Algebraic Geometry

Summer Semester 2013 - Problem Set 7

Due June 7, 2013, 1:00 pm

Problem 1. A quadric in \mathbb{P}^{n} is a projective variety in \mathbb{P}^{n} that can be given as the zero locus of a quadratic polynomial. Show that every quadric in \mathbb{P}^{n} is birational to \mathbb{P}^{n-1}.

Problem 2. Let $P_{1}=(1: 0: 0), P_{2}=(0: 1: 0), P_{3}=(0: 0: 1) \in \mathbb{P}^{2}$, and let $U=$ $\mathbb{P}^{2} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$. Consider the morphism

$$
f: U \rightarrow \mathbb{P}^{2},\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{1} a_{2}: a_{0} a_{2}: a_{0} a_{1}\right)
$$

(a) Show that there is no morphism $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ extending f.
(b) Let $\tilde{\mathbb{P}}^{2}$ be the blow-up of \mathbb{P}^{2} in the three points P_{1}, P_{2}, P_{3}. Show that there is an isomorphism $\tilde{f}: \tilde{\mathbb{P}}^{2} \rightarrow \tilde{\mathbb{P}}^{2}$ extending f. This is called the Cremona transformation.

Problem 3. Let $X \subset \mathbb{A}^{n}$ be an affine variety. For every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ denote by $f^{\text {in }}$ the initial terms of f, i. e. the terms of f of the lowest occurring degree. Let $I(X)^{i n}=\left\{f^{i n} \mid f \in I(X)\right\}$ be the ideal of the initial terms in $I(X)$. Now let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X in the origin $\{0\}=Z\left(x_{1}, \ldots, x_{n}\right)$. Show that the exceptional hypersurface $\pi^{-1}(0) \subset \mathbb{P}^{n}$ is precisely the projective zero locus of the homogeneous ideal $I(X)^{i n}$.

Problem 4. Let $X \subset \mathbb{A}^{n}$ be an affine variety, and let $Y_{1}, Y_{2} \subsetneq X$ be irreducible, closed subsets, no-one contained in the other. Let \tilde{X} be the blow-up of X at the (possibly non-radical) ideal $I\left(Y_{1}\right)+I\left(Y_{2}\right)$. Then the strict transforms of Y_{1} and Y_{2} on \tilde{X} are disjoint.

