Algebraic Geometry

Summer Semester 2013 - Problem Set 6

Due May 31, 2013, 1:00 pm

Problem 1. Let $G(1, n)$ be the Grassmannian of lines in \mathbb{P}^{n} as in Problem 3 on Problem Set 5. Show that:
(a) The set $\{(L, P) ; P \in L\} \subset G(1, n) \times \mathbb{P}^{n}$ is closed.
(b) If $Z \subset G(1, n)$ is any closed subset then the union of all lines $L \subset \mathbb{P}^{n}$ such that $L \in Z$ is closed in \mathbb{P}^{n}.
(c) Let $X, Y \subset \mathbb{P}^{n}$ be disjoint projective varieties. Then the union of all lines in \mathbb{P}^{n} intersecting X and Y is a closed subset of \mathbb{P}^{n}. It is called the join $J(X, Y)$ of X and Y.

Problem 2. Let $X, Y \subset \mathbb{P}^{n}$ be projective varieties. Show that $X \cap Y$ is not empty if $\operatorname{dim} X+$ $\operatorname{dim} Y \geq n$.
On the other hand, give an example of a projective variety Z and closed subsets $X, Y \subset Z$ with $\operatorname{dim} X+\operatorname{dim} Y \geq \operatorname{dim} Z$ and $X \cap Y=\emptyset$.
(Hint: Let H_{1}, H_{2} be two disjoint linear subspaces of dimension n in $\mathbb{P}^{2 n+1}$, and consider $X \subset$ $\mathbb{P}^{n} \cong H_{1} \subset \mathbb{P}^{2 n+1}$ and $Y \subset \mathbb{P}^{n} \cong H_{2} \subset \mathbb{P}^{2 n+1}$ as subvarieties of $\mathbb{P}^{2 n+1}$. Show that the join $J(X, Y) \subset \mathbb{P}^{2 n+1}$ has dimension $\operatorname{dim} X+\operatorname{dim} Y+1$. Then construct $X \cap Y$ as a suitable intersection of $J(X, Y)$ with $n+1$ hyperplanes.)

Problem 3. Let $C_{1}, C_{2} \subset \mathbb{P}^{4}$ be two conic curves given by

$$
C_{1}: x_{0}=x_{1}=x_{2}^{2}-x_{3} x_{4}=0 \text { and } C_{2}: x_{3}=x_{4}=x_{2}^{2}-x_{0} x_{1}=0 .
$$

Show that $J\left(C_{1}, C_{2}\right)$ is a quartic hypersurface.

