Prof. Dr. Mathias Schulze

Dipl.-Math. Cornelia Rottner
Fachbereich Mathematik

Algebraic Geometry

Summer Semester 2013 - Problem Set 8

Due June 14, 2013, 1:00 pm

In all exercises, the ground field k is assumed to be algebraically closed.
Problem 1. Let $f: X \rightarrow Y$ be a morphism of projective varieties, and let $Z \subset X$ be a closed subset. Assume that $f^{-1}(P) \cap Z$ is irreducible and of the same dimension for all $P \in Y$. Use Theorem 4.2.7 ${ }^{+}$to prove that then Z is irreducible too. (This is a quite useful criterion to check the irreducibility of closed subsets.)
Show by example that the conclusion is in general false if the $f^{-1}(P) \cap Z$ are irreducible but not all of the same dimension.

Problem 2. Let $X \subset \mathbb{A}^{n}$ be an affine variety, and let $P \in X$ be a point. Show that the coordinate ring $A\left(C_{X, P}\right):=k\left[x_{1}, \ldots, x_{n}\right] / I(X)^{\text {in }}$ of the tangent cone to X at P is equal to $\oplus_{k \geq 0} I(P)^{k} / I(P)^{k+1}$, where $I(P)$ is the ideal of P in $A(X)$.

Problem 3. Let $X \subset \mathbb{A}^{n}$ be an affine variety and $P \in X$ a point (you may assume that $\left.P=(0, \ldots, 0) \in \mathbb{A}^{n}\right)$. Show that the affine cone $C_{X, P}$ is pure-dimensional of dimension $\operatorname{dim} X$. Hint: Use that the projective cone of X at P is a hypersurface in the blow-up \tilde{X} of X in P.

Problem 4. Let $C \subset \mathbb{P}^{2}$ be a smooth curve, given as the zero locus of a homogeneous polynomial $f \in k\left[x_{0}, x_{1}, x_{2}\right]$. Consider the morphism

$$
\varphi_{C}: C \rightarrow \mathbb{P}^{2}, P \mapsto\left(\frac{\partial f}{\partial x_{0}}(P): \frac{\partial f}{\partial x_{1}}(P): \frac{\partial f}{\partial x_{2}}(P)\right) .
$$

The image $\varphi_{C}(C) \subset \mathbb{P}^{2}$ is called the dual curve to C.
(a) Find a geometric description of φ_{C}. What does it mean geometrically if $\varphi_{C}(P)=\varphi_{C}(Q)$ for two distinct points $P, Q \in C$?
(b) If C is a conic (i.e. f is an irreducible homogeneous polynomial of degree 2), prove that its dual $\varphi_{C}(C)$ is also a conic.
(c) Show that for any five lines in \mathbb{P}^{2} in general position there is a unique conic in \mathbb{P}^{2} that is tangent to these five lines, i.e. show that there is a non-empty open subset $U \subset \times_{i=1}^{5} G(1,2)$ such that for any $\left(l_{1}, \ldots, l_{5}\right) \in U$ there exists a unique conic in \mathbb{P}^{2} tangent to the five lines corresponding to l_{1}, \ldots, l_{5}. (Hint: Use Problem 4 on Problem Set 5.)

