3.2.1 By 3.2.3, \(f : (a, b) \rightarrow \mathbb{R} \) is continuous, so the MVT applies to any interval \([x_1, y] \subset (a, b)\) and gives an \(z \in (x_1, y) \) s.t. \(f(x_1) - f(y) = f'(z)(x_1 - y) = 0 \). Thus, \(f(x_1) = f(y) \) for all \(x_1, y \in (a, b) \) and \(f \) is constant.

3.2.3 Fix \(x_0 \in (a, b) \). Then

\[
\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0) = f'(x_0) \cdot 0 = 0,
\]

and hence \(f \) is continuous at \(x_0 \).

3.2.5 Note that some of the zeros of \(f \) and \(f' \) may coincide. But if \(x \) is a zero of \(f \) and \(f' \), then it is also a zero of \(f' = f'p + f'q \).

Combining this observation w/ Cor. 4, we conclude that \(f' \) has at least 7 zeros. Applying Cor. 1 once more shows that \(f(2) \) has at least 6 zeros.

3.2.9 Let \(M \) be a bound for \(f' \). Then by 3.2.3 and the MVT, \(|f(a) - f(b)| \leq M |a - b| \). So \(f \) is Lipschitz-continuous and hence uniformly continuous. Indeed, for \(\epsilon > 0 \) we can pick \(\delta = \frac{\epsilon}{M} \). Then \(\forall a, b \) s.t. \(|a - b| < \delta \) we have \(|f(a) - f(b)| \leq M \delta = \epsilon \).