

Algebraic Geometry

Summer Semester 2013 - Problem Set 11

Due July 5, 2013, 1:00 pm

Exercise 1. Find an example of a scheme X subject to the given conditions or prove that such a scheme does not exist.

- (a) $\#X = \infty$, dim X = 0.
- (b) #X = 1, dim X = 1.
- (c) #X = 2, dim X = 1.
- (d) $X = \operatorname{Spec} R, R \subseteq \mathbb{C}[x], \dim X = 2.$

Exercise 2. Let X be a scheme of finite type over an algebraically closed field k. Show that the closed points of X are dense in X. Show by example that the hypotheses on X are necessary.

Exercise 3. Are the schemes $X = \operatorname{Spec}(\mathbb{C}[x, y, z]/\langle xy, xz, yz \rangle)$ and $Y = \operatorname{Spec}(\mathbb{C}[x, y]/\langle xy(x - y) \rangle)$ isomorphic? (Hint: Compare the local rings at the origin.)

Exercise 4. Let X be a scheme and $Y \subseteq X$ an irreducible closed subset with generic point η . Show that $\mathscr{O}_{X,Y} := \mathscr{O}_{X,\eta} = \{(U,\phi) \mid U \subseteq X \text{ open}, U \cap Y \neq \emptyset, \phi \in \mathscr{O}_X(U)\}/_{\sim}$ where $(U,\phi) \sim (U',\phi')$ if $\phi|_V = \phi'|_V$ for some $V \subseteq X$ open with $V \subseteq U \cap U'$. (In case X comes from a variety, $\mathscr{O}_{X,X} = K(X)$ is the function field of X.)