Algebraic Geometry

Summer Semester 2013 - Problem Set 1

Due April 26, 2013, 1:00 pm

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. Let $X_{1}, X_{2} \subset \mathbb{A}^{n}$ be algebraic sets and $X \subset \mathbb{A}^{n}$ any subset. Show that
(a) $I\left(X_{1} \cup X_{2}\right)=I\left(X_{1}\right) \cap I\left(X_{2}\right)$,
(b) $Z(I(X))=\bar{X}$,
(c) $I\left(X_{1} \cap X_{2}\right)=\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)}$. Show by example that the radical cannot be omitted, i.e. find algebraic sets X_{1}, X_{2} such that $I\left(X_{1} \cap X_{2}\right) \neq I\left(X_{1}\right)+I\left(X_{2}\right)$. Find a geometric reason for this inequality.

Problem 2.

(a) Let $X \subset \mathbb{A}^{3}$ be the union of the three coordinate axes. Determine generators for the ideal $I(X)$. Show that $I(X)$ cannot be generated by fewer than 3 elements and that X has dimension 1 in \mathbb{A}^{3}.
(b) Let $X=\left\{\left(t, t^{3}, t^{5}\right) \mid t \in k\right\} \subset \mathbb{A}^{3}$. Show that X is an affine variety of dimension 1 and compute $I(X)$.

Problem 3.

(a) Let Y be a subspace of a topological space X. Show that Y is irreducible if and only if the closure of Y in X is irreducible.
(b) If we identify \mathbb{A}^{2} with $\mathbb{A}^{1} \times \mathbb{A}^{1}$ in the natural way, show that the Zariski topology on \mathbb{A}^{2} is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^{1}.

Problem 4. Let $X \subset \mathbb{A}^{2}$ be an irreducible algebraic set. Show that either

- $X=Z(0)$, i.e. X is the whole space \mathbb{A}^{2}, or
- $X=Z(f)$ for some irreducible polynomial f in $k[x, y]$, or
- $X=Z(x-a, y-b)$ for some $a, b \in k$, i.e. X is a single point.

Deduce that $\operatorname{dim}\left(\mathbb{A}^{2}\right)=2$. (Hint: Show that the common zero locus of two polynomials $f, g \in$ $k[x, y]$ without common factor is finite using e.g. the Gauss Lemma or resultants.)

