

## Algebraic Geometry

Summer Semester 2013 - Problem Set 7

Due June 7, 2013, 1:00  $\rm pm$ 

**Problem 1.** A quadric in  $\mathbb{P}^n$  is a projective variety in  $\mathbb{P}^n$  that can be given as the zero locus of a quadratic polynomial. Show that every quadric in  $\mathbb{P}^n$  is birational to  $\mathbb{P}^{n-1}$ .

**Problem 2.** Let  $P_1 = (1 : 0 : 0), P_2 = (0 : 1 : 0), P_3 = (0 : 0 : 1) \in \mathbb{P}^2$ , and let  $U = \mathbb{P}^2 \setminus \{P_1, P_2, P_3\}$ . Consider the morphism

 $f: U \to \mathbb{P}^2, (a_0, a_1, a_2) \mapsto (a_1 a_2 : a_0 a_2 : a_0 a_1)$ 

- (a) Show that there is no morphism  $F : \mathbb{P}^2 \to \mathbb{P}^2$  extending f.
- (b) Let  $\tilde{\mathbb{P}}^2$  be the blow-up of  $\mathbb{P}^2$  in the three points  $P_1, P_2, P_3$ . Show that there is an isomorphism  $\tilde{f}: \tilde{\mathbb{P}}^2 \to \tilde{\mathbb{P}}^2$  extending f. This is called the *Cremona transformation*.

**Problem 3.** Let  $X \subset \mathbb{A}^n$  be an affine variety. For every  $f \in k[x_1, \ldots, x_n]$  denote by  $f^{in}$  the initial terms of f, i. e. the terms of f of the lowest occurring degree. Let  $I(X)^{in} = \{f^{in} \mid f \in I(X)\}$  be the ideal of the initial terms in I(X). Now let  $\pi : \tilde{X} \to X$  be the blow-up of X in the origin  $\{0\} = Z(x_1, \ldots, x_n)$ . Show that the exceptional hypersurface  $\pi^{-1}(0) \subset \mathbb{P}^n$  is precisely the projective zero locus of the homogeneous ideal  $I(X)^{in}$ .

**Problem 4.** Let  $X \subset \mathbb{A}^n$  be an affine variety, and let  $Y_1, Y_2 \subsetneq X$  be irreducible, closed subsets, no-one contained in the other. Let  $\tilde{X}$  be the blow-up of X at the (possibly non-radical) ideal  $I(Y_1) + I(Y_2)$ . Then the strict transforms of  $Y_1$  and  $Y_2$  on  $\tilde{X}$  are disjoint.