - 3} \), find all asymptotes and the limits that describe the asymptotic behavior of the function.

(b) Find the horizontal asymptotes of the function \(f(x) = \frac{\sqrt{x^6 - 1}}{x^3 + 7x^2 + 4x - 8} \).

Solution: (a) Dropping the terms with not highest exponents in the numerator and denominator of \(f \) (as explained in the lecture) yields \(y = \frac{2x^2}{2x} = 2 \) as horizontal asymptote for both \(x \to \infty \) and \(x \to -\infty \). So we have \(\lim_{x \to \pm \infty} f(x) = 2 \).

To find the vertical asymptotes, we factorize and cancel factors if possible:

\[
\frac{2x^2 - 18}{x^2 + 2x - 3} = \frac{2(x + 3)(x - 3)}{(x + 3)(x - 1)} = \frac{2x - 3}{x - 1}
\]

So, \(x = 1 \) is the only vertical asymptote. As \(x - 3 < 0 \) for \(x \) close to 1, we have \(\lim_{x \to -1^-} = \infty \) and \(\lim_{x \to -1^+} = -\infty \).

(b) Dropping the terms with not highest exponents under the root and in the denominator of \(f \) (as above) yields \(\sqrt{\frac{x^6}{x^3}} = |x|^3 = |x|/x \) which has the same asymptotic behavior as \(f(x) \) for large \(|x| \). So \(\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} |x|/x = 1 \) and similarly \(\lim_{x \to -\infty} f(x) = -1 \). In other words, \(y = 1 \) and \(y = -1 \) are two (different) horizontal asymptotes.
4. [10]

(a) Find all values for a and b such that the function

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x < 1 \\ (x - a)^2 & \text{if } 1 \leq x < 2 \\ 2ax - b & \text{if } 2 \leq x \end{cases}$$

becomes continuous.

(b) Is f differentiable for some choice of a and b?

Solution:

(a) First, note that $f(x) = x + 3$ for $x < 1$. Continuity is clear at $x \neq 1, 2$. The following two conditions are equivalent to continuity at 1 and 2 respectively:

$$4 = \lim_{x \to 1^-} f(x) = f(1) = (1 - a)^2,$$

$$(2 - a)^2 = \lim_{x \to 2^-} f(x) = f(2) = 4a - b.$$

The first equality gives $a = 1 \mp 2$, so $a = -1$ or $a = 3$. Then the second equality reads $5 \pm 4 = (1 \pm 2)^2 = 4 \mp 8 - b$ which gives $b = -1 \mp 12$. So either $a = -1$ and $b = -13$ or $a = 3$ and $b = 11$.

(b) Note that if f is continuous, then $f(1) = 4$ by the first part. For $f'(1) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$ to exist, the corresponding left- and right-sided limits

$$\lim_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0^-} \frac{1 + h + 3 - 4}{h} = 1,$$

$$\lim_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0^+} \frac{(1 + h - a)^2 - 4}{h}$$

must be equal. But, for $a = 1 \mp 2$, the right-sided limit equals

$$\lim_{h \to 0^+} \frac{(h \pm 2)^2 - 4}{h} = \lim_{h \to 0^+} \frac{h^2 \pm 4h}{h} = \pm 4$$

which is not equal to the left-sided limit. So the answer is “no”.

Page 5 of 7
5. [10]

(a) Compute the derivative of \(f(x) = \frac{1-x}{1+x} \) (using the limit definition).

(b) Find the domains of \(f(x) \) and \(f'(x) \).

Solution:

(a)

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \\
= \lim_{h \to 0} \frac{(1-x-h)(1+x) - (1-x)(1+x+h)}{h(1+x+h)(1+x)} \\
= \lim_{h \to 0} \frac{1-x-h+x-x^2-hx-1-x-h+x+x^2+hx}{h(1+x+h)(1+x)} \\
= \lim_{h \to 0} \frac{-2h}{h(1+x+h)(1+x)} = -\frac{2}{(1+x)^2}
\]

(b) Both domains are obviously \(\mathbb{R} \setminus \{-1\} \).

(a) \(\lim_{x \to -\infty} \frac{\sqrt{4x^6} - x}{x^3 + 9} \)

(b) \(\lim_{t \to \infty} \frac{t^2 - t}{2t^2 + t + 7} \)

(c) \(\lim_{x \to 0} \left(x^4 \cos \frac{x}{2} \right) \) (Hint: use the Squeeze Theorem)

(d) \(\lim_{x \to \frac{\pi}{8}} \arctan \left(\frac{64x^2 - \pi^2}{64x - 8\pi} \right) \)

(e) \(\lim_{x \to \pi} \sin(x + \sin(x + \sin(x + \sin(x + \sin x)))) \)

Solution:

(a) Note that for \(x < 0 \), we have \(x^{-3} = -\sqrt{x^{-6}} \). Using this, we compute

\[
\lim_{x \to -\infty} \frac{\sqrt{4x^6} - x}{x^3 + 9} = \lim_{x \to -\infty} -\frac{\sqrt{4x^6} - x\sqrt{x^{-6}}}{(x^3 + 9)x^{-3}} = \lim_{x \to -\infty} -\frac{\sqrt{\frac{1}{x^{-6}}}}{1 + \frac{9}{x^3}} = -2.
\]

(b) \(\lim_{t \to \infty} \frac{t^2 - t}{2t^2 + t + 7} = \lim_{t \to \infty} \frac{t^2}{2t^2} = \frac{1}{2} \)

(c) We have \(-x^4 \leq x^4 \cos \frac{x}{2} \leq x^4 \) and \(\lim_{x \to 0} x^4 = 0 \). So, by the Squeeze Theorem, it follows that also \(\lim_{x \to 0} \left(x^4 \cos \frac{x}{2} \right) = 0 \).

(d) By Theorem 8 in Section 2.5, \(\lim_{x \to \frac{\pi}{8}} \arctan \left(\frac{64x^2 - \pi^2}{64x - 8\pi} \right) = \arctan \left(\lim_{x \to \frac{\pi}{8}} \frac{64x^2 - \pi^2}{64x - 8\pi} \right) \).

But \(\lim_{x \to \frac{\pi}{8}} \frac{64x^2 - \pi^2}{64x - 8\pi} = \lim_{x \to \frac{\pi}{8}} \left(x + \frac{\pi}{8} \right) = \frac{\pi}{4} \) and hence the result is \(\arctan \frac{\pi}{4} = 1 \).

(e) By continuity, \(\lim_{x \to \pi} \sin(x + \sin(x + \sin(x + \sin(x + \sin x)))) = \sin(\pi + \sin(\pi + \sin(\pi + \sin(\pi + \sin \pi))) = 0. \)

End of examination

Total pages: 7
Total marks: 60