Algebraic Geometry

Summer Semester 2013 - Problem Set 2
Due May 3, 2013, 1:00 pm

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. An algebraic set $X \subset \mathbb{A}^{2}$ defined by a polynomial of degree 2 is called a conic.
(a) Show that any irreducible conic is isomorphic either to $Z\left(y-x^{2}\right)$ or to $Z(x y-1)$. (Hint: Use linear changes of coordinates.)
(b) Let $X, Y \subset \mathbb{A}^{2}$ be irreducible conics and assume that $X \neq Y$. Show that X and Y intersect in at most 4 points. For all $n \in\{0,1,2,3,4\}$, find an example of two conics that intersect in exactly n points.

Problem 2. Which of the following algebraic sets are isomorphic over the complex numbers?
(a) \mathbb{A}^{1}
(b) $Z\left(x^{2}+y^{2}\right) \subset \mathbb{A}^{2}$
(c) $Z\left(x^{2}-y^{3}\right) \subset \mathbb{A}^{2}$
(d) $Z(x y) \subset \mathbb{A}^{2}$
(e) $Z\left(y^{2}-x^{3}-x^{2}\right) \subset \mathbb{A}^{2}$
(f) $Z\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{A}^{3}$

Problem 3. Are the following statements true or false: if $f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ is a polynomial map (i.e. $f(P)=\left(f_{1}(P), \ldots, f_{m}(P)\right)$ with $\left.f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]\right)$, and \ldots
(a) $X \subset \mathbb{A}^{n}$ is an algebraic set, then the image $f(X) \subset \mathbb{A}^{m}$ is an algebraic set.
(b) $X \subset \mathbb{A}^{m}$ is an algebraic set, then the inverse image $f^{-1}(X) \subset \mathbb{A}^{n}$ is an algebraic set.
(c) $X \subset \mathbb{A}^{n}$ is an algebraic set, then the graph $\Gamma=\{(x, f(x)) \mid x \in X\} \subset \mathbb{A}^{n+m}$ is an algebraic set.

Problem 4. Let $f: X \rightarrow Y$ be a morphism between affine varieties, and let $f^{*}: A(Y) \rightarrow A(X)$ be the corresponding map of k-algebras. Which of the following statements are true?
(a) If $P \in X$ and $Q \in Y$, then $f(P)=Q$ if and only if $\left(f^{*}\right)^{-1}(I(P))=I(Q)$.
(b) f^{*} is injective if and only f is surjective.
(c) f^{*} is surjective if and only f is injective.
(d) f^{*} is an isomorphism if and only f is an isomorphism.

If a statement is false, is there a weaker form of it which is true?

