

Algebraic Geometry

Summer Semester 2013 - Problem Set 6

Due May 31, 2013, 1:00 $\rm pm$

Problem 1. Let G(1, n) be the Grassmannian of lines in \mathbb{P}^n as in Problem 3 on Problem Set 5. Show that:

- (a) The set $\{(L, P); P \in L\} \subset G(1, n) \times \mathbb{P}^n$ is closed.
- (b) If $Z \subset G(1,n)$ is any closed subset then the union of all lines $L \subset \mathbb{P}^n$ such that $L \in Z$ is closed in \mathbb{P}^n .
- (c) Let $X, Y \subset \mathbb{P}^n$ be disjoint projective varieties. Then the union of all lines in \mathbb{P}^n intersecting X and Y is a closed subset of \mathbb{P}^n . It is called the *join* J(X, Y) of X and Y.

Problem 2. Let $X, Y \subset \mathbb{P}^n$ be projective varieties. Show that $X \cap Y$ is not empty if dim $X + \dim Y \ge n$.

On the other hand, give an example of a projective variety Z and closed subsets $X, Y \subset Z$ with $\dim X + \dim Y \ge \dim Z$ and $X \cap Y = \emptyset$.

(Hint: Let H_1, H_2 be two disjoint linear subspaces of dimension n in \mathbb{P}^{2n+1} , and consider $X \subset \mathbb{P}^n \cong H_1 \subset \mathbb{P}^{2n+1}$ and $Y \subset \mathbb{P}^n \cong H_2 \subset \mathbb{P}^{2n+1}$ as subvarieties of \mathbb{P}^{2n+1} . Show that the join $J(X,Y) \subset \mathbb{P}^{2n+1}$ has dimension dim $X + \dim Y + 1$. Then construct $X \cap Y$ as a suitable intersection of J(X,Y) with n+1 hyperplanes.)

Problem 3. Let $C_1, C_2 \subset \mathbb{P}^4$ be two conic curves given by

$$C_1: x_0 = x_1 = x_2^2 - x_3 x_4 = 0$$
 and $C_2: x_3 = x_4 = x_2^2 - x_0 x_1 = 0$.

Show that $J(C_1, C_2)$ is a quartic hypersurface.