Algebraic Geometry

Summer Semester 2013 - Problem Set 5
Due May 24, 2013, 1:00 pm

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. Let $X \subset \mathbb{P}^{n}$ be a non-empty projective algebraic set. Show that $I(X) \subset k\left[x_{0}, \ldots, x_{n}\right]$ is prime if and only if X is irreducible.

Problem 2. Let $C \subset \mathbb{P}^{3}$ be the "twisted cubic curve" given by the parametrization

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3},(s, t) \mapsto(x: y: z: w)=\left(s^{3}: s^{2} t: s t^{2}: t^{3}\right) .
$$

Let $P=(0: 0: 1: 0) \in \mathbb{P}^{3}$, and let H be the hyperplane defined by $z=0$. Let φ be the projection from P to H, i.e. the map associating to a point Q of C the intersection point of the unique line through P and Q with H.
(a) Show that φ is a morphism.
(b) Determine the equation of the curve $\varphi(C)$ in $H \cong \mathbb{P}^{2}$.
(c) Is $\varphi: C \rightarrow \varphi(C)$ an isomorphism onto its image?

Problem 3. In this exercise we will make the space of all lines in \mathbb{P}^{n} into a projective variety. Fix $n \geq 1$. We define a set-theoretic map

$$
\varphi:\left\{\text { lines in } \mathbb{P}^{n}\right\} \rightarrow \mathbb{P}^{N}
$$

with $N=\binom{n+1}{2}-1$ as follows. For every line $L \subset \mathbb{P}^{n}$ choose two distinct points $P=\left(a_{0}\right.$: $\left.\cdots: a_{n}\right)$ and $Q=\left(b_{0}: \cdots: b_{n}\right)$ on L and define $\varphi(L)$ to be the point in \mathbb{P}^{N} whose homogeneous coordinates are the $\binom{n+1}{2}$ maximal minors of the matrix

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n} \\
b_{0} & a_{1} & \ldots & b_{n}
\end{array}\right)
$$

in any fixed order. Show that:
(a) The map φ is well-defined and injective.
(b) The image of φ is a projective variety that has a finite open cover by affine spaces $\mathbb{A}^{2(n-1)}$. It is called the Grassmannian $G(1, n)$. Hint: recall that by the Gaussian algorithm most matrices (what does this mean?) are equivalent to one of the form

$$
\left(\begin{array}{ccccc}
1 & 0 & a_{2}^{\prime} & \ldots & a_{n}^{\prime} \\
0 & 1 & b_{2}^{\prime} & \ldots & b_{n}^{\prime}
\end{array}\right)
$$

for some $a_{i}^{\prime}, b_{i}^{\prime}$.

Prof. Dr. Mathias Schulze
Dipl.-Math. Cornelia Rottner
Fachbereich Mathematik
(c) $G(1,1)$ is a point, $G(1,2) \cong \mathbb{P}^{2}$, and $G(1,3)$ is the zero locus of a quadratic equation in \mathbb{P}^{5}.

Problem 4. Let V be the vector space over k of homogeneous degree- 2 polynomials in three variables x_{0}, x_{1}, x_{2}, and let $\mathbb{P}(V) \cong \mathbb{P}^{5}$ be its projectivization.
(a) Show that the space of conics in \mathbb{P}^{2} can be identified with an open subset U of \mathbb{P}^{5}. (One says that U is a "moduli space" for conics in \mathbb{P}^{2} and that \mathbb{P}^{5} is a "compactified moduli space".) What geometric objects can be associated to the points in $\mathbb{P}^{5} \backslash U$?
(b) Show that it is a linear condition in \mathbb{P}^{5} for the conics to pass through a given point in \mathbb{P}^{2}. More precisely, if $P \in \mathbb{P}^{2}$ is a point, show that there is a linear subspace $L \subset \mathbb{P}^{5}$ such that the conics passing through P are exactly those in $U \cap L$. What happens in $\mathbb{P}^{5} \backslash U$, i. e. what do the points in $\left(\mathbb{P}^{5} \backslash U\right) \cap L$ correspond to?
(c) Prove that there is a unique conic through any five given points in \mathbb{P}^{2}, as long as no three of them lie on a line. What happens if three of them do lie on a line?

