

Algebraic Geometry

Summer Semester 2013 - Problem Set 2

Due May 3, 2013, 1:00 pm

In all exercises, the ground field k is assumed to be algebraically closed.

Problem 1. An algebraic set $X \subset \mathbb{A}^2$ defined by a polynomial of degree 2 is called a conic.

- (a) Show that any irreducible conic is isomorphic either to $Z(y x^2)$ or to Z(xy 1). (*Hint: Use linear changes of coordinates.*)
- (b) Let $X, Y \subset \mathbb{A}^2$ be irreducible conics and assume that $X \neq Y$. Show that X and Y intersect in at most 4 points. For all $n \in \{0, 1, 2, 3, 4\}$, find an example of two conics that intersect in exactly n points.

Problem 2. Which of the following algebraic sets are isomorphic over the complex numbers?

- (a) \mathbb{A}^1
- (b) $Z(x^2 + y^2) \subset \mathbb{A}^2$
- (c) $Z(x^2 y^3) \subset \mathbb{A}^2$
- (d) $Z(xy) \subset \mathbb{A}^2$
- (e) $Z(y^2 x^3 x^2) \subset \mathbb{A}^2$
- (f) $Z(y-x^2, z-x^3) \subset \mathbb{A}^3$

Problem 3. Are the following statements true or false: if $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map (i.e. $f(P) = (f_1(P), \ldots, f_m(P))$ with $f_i \in k[x_1, \ldots, x_n]$), and \ldots

- (a) $X \subset \mathbb{A}^n$ is an algebraic set, then the image $f(X) \subset \mathbb{A}^m$ is an algebraic set.
- (b) $X \subset \mathbb{A}^m$ is an algebraic set, then the inverse image $f^{-1}(X) \subset \mathbb{A}^n$ is an algebraic set.
- (c) $X \subset \mathbb{A}^n$ is an algebraic set, then the graph $\Gamma = \{(x, f(x)) \mid x \in X\} \subset \mathbb{A}^{n+m}$ is an algebraic set.

Problem 4. Let $f: X \to Y$ be a morphism between affine varieties, and let $f^*: A(Y) \to A(X)$ be the corresponding map of k-algebras. Which of the following statements are true?

- (a) If $P \in X$ and $Q \in Y$, then f(P) = Q if and only if $(f^*)^{-1}(I(P)) = I(Q)$.
- (b) f^* is injective if and only f is surjective.
- (c) f^* is surjective if and only f is injective.
- (d) f^* is an isomorphism if and only f is an isomorphism.

If a statement is false, is there a weaker form of it which is true?